1
|
Sun S, Hou X, Li K, Huang C, Rong Y, Bi J, Li X, Wu D. Curcumin and Metformin Infinite Coordination Polymer Nanoparticles for Combined Therapy of Diabetic Mice via Intraperitoneal Injections. J Funct Biomater 2024; 15:388. [PMID: 39728188 DOI: 10.3390/jfb15120388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Metformin (Met) is one of the most commonly prescribed first-line drugs for diabetes treatment. However, it has several issues, including low bioavailability, therapeutic platform, and side effects at high doses. In order to improve the therapeutic efficiency of Met, this study proposes a strategy of using Met and curcumin (Cur) to prepare Cur-Zn(II)-Met infinite coordination polymer nanoparticles (CM ICP NPs), and combining this with intraperitoneal injections, for the treatment of diabetic mice. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), nanoparticle analysis, cytotoxicity experiments, and mice experiments were used to investigate structure, properties, and application effects. The results showed that CM ICP NPs exhibit a high drug encapsulation rate (100%), good stability, and an absence of in vivo and in vitro toxicity. The blood glucose level of diabetic mice after treatment was reduced to 6.7 ± 0.65 mmol/L at the seventh week. In terms of therapeutic mechanism, it appears that Met and Cur can synergistically regulate blood glucose in mice from multiple paths. This study provides a promising method for the treatment of diabetes using Met and other drugs.
Collapse
Affiliation(s)
- Siwei Sun
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Xinyi Hou
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Rong
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Jiao Bi
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Xueping Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
- School of Clinical Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Zhou J, Ren Y, Yu J, Zeng Y, Ren J, Wu Y, Zhang Q, Xiao X. The effect of maternal dietary polyphenol consumption on offspring metabolism. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39698806 DOI: 10.1080/10408398.2024.2442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Davoudi Z, Bikdeli P, Oshidari B, Erfanifar A, Kazempour M, Jolfaei P, Toreyhi H, Mirhashemi S. Sleeve Gastrectomy and Its Impact on Insulin Resistance and Metabolic Health: A Cohort Study. Obes Surg 2024:10.1007/s11695-024-07617-3. [PMID: 39690318 DOI: 10.1007/s11695-024-07617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Obesity is a prevalent metabolic disorder that significantly contributes to insulin resistance (IR), type 2 diabetes (T2DM), and metabolic syndrome. Sleeve gastrectomy has emerged as an effective surgical intervention for obesity, with potential benefits on metabolic health. This study investigates the impact of sleeve gastrectomy on serum insulin levels, IR (HOMA-IR), inflammatory markers, C-peptide, kidney function, and various biochemical parameters in diabetic and non-diabetic patients. METHODS A prospective cohort study was conducted, involving 199 patients over 18 years old who were candidates for sleeve gastrectomy at Luqman Hakim Hospital from 2021 to 2022. Data were collected using standardized questionnaires and anthropometric measurements, and biochemical assessments were performed before surgery and 6 months postoperatively. Statistical analyses included descriptive statistics, t-tests, Mann-Whitney tests, and repeated measures analysis of variances (ANOVA). RESULTS The study included 199 patients (84.4% female) with a mean (± standard deviation (SD)) age of 39.79 ± 11.30 years. Significant reductions were observed in weight, BMI, and abdominal circumference across all patient groups. Diabetic patients showed marked improvements in fasting blood sugar, 2-h postprandial blood sugar, and glycosylated hemoglobin levels. Insulin resistance decreased significantly, as did serum insulin and C-peptide levels. Improvements in lipid profiles and inflammatory markers were also noted. Insulin use post-surgery showed a significant inverse relationship with glycemic control improvement. CONCLUSIONS Sleeve gastrectomy is a safe and effective procedure for obese patients, significantly improving insulin resistance and various obesity-associated diseases within 6 months post-surgery.
Collapse
Affiliation(s)
- Zahra Davoudi
- Department of Endocrinology, Research Center of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Bikdeli
- Department of internal medicine, Research Center of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahador Oshidari
- Department of surgery, Research Center of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Erfanifar
- Department of Endocrinology, Research Center of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhanna Kazempour
- Department of Rheumatology, Research Center of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Jolfaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyedhadi Mirhashemi
- General Surgery Department, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zheng X, Zhu J, Haedi AR, Zhou M. The effect of curcumin supplementation on glycemic indices in adults: A meta-analysis of meta-analyses. Prostaglandins Other Lipid Mediat 2024; 175:106908. [PMID: 39270815 DOI: 10.1016/j.prostaglandins.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Curcumin, an inherent polyphenolic compound, has the potential to influence glycemic indices. Nevertheless, the conclusions drawn from extant meta-analyses remain contentious. To determine the impact of curcumin supplementation on these indices, the current umbrella meta-analysis included existing systematic reviews and meta-analyses. A thorough systematic search was conducted using databases Embase, PubMed, WOS, Scopus, and the Cochrane Library to acquire peer-reviewed literature published before January 2024. The random-effects model was employed to conduct a meta-analysis. The present analysis incorporated a total of 22 meta-analytic studies. The findings of our study indicate that the administration of curcumin supplements leads to a significant decrease in fasting blood sugar levels (FBS) (ES: -1.63; 95 % CI: -2.36, -0.89, P<0.001; I2=88.4 %, P<0.001), homeostasis model assessment-estimated insulin resistance (HOMA-IR) (ES: -0.38; 95 % CI: -0.48, -0.28, P<0.001; I2=35.9 %, P=0.142), hemoglobin A1c (HbA1c) (ES: -0.44; 95 % CI: -0.67, -0.21, P<0.001; I2=65.0 %, P=0.014), and insulin (ES: -0.86; 95 % CI: -1.52, -0.21, P=0.010; I2=92.5 %, P<0.001). The results of this study suggest that the administration of curcumin supplements may be a beneficial intervention for enhancing glycemic indices.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Nursing Department, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jinhua Zhu
- Second Department of Surgery, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Amir Reza Haedi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miaomiao Zhou
- Third Department of Surgery, First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
5
|
Palma-Jacinto JA, López-López E, Medina-Franco JL, Montero-Ruíz O, Santiago-Roque I. Putative mechanism of a multivitamin treatment against insulin resistance. Adipocyte 2024; 13:2369777. [PMID: 38937879 PMCID: PMC11216102 DOI: 10.1080/21623945.2024.2369777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.
Collapse
Affiliation(s)
- José Antonio Palma-Jacinto
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research, Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - José Luis Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oreth Montero-Ruíz
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Isela Santiago-Roque
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| |
Collapse
|
6
|
Li KX, Yuan H, Zhang J, Peng XB, Zhuang WF, Huang WT, Liang HX, Lin Y, Huang YZ, Qin SL. Curcumin-Loaded Long-Circulation Liposomes Ameliorate Insulin Resistance in Type 2 Diabetic Mice. Int J Nanomedicine 2024; 19:12099-12110. [PMID: 39583326 PMCID: PMC11585265 DOI: 10.2147/ijn.s487519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterised by insulin resistance, hyperglycaemia, and inflammation, with oxidative stress contributing to its progression. Curcumin (CUR), known for its anti-inflammatory, antioxidant, and insulin sensitising effects, has shown potential for the treatment of T2DM but is limited by low solubility and bioavailability. This study investigated long-circulating curcumin-loaded liposomes (CUR-LPs) to improve curcumin stability, solubility, and circulation and assessed their effect on insulin resistance in a murine model of T2DM. Methods CUR-LPs were prepared using the ethanol injection method and characterized for morphology, particle size, zeta potential, encapsulation efficiency, drug-loading capacity, and in vitro release. Cell viability was tested on murine L929 cells. In a T2DM murine model, after four weeks of CUR-LP treatment, inflammatory markers TNF-α and IL-6 were measured by real-time polymerase chain reaction, and liver tissues were analyzed for glutathione (GSH) and superoxide dismutase (SOD) via colorimetry. Results CUR-LPs were spherical, with an average diameter of (249 ± 2.3) nm and a zeta potential of (-33.5 ± 0.8) mV. They exhibited an encapsulation efficiency of (99.2 ± 0.5) %and a drug-loading capacity of (1.63 ± 0.02) %. CUR embedding in liposomes significantly maintained CUR release. In L929 cells, over 80% viability was maintained at 12 uM CUR concentration after 24 h. In HFD/STZ-induced T2DM mice, CUR-LPs improved blood glucose and insulin levels more efficiently than free CUR, and CUR-LPs also reduced hepatic inflammation (TNF-α, IL-6), enhanced hepatic GSH and SOD, and attenuated liver injury. Conclusion CUR-LPs improved glucose metabolism and insulin resistance in HFD/STZ-induced T2DM mice, which may be associated with a decrease in liver inflammation and oxidative stress.
Collapse
Affiliation(s)
- Kang-Xin Li
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hui Yuan
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jing Zhang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Xiao-bin Peng
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei-Fen Zhuang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wen-Tao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hui-Xin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying Lin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying-Zhen Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Nkhumeleni Z, Phoswa WN, Mokgalaboni K. Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2024; 25:12276. [PMID: 39596339 PMCID: PMC11595026 DOI: 10.3390/ijms252212276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is characterised by insulin resistance and leads to hyperglycaemia. Its prevalence and associated complications continue to rise exponentially, despite the existence of pharmaceutical drugs, and this has prompted research into exploring safer herbal remedies. Portulaca oleracea (purslane) has been investigated in animal and clinical trials to explore its effects on diabetes, yielding conflicting results. This study aimed to evaluate the effects of purslane on inflammation and oxidative stress in diabetes mellitus. We conducted a comprehensive literature search on Scopus PubMed, and through a manual bibliographical search to find relevant studies from inception to 13 September 2024. The search terms included purslane, portulaca oleracea, and type 2 diabetes mellitus. Of the 38 retrieved studies, 12 were considered relevant and underwent critical review. Evidence from rodent studies showed decreased inflammatory markers such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), nuclear factor kappa-beta (NF-κβ), and C-reactive (CRP), while interleukin-10 (IL-10) was increased after intervention with purslane. The markers of oxidative stress such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels increased, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and malondialdehyde (MDA) decreased. Notably, the evidence from clinical trials showed a significant reduction in NF-κβ and CRP after purslane treatment; however, no effect was observed on MDA and TAC. The evidence gathered in this study suggests that purslane exerts anti-inflammatory properties by downregulating NF-κβ, thus suppressing the production of associated pro-inflammatory cytokines. Therefore, purslane may be used as an antioxidant and inflammatory agent for diabetes. However, further clinical evidence with a broader population is required to validate the therapeutic properties of purslane in diabetes.
Collapse
Affiliation(s)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (Z.N.); (K.M.)
| | | |
Collapse
|
8
|
Piccoli RC, Simões WS, Custódio SV, Goularte KCM, Luduvico KP, de Mello JE, de Souza AA, Teixeira AC, da Costa DA, Barschak AG, Deniz BF, de Almeida W, Pereira P, Nicolai M, Spanevello RM, Stefanello FM, Tavares RG, Palma ML. Sustainable Intervention: Grape Pomace Flour Ameliorates Fasting Glucose and Mitigates Streptozotocin-Induced Pancreatic Damage in a Type 2 Diabetes Animal Model. Pharmaceuticals (Basel) 2024; 17:1530. [PMID: 39598440 PMCID: PMC11597639 DOI: 10.3390/ph17111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with 'Arinto' grape pomace flour (GPF) (WGPF) and 'Touriga Nacional' GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the 21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM + Metformin (250 mg/kg), T2DM + 10% 'Arinto' GPF (WGPF), and T2DM + 10% 'Touriga Nacional' GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pancreatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape pomace, a winemaking by-product, promoting sustainability by transforming waste into functional foods with significant health benefits.
Collapse
Affiliation(s)
- Raphaela Cassol Piccoli
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - William Sanabria Simões
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Solange Vega Custódio
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Kelen Cristiane Machado Goularte
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Karina Pereira Luduvico
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Julia Eisenhardt de Mello
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Anita Avila de Souza
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Ana Carolina Teixeira
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Diego Araujo da Costa
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
| | - Alethéa Gatto Barschak
- Clinical Analysis Laboratory, Federal University of Health Sciences of Porto Alegre, Department of Basic Health Sciences, Porto Alegre 90050-170, RS, Brazil;
| | - Bruna Ferrary Deniz
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Wellington de Almeida
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Paula Pereira
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Natural Resources and Environment (CERENA), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- EPCV, School of Phycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marisa Nicolai
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| | - Roselia Maria Spanevello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Rejane Giacomelli Tavares
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Maria Lídia Palma
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| |
Collapse
|
9
|
Kang ZP, Xiao QP, Huang JQ, Wang MX, Huang J, Wei SY, Cheng N, Wang HY, Liu DY, Zhong YB, Zhao HM. Curcumin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Mol Nutr Food Res 2024; 68:e2300598. [PMID: 39380356 DOI: 10.1002/mnfr.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/01/2024] [Indexed: 10/10/2024]
Abstract
SCOPE Curcumin (Cur), with diverse pharmacological properties, shows anti-obesity, immunomodulatory, and anti-inflammatory effects. Its role in ulcerative colitis complicated by obesity remains unclear. METHODS AND RESULTS Here, colitis is induced in obese mice using dextran sulfate sodium (DSS), followed by administration of Cur at a dosage of 100 mg kg-1 for 14 days. Cur effectively alleviates DSS-induced colitis in obese mice, accompanied by an increase in body weight and survival rate, reduction in disease activity index, elongation of the colon, decrease in colonic weight, and improvements in ulcer formation and inflammatory cell infiltration in colonic tissues. Additionally, Cur effectively improves lipid metabolism and the composition of the gut microbiota, and enhances mucosal integrity and boosts anti-oxidative stress capacity in obese mice with colitis. Importantly, Cur is effective in improving the homeostasis of memory T cells in obese mice with colitis. Furthermore, Cur regulates inflammatory cytokines expression and inhibits activation of the JAK2/STAT signaling pathway in colonic tissues of obese mice with colitis. CONCLUSIONS Cur alleviates colitis in obese mice through a comprehensive mechanism that improves lipid metabolism, modulates gut microbiota composition, enhances mucosal integrity and anti-oxidative stress, balances memory T cell populations, regulates inflammatory cytokines, and suppresses the JAK2/STAT signaling pathway.
Collapse
Affiliation(s)
- Zeng-Ping Kang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Qiu-Ping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Jia-Qi Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Meng-Xue Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Jie Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Si-Yi Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Nian Cheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Hai-Yan Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - You-Bao Zhong
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi Province, 330004, China
| |
Collapse
|
10
|
Denizci E, Altun G, Kaplan S. Morphological evidence for the potential protective effects of curcumin and Garcinia kola against diabetes in the rat hippocampus. Brain Res 2024; 1839:149020. [PMID: 38788929 DOI: 10.1016/j.brainres.2024.149020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
This research investigated the effects of sciatic nerve transection and diabetes on the hippocampus, and the protective effects of Garcinia kola and curcumin. Thirty-five adults male Wistar albino rats were divided into five groups: a control group (Cont), a transected group (Sham group), a transected + diabetes mellitus group (DM), a transected + diabetes mellitus + Garcinia kola group (DM + GK), and a transected + DM + curcumin group (DM + Cur), each containing seven animals. The experimental diabetes model was created with the intraperitoneal injection of a single dose of streptozotocin. No procedure was applied to the Cont group, while sciatic nerve transection was performed on the other groups. Garcinia kola was administered to the rats in DM + GK, and curcumin to those in DM + Cur. Cardiac perfusion was performed at the end of the experimental period. Brain tissues were dissected for stereological, histopathological, and immunohistochemical evaluations. The volume ratios of hippocampal layers to the entire hippocampus volume were compared between the groups. Anti-S100, anti-caspase 3, and anti-SOX 2 antibodies were used for immunohistochemical analysis. No statistically significant difference was observed in the volume ratios of the four hippocampal layers. However, the volume ratio of the stratum lucidum was higher in the Sham, DM, and DM + Cur groups compared to the Cont group. While curcumin exhibited a protective effect on hippocampal tissue following diabetes induction, Garcinia kola had only a weak protective effect. Increased cell density and nuclear deterioration due to diabetes and nerve transection can be partially ameliorated by treatment with Garcinia kola and curcumin.
Collapse
Affiliation(s)
- Eda Denizci
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun 55139, Turkey; Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| |
Collapse
|
11
|
Sharma P, Kumari P, Sharma M, Sharma R, Paliwal A, Srivastava S, Ashique S, Bhowmick M, Adnan M, Mir RH. Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: behavioural, biochemical and histopathological evidence. J Microencapsul 2024; 41:403-418. [PMID: 39007845 DOI: 10.1080/02652048.2024.2373715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE The main purpose of the present study was to evaluate the therapeutic efficacy of Aloe vera-coated curcumin encapsulated nanoparticles in mitigating Alzheimer's disease progression in mice, by examining behavioural changes, biochemical markers, and histopathological alterations, thus elucidating its potential as a treatment strategy. METHODS The green synthesis method was used to synthesise this nanoformulation, which was then characterised using a variety of techniques, including percentage encapsulation efficacy, UV-visible spectroscopy, DLS, FT-IR, FESEM, and EDX. Several in-vivo assessments, including behavioural evaluations, dose optimisation studies, oxidative stress marker estimation, and histological studies, were conducted to determine the potential therapeutic impact of nanoformulation on the Alzheimer-induced mice model. RESULTS The synthesised nanoparticles show a mean diameter of 76.12 nm ±1.23, a PDI of 0.313 ± 0.02, a zeta potential of 6.27 ± 0.65 mV, and the percentage encapsulation efficiency between 90% and 95% indicating good stability of synthesised nanoformulation. With the help of Morris water maze, Y-maze, and novel object recognition assay, the learning capacity and memory were assessed, and the results show that the synthesised nanoformulation significantly decreased the transfer latency to reach baited arm or to the hidden platform within 7 days. CONCLUSION The formulation demonstrated significant biochemical benefits and remarkable cognitive advantages, establishing it as a prospective therapeutic intervention option that is both safe and effective.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Pooja Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Mansi Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Reyaz Hassan Mir
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
12
|
Zhang P, Liu H, Yu Y, Peng S, Zhu S. Role of Curcuma longae Rhizoma in medical applications: research challenges and opportunities. Front Pharmacol 2024; 15:1430284. [PMID: 39170702 PMCID: PMC11336575 DOI: 10.3389/fphar.2024.1430284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Curcuma longae Rhizoma, commonly known as turmeric, is extensively utilized not only in Traditional Chinese Medicine (TCM) but also across various traditional medicine systems worldwide. It is renowned for its effectiveness in removing blood stasis, promoting blood circulation, and relieving pain. The primary bioactive metabolites of Curcuma longae Rhizoma-curcumin, β-elemene, curcumol, and curdione-have been extensively studied for their pharmacological benefits. These include anti-tumor properties, cardiovascular and cerebrovascular protection, immune regulation, liver protection, and their roles as analgesics, anti-inflammatories, antivirals, antibacterials, hypoglycemics, and antioxidants. This review critically examines the extensive body of research regarding the mechanisms of action of Curcuma longae Rhizoma, which engages multiple molecular targets and signaling pathways such as NF-κB, MAPKs, and PI3K/AKT. The core objective of this review is to assess how the main active metabolites of turmeric interact with these molecular systems to achieve therapeutic outcomes in various clinical settings. Furthermore, we discuss the challenges related to the bioavailability of these metabolites and explore potential methods to enhance their therapeutic effects. By doing so, this review aims to provide fresh insights into the optimization of Curcuma longae Rhizoma for broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, Brambila E, Treviño S. Curcumin Treatment Ameliorates Hepatic Insulin Resistance Induced by Sub-chronic Oral Exposure to Cadmium LOAEL Dose via NF-κB and Nrf2 Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04314-1. [PMID: 39103711 DOI: 10.1007/s12011-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Cadmium (Cd) is a global pollutant, and its accumulation in the liver causes oxidative stress, inflammation, insulin resistance (IR), and metabolic complications. This study investigated whether curcumin treatment could alleviate hepatic IR in Wistar rats exposed to sub-chronic cadmium and explored the underlying molecular pathways. Male Wistar rats were divided into a control group (standard normocaloric diet + cadmium-free water) and a cadmium group (standard normocaloric diet + drinking water with 32.5 ppm CdCl2) for 30 days. Oral glucose tolerance, insulin response, and IR were assessed using mathematical models. Liver tissue was analyzed for markers of oxidative stress, inflammation, and key regulatory pathways, including NF-κB, Nrf2, MAPKs (JNK and p38), and the IRS1-Akt pathway. We established an effective curcumin dose of 250 mg/kg for 5 days orally. Results demonstrated that after 30 days of exposure, cadmium accumulated in the liver, inducing an oxidative and inflammatory state. This was characterized by increased expression of NF-κB, JNK, and p38, along with diminished Nrf2 expression, hepatic IR, hyperglycemia, and hyperinsulinemia. Curcumin treatment effectively alleviated these metabolic disorders by restoring the balance between NF-κB and Nrf2 in the liver, modulating the MAPK pathway, and, consequently, improving oxidative and inflammatory balance. In conclusion, this study suggests that cadmium induces hepatic IR through an imbalance between NF-κB and Nrf2 signaling pathways. Curcumin treatment appears to improve these pathways, thereby ameliorating hepatic IR.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
14
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
Esmaealzadeh N, Miri MS, Mavaddat H, Peyrovinasab A, Ghasemi Zargar S, Sirous Kabiri S, Razavi SM, Abdolghaffari AH. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology 2024; 32:2125-2151. [PMID: 38769198 DOI: 10.1007/s10787-024-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Neurodegenerative diseases are part of the central nervous system (CNS) disorders that indicate their presence with neuronal loss, neuroinflammation, and increased oxidative stress. Several pathophysiological factors and biomarkers are involved in this inflammatory process causing these neurological disorders. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is an inflammation element, which induced transcription and appears to be one of the important players in physiological procedures, especially nervous disorders. NF-κB can impact upon series of intracellular actions and induce or inhibit many inflammation-related pathways. Multiple reports have focused on the modification of NF-κB activity, controlling its expression, translocation, and signaling pathway in neurodegenerative disorders and injuries like Alzheimer's disease (AD), spinal cord injuries (SCI), and Parkinson's disease (PD). Curcumin has been noted to be a popular anti-oxidant and anti-inflammatory substance and is the foremost natural compound produced by turmeric. According to various studies, when playing an anti-inflammatory role, it interacts with several modulating proteins of long-standing disease signaling pathways and has an unprovocative consequence on pro-inflammatory cytokines. This review article determined to figure out curcumin's role in limiting the promotion of neurodegenerative disease via influencing the NF-κB signaling route. Preclinical studies were gathered from plenty of scientific platforms including PubMed, Scopus, Cochrane, and Google Scholar to evaluate this hypothesis. Extracted findings from the literature review explained the repressing impact of Curcumin on the NF-κB signaling pathway and, occasionally down-regulating the cytokine expression. Yet, there is an essential need for further analysis and specific clinical experiments to fully understand this subject.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdis Sadat Miri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Helia Mavaddat
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Amirreza Peyrovinasab
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Sara Ghasemi Zargar
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Shirin Sirous Kabiri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Seyed Mehrad Razavi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| |
Collapse
|
16
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
17
|
Ye S, Cheng Z, Zhuo D, Liu S. Different Types of Cell Death in Diabetic Neuropathy: A Focus on Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:8126. [PMID: 39125694 PMCID: PMC11311470 DOI: 10.3390/ijms25158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes, affecting over 50% of patients, leading to significant pain and a burden. Currently, there are no effective treatments available. Cell death is considered a key factor in promoting the progression of DN. This article reviews how cell death is initiated in DN, emphasizing the critical roles of oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and autophagy. Additionally, we thoroughly summarize the mechanisms of cell death that may be involved in the pathogenesis of DN, including apoptosis, autophagy, pyroptosis, and ferroptosis, among others, as well as potential therapeutic targets offered by these death mechanisms. This provides potential pathways for the prevention and treatment of diabetic neuropathy in the future.
Collapse
Affiliation(s)
- Shang Ye
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Zilin Cheng
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Dongye Zhuo
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Shuangmei Liu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
18
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
19
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
20
|
Ferradj S, Yahoum MM, Rebiha M, Nabi I, Toumi S, Lefnaoui S, Hadj-Ziane-Zafour A, Touzout N, Tahraoui H, Mihoub A, Seleiman MF, Ali N, Zhang J, Amrane A. Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1105. [PMID: 38998710 PMCID: PMC11243456 DOI: 10.3390/nano14131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The objective of this study is the development of innovative nanocurcumin-based formulations designed for the treatment and prevention of oxidative stress and diabetes. Nanocurcumin was obtained through a micronization process and subsequently encapsulated within biopolymers derived from corn starch and fenugreek mucilage, achieving encapsulation rates of 75% and 85%, respectively. Subsequently, the encapsulated nanocurcumin was utilized in the formulation of sugar-free syrups based on Stevia rebaudiana Bertoni. The stability of the resulting formulations was assessed by monitoring particle size distribution and zeta potential over a 25-day period. Dynamic light scattering (DLS) revealed a particle size of 119.9 nm for the fenugreek mucilage-based syrup (CURF) and 117 nm for the corn starch-based syrup (CURA), with polydispersity indices PDIs of 0.509 and 0.495, respectively. The dissolution rates of the encapsulated nanocurcumin were significantly enhanced, showing a 67% improvement in CURA and a 70% enhancement in CURF compared with crude curcumin (12.82%). Both formulations demonstrated excellent antioxidant activity, as evidenced by polyphenol quantification using the 2.2-diphenyl 1-pycrilhydrazyl (DPPH) assay. In the evaluation of antidiabetic activity conducted on Wistar rats, a substantial reduction in fasting blood sugar levels from 392 to 187 mg/mL was observed. The antioxidant properties of CURF in reducing oxidative stress were clearly demonstrated by a macroscopic observation of the rats' livers, including their color and appearance.
Collapse
Affiliation(s)
- Safa Ferradj
- Laboratory of Chemical Engineering, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Madiha Melha Yahoum
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
- LME, Material and Environmental Laboratory, University of Medea, Medea 26001, Algeria
| | - Mounia Rebiha
- Functional Analysis of Chemical Processes Laboratory, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Ikram Nabi
- Laboratory of Chemical Engineering, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Selma Toumi
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
| | - Sonia Lefnaoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
| | - Amel Hadj-Ziane-Zafour
- Laboratory of Chemical Engineering, Chemical Engineering Department, Saad Dahlab University, Blida 09000, Algeria
| | - Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Nouveau Pôle Urbain, Medea University, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
- National High School of Chemistry of Rennes, Scientific Research National Center (CNRS), ISCR-UMR 6226, Rennes University, F-35000 Rennes, France
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt 30000, Algeria
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nawab Ali
- Department of Biosystems and Agricultural Engineering (BAE), College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- National High School of Chemistry of Rennes, Scientific Research National Center (CNRS), ISCR-UMR 6226, Rennes University, F-35000 Rennes, France
| |
Collapse
|
21
|
Haxhiraj M, White K, Terry C. The Role of Fenugreek in the Management of Type 2 Diabetes. Int J Mol Sci 2024; 25:6987. [PMID: 39000103 PMCID: PMC11240913 DOI: 10.3390/ijms25136987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The number of people diagnosed with type 2 diabetes is on the increase worldwide. Of growing concern, the prevalence of type 2 diabetes in children and youths is increasing rapidly and mirrors the increasing burden of childhood obesity. There are many risk factors associated with the condition; some are due to lifestyle, but many are beyond our control, such as genetics. There is an urgent need to develop better therapeutics for the prevention and management of this complex condition since current medications often cause unwanted side effects, and poorly managed diabetes can result in the onset of related comorbidities. Naturally derived compounds have gained momentum for preventing and managing several complex conditions, including type 2 diabetes. Here, we provide an update on the benefits and limitations of fenugreek and its components as a therapeutic for type 2 diabetes, including its bioavailability and interaction with the microbiome.
Collapse
Affiliation(s)
- Melina Haxhiraj
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| | - Kenneth White
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| | - Cassandra Terry
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| |
Collapse
|
22
|
Gu Y, Niu Q, Zhang Q, Zhao Y. Ameliorative Effects of Curcumin on Type 2 Diabetes Mellitus. Molecules 2024; 29:2934. [PMID: 38930998 PMCID: PMC11206386 DOI: 10.3390/molecules29122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a multifactorial and complicated metabolic disorder, is a growing public health problem. Numerous studies have indicated that bioactive compounds from herbal medicine have beneficial effects on T2DM prevention and treatment, owing to their numerous biological properties. Curcumin, the major curcuminoid of turmeric, is one of the most studied bioactive components of herbal supplements, and has a variety of biological activities. Clinical trials and preclinical research have recently produced compelling data to demonstrate the crucial functions of curcumin against T2DM via several routes. Accordingly, this review systematically summarizes the antidiabetic activity of curcumin, along with various mechanisms. Results showed that effectiveness of curcumin on T2DM is due to it being anti-inflammatory, anti-oxidant, antihyperglycemic, anti-apoptotic, and antihyperlipidemic, among other activities. In light of these results, curcumin may be a promising prevention/treatment choice for T2DM.
Collapse
Affiliation(s)
- Yujin Gu
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhang Dian District, Zibo 255000, China;
| | - Qun Niu
- Institute of Xinhua Pharmaceutical, Shandong Xinhua Pharmaceutical Co., Ltd., Lutai Avenue 1, Gaoxin District, Zibo 255000, China;
| | - Qili Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhang Dian District, Zibo 255000, China;
| | - Yanfang Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhang Dian District, Zibo 255000, China;
| |
Collapse
|
23
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
24
|
Huang X, Lin K, Liu S, Yang J, Zhao H, Zheng XH, Tsai MJ, Chang CS, Huang L, Weng CF. Combination of plant metabolites hinders starch digestion and glucose absorption while facilitating insulin sensitivity to diabetes. Front Pharmacol 2024; 15:1362150. [PMID: 38903985 PMCID: PMC11188438 DOI: 10.3389/fphar.2024.1362150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Diabetes mellitus (DM) is a common endocrine disease resulting from interactions between genetic and environmental factors. Type II DM (T2DM) accounts for approximately 90% of all DM cases. Current medicines used in the treatment of DM have some adverse or undesirable effects on patients, necessitating the use of alternative medications. Methods To overcome the low bioavailability of plant metabolites, all entities were first screened through pharmacokinetic, network pharmacology, and molecular docking predictions. Experiments were further conducted on a combination of antidiabetic phytoactive molecules (rosmarinic acid, RA; luteolin, Lut; resveratrol, RS), along with in vitro evaluation (α-amylase inhibition assay) and diabetic mice tests (oral glucose tolerance test, OGTT; oral starch tolerance test, OSTT) for maximal responses to validate starch digestion and glucose absorption while facilitating insulin sensitivity. Results The results revealed that the combination of metabolites achieved all required criteria, including ADMET, drug likeness, and Lipinski rule. To determine the mechanisms underlying diabetic hyperglycemia and T2DM treatments, network pharmacology was used for regulatory network, PPI network, GO, and KEGG enrichment analyses. Furthermore, the combined metabolites showed adequate in silico predictions (α-amylase, α-glucosidase, and pancreatic lipase for improving starch digestion; SGLT-2, AMPK, glucokinase, aldose reductase, acetylcholinesterase, and acetylcholine M2 receptor for mediating glucose absorption; GLP-1R, DPP-IV, and PPAR-γ for regulating insulin sensitivity), in vitro α-amylase inhibition, and in vivo efficacy (OSTT versus acarbose; OGTT versus metformin and insulin) as nutraceuticals against T2DM. Discussion The results demonstrate that the combination of RA, Lut, and RS could be exploited for multitarget therapy as prospective antihyperglycemic phytopharmaceuticals that hinder starch digestion and glucose absorption while facilitating insulin sensitivity.
Collapse
Affiliation(s)
- Xin Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Kaihuang Lin
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Sinian Liu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Junxiong Yang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Haowei Zhao
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Xiao-Hui Zheng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Sheng Chang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Liyue Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| |
Collapse
|
25
|
Gupta RS, Grover AS, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Pal P, Bagchi D. A randomized double blind placebo controlled trial to assess the safety and efficacy of a patented fenugreek ( Trigonella foenum-graecum) seed extract in Type 2 diabetics. Food Nutr Res 2024; 68:10667. [PMID: 38863744 PMCID: PMC11165257 DOI: 10.29219/fnr.v68.10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Background Fenugreek plant (Trigonella foenum-graecum) constitutes a traditionally acclaimed herbal remedy for many human ailments including diabetes, obesity, neurodegenerative diseases, and reproductive disorders. It is also used as an effective anti-oxidative, anti-inflammatory, antibacterial, and anti-fungal agent. The seed of the plant is especially enriched in several bioactive molecules including polyphenols, saponins, alkaloids, and flavonoids and has demonstrated potential to act as an antidiabetic phytotherapeutic. A novel patented formulation (Fenfuro®) was developed in our laboratory from the fenugreek seeds which contained >45% furostanolic saponins (HPLC). Objective A placebo-controlled clinical compliance study was designed to assess the effects of complementing Fenfuro® on a randomized group of human volunteers on antidiabetic therapy (Metformin and sulphonylurea) in controlling the glycemic index along with simultaneous safety assessment. Study methodology and trial design In a randomized double-blind, placebo-controlled trial, 42 individuals (21 male and 21 female volunteers) in the treatment group (out of 57 enrolled) and 39 individuals (17 male and 22 female volunteers) in the placebo group (out of 47 enrolled), all on antidiabetic therapy with Metformin/Metformin with sulphonyl urea within the age group of 18-65 years were administered either 1,000 mg (500 mg × 2) (Fenfuro®) capsules or placebo over a period of 12 consecutive weeks. Fasting and postprandial glucose along with glycated hemoglobin were determined as primary outcomes to assess the antidiabetic potential of the formulation. Moreover, in order to evaluate the safety of the formulation, C-peptide and Thyroid Stimulating Hormone (TSH) levels as well as immunohematological parameters were assessed between the treatment and placebo groups at the completion of the study. Results After 12 weeks of administration, both fasting as well as postprandial serum glucose levels decreased by 38 and 44% respectively in the treatment group. Simultaneously, a significant reduction in glycated hemoglobin by about 34.7% was also noted. The formulation did not have any adverse effect on the study subjects as there was no significant change in C- peptide level and TSH level; liver, kidney, and cardiovascular function was also found to be normal as assessed by serum levels of key immunohematological parameters. No adverse events were reported. Conclusion This clinical compliance study re-instated and established the safety and efficacy of Fenfuro® as an effective phytotherapeutic to treat hyperglycemia.
Collapse
Affiliation(s)
- Rajinder Singh Gupta
- Department of Medicine, Gian Sagar Medical College & Hospital, Banur, Patiala, India
| | - Amarjit Singh Grover
- Department of Surgery, Gian Sagar Medical College & Hospital, Banur, Patiala, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P. Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | | | - Partha Pal
- Department of Statistics, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
26
|
Ayipo YO, Chong CF, Abdulameed HT, Mordi MN. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2: A review of recent development. Fitoterapia 2024; 175:105922. [PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria; Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| | - Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Biochemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
27
|
McBenedict B, Orfao AL, Goh KS, Yau RCC, Alphonse B, Machado Lima J, Ahmed HA, Ienaco GP, Cristina de Souza E, Lima Pessôa B, Hauwanga WN, Valentim G, de Souza Chagas M, Abrahão A. The Role of Alternative Medicine in Managing Type 2 Diabetes: A Comprehensive Review. Cureus 2024; 16:e61965. [PMID: 38978922 PMCID: PMC11229830 DOI: 10.7759/cureus.61965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024] Open
Abstract
Diabetes, a chronic metabolic disorder marked by elevated blood glucose levels, is increasingly prevalent globally, significantly impacting health-related quality of life. Type 2 diabetes (T2DM), characterized by insulin resistance and inadequate insulin production, presents a substantial public health challenge, necessitating comprehensive management strategies. Conventional treatments, including lifestyle modifications and pharmacotherapy, are essential for glycemic control and preventing complications. However, adherence to these treatments is often limited, highlighting the need for alternative strategies. Complementary and alternative medicine (CAM) offers potential cost-effective and accessible approaches for managing T2DM. Key herbal remedies like cinnamon, fenugreek, and bitter melon, along with dietary supplements like chromium, magnesium, and vanadium, have shown promise in glycemic control. Mind-body therapies, including yoga, tai chi, and meditation, contribute to improved hemoglobin A1c and fasting blood glucose levels. Research supports the integration of CAM with conventional therapies, demonstrating enhanced clinical efficacy and reduced economic burden. However, challenges such as standardization, quality control, and potential risks of herbal medicines need careful consideration. Regulatory frameworks and ethical considerations are essential to ensure patient safety and informed decision-making. Patient education and effective communication between healthcare providers and patients are crucial for integrating CAM into diabetes management. Empowerment-based interventions and collaborative approaches can enhance self-management skills and clinical outcomes. Overall, integrating CAM with conventional treatments offers a holistic approach to managing T2DM, potentially improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
| | - Andréa L Orfao
- Public Health, Federal Fluminense University, Niterói, BRA
| | - Kang S Goh
- Internal Medicine, Monash University Malaysia, Johor Bahru, MYS
| | - Ryan Chun C Yau
- Internal Medicine, Monash University Malaysia, Johor Bahru, MYS
| | | | | | - Hassan A Ahmed
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | | | | | | | - Wilhelmina N Hauwanga
- Family Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | | | - Ana Abrahão
- Public Health, Federal Fluminense University, Niterói, BRA
| |
Collapse
|
28
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
29
|
Inchingolo F, Inchingolo AD, Latini G, Trilli I, Ferrante L, Nardelli P, Malcangi G, Inchingolo AM, Mancini A, Palermo A, Dipalma G. The Role of Curcumin in Oral Health and Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:660. [PMID: 38929099 PMCID: PMC11200638 DOI: 10.3390/antiox13060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin (Curcumin) belongs to the polyphenol family. It is extracted by drying the root of a plant of Asian origin, belonging to the Zingiberaceae family. The best-known species is Curcumincuma Longa. Curcumin has been recognized as having great therapeutic powers since ancient times. Studies on curcumin have since confirmed its powerful antioxidant properties, preventing both the formation of free radicals and their neutralization, having anti-inflammatory, antibacterial, immunological, and neuroprotective properties, as well as being a regulator of the intestinal microbiota with beneficial effects on the clinical manifestations of metabolic syndrome. Our study aimed to highlight how all these therapeutic aspects could benefit oral health, both preventing and improving the course of pathological processes. The effect of mouthwashes, and curcumin-based gels on the regulation of bacterial plaque and in the control of gingivitis, was largely comparable to that of using 0.20% chlorhexidine, with fewer side effects. Being a highly hydrophobic substance, it has a high permeability to cross the cell membrane. Bioavailability increases when combined with liposoluble substances (e.g., olive oil) and piperine, which improves absorption. Curcumin also has a negligible degree of toxicity, making it an excellent alternative to the use of gold standard products for oral disinfection.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| |
Collapse
|
30
|
Soltaninejad M, Amleshi RS, Shabani M, Ilaghi M. Unraveling the protective effects of curcumin against drugs of abuse. Heliyon 2024; 10:e30468. [PMID: 38726155 PMCID: PMC11079105 DOI: 10.1016/j.heliyon.2024.e30468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Curcumin, a natural compound derived from the turmeric plant (Curcuma longa), has garnered significant attention for its diverse neuroprotective properties. Curcumin has been widely recognized for its remarkable anti-inflammatory, antioxidant, and anti-apoptotic effects, which have shown great potential in the treatment of various disorders, encompassing psychiatric and neurodegenerative diseases. In this review, we delve into the protective effects of curcumin against drugs of abuse, including morphine, methamphetamine, cocaine, nicotine, and alcohol, with a particular focus on the underlying mechanisms from a neuroscience perspective. Overall, curcumin demonstrates promising effects against the neurotoxicity induced by abused drugs through a wide range of mechanisms. These include the modulation of inflammatory cytokines, maintenance of ion homeostasis, epigenetic regulation, enhancement of antioxidant capacity, as well as the activation of the cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling pathways. These findings suggest that curcumin emerges as a promising therapeutic agent in combatting the detrimental effects induced by drugs of abuse, and further research is warranted to fully comprehend the molecular pathways and optimize its utilization for the prevention and treatment of substance abuse-related neurotoxicity.
Collapse
Affiliation(s)
- Masoud Soltaninejad
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Banaszak M, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. The Impact of Curcumin, Resveratrol, and Cinnamon on Modulating Oxidative Stress and Antioxidant Activity in Type 2 Diabetes: Moving beyond an Anti-Hyperglycaemic Evaluation. Antioxidants (Basel) 2024; 13:510. [PMID: 38790615 PMCID: PMC11117755 DOI: 10.3390/antiox13050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024] Open
Abstract
Research indicates that up to half of the population resorts to dietary supplements for managing diseases such as type 2 diabetes rather than changing their nutritional habits. These supplements not only aim to have an anti-hyperglycaemic effect but also seek to reduce oxidative stress to prevent diabetes complications. This systematic literature systematic review aims to evaluate the efficacy of curcumin, resveratrol, and cinnamon in modulating oxidative stress and antioxidant activity in individuals with type 2 diabetes. Data were collected from PubMed, Web of Sciences, and Scopus databases regarding the impact of curcumin, resveratrol, and cinnamon on total antioxidant capacity (TAC), malondialdehyde (MDA), tumour necrosis factor α (TNF-α), interleukin 6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP) levels for this review. Effect sizes for each study were calculated using Cohen's or Hedges's d coefficient. Parameters of oxidative stress and inflammatory status, such as TAC, MDA, TNF-α, IL-6, and hs-CRP, improved following phytochemicals. Additionally, curcumin, resveratrol, and cinnamon exhibited regulatory effects on carbohydrate metabolism by reducing glucose, insulin, and glycated haemoglobin concentrations and lipid metabolism by lowering total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG) and increasing high-density lipoprotein (HDL). Incorporating curcumin, resveratrol, and cinnamon into diets may be beneficial for maintaining organism homeostasis and improving metabolic control in individuals with type 2 diabetes. However, the conflicting results reported in the literature highlight the need for further detailed investigations into the effectiveness of phytochemical use for type 2 diabetes.
Collapse
Affiliation(s)
- Michalina Banaszak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (J.P.); (S.D.-C.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (J.P.); (S.D.-C.)
| | - Dagmara Woźniak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (J.P.); (S.D.-C.)
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (J.P.); (S.D.-C.)
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.W.); (J.P.); (S.D.-C.)
| |
Collapse
|
32
|
Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. Int J Mol Sci 2024; 25:4162. [PMID: 38673748 PMCID: PMC11049841 DOI: 10.3390/ijms25084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Camelia Sorina Stancu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania; (L.T.); (M.D.); (G.M.S.); (T.B.); (L.Ş.N.); (A.V.S.)
| |
Collapse
|
33
|
Okonogi S, Chittasupho C, Sassa-deepaeng T, Khumpirapang N, Anuchpreeda S. Modification of Polyethylene Glycol-Hydroxypropyl Methacrylate Polymeric Micelles Loaded with Curcumin for Cellular Internalization and Cytotoxicity to Wilms Tumor 1-Expressing Myeloblastic Leukemia K562 Cells. Polymers (Basel) 2024; 16:917. [PMID: 38611175 PMCID: PMC11013463 DOI: 10.3390/polym16070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin loaded in micelles of block copolymers of ω-methoxypoly(ethylene glycol) and N-(2-hydroxypropyl) methacrylamide modified with aliphatic dilactate (CD) or aromatic benzoyl group (CN) were previously reported to inhibit human ovarian carcinoma (OVCAR-3), human colorectal adenocarcinoma (Caco-2), and human lymphoblastic leukemia (Molt-4) cells. Myeloblastic leukemia cells (K562) are prone to drug resistance and differ in both cancer genotype and phenotype from the three mentioned cancer cells. In the present study, CD and CN micelles were prepared and their effects on K562 and normal cells were explored. The obtained CD and CN showed a narrow size distribution with diameters of 63 ± 3 and 50 ± 1 nm, respectively. The curcumin entrapment efficiency of CD and CN was similarly high, above 80% (84 ± 8% and 91 ± 3%). Both CD and CN showed suppression on WT1-expressing K562 and high cell-cycle arrest at the G2/M phase. However, CD showed significantly higher cytotoxicity to K562, with faster cellular uptake and internalization than CN. In addition, CD showed better compatibility with normal red blood cells and peripheral blood mononuclear cells than CN. The promising CD will be further investigated in rodents and possibly in clinical studies for leukemia treatment.
Collapse
Affiliation(s)
- Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanongsak Sassa-deepaeng
- Agricultural Biochemistry Research Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand;
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Songyot Anuchpreeda
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Widjanarko ND, Tamio E, Jusni LFJ, Alvianto S, Arifin ES, Iryaningrum MR. Effects of Combination of Curcumin and Piperine Supplementation on Glycemic Profile in Patients with Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. J ASEAN Fed Endocr Soc 2024; 39:106-114. [PMID: 38863920 PMCID: PMC11163317 DOI: 10.15605/jafes.039.01.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 06/13/2024] Open
Abstract
Objective This study aimed to evaluate the effects of the combination of curcumin and piperine supplementation on Fasting Plasma Glucose (FPG), Homeostatic Model of Insulin Resistance (HOMA-IR), and Body Mass Index (BMI) in patients with prediabetes and type 2 Diabetes Mellitus (T2DM). This review was done to identify potential herbal remedies that may help improve glycemic parameters, leading to better health outcomes in combination with current antidiabetic treatment. Methodology This systematic review was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). It was conducted in 2023 with sources and databases from MEDLINE, EBSCO-Host, ScienceDirect and ProQuest. This paper included randomized-controlled trials exploring the effects of the combination of curcumin and piperine on patients with prediabetes and T2DM. Systematic reviews, observational studies, case reports, case series, conference abstracts, book sections, commentaries/editorials, non-human studies and articles with unavailable full-text and written in non-English language, were excluded. The key terms for the literature search were "curcumin," "piperine," "prediabetes" and "Type 2 Diabetes Mellitus." We use Cochrane Risk of Bias (RoB) 2 for quality assessment of the included studies and Review Manager (RevMan) 5.4 to do the meta-analysis. Results A total of three studies were included in this systematic review. Two studies from Neta et al., and Cicero et al., showed no significant difference in HOMA-IR, BMI and FPG levels between the curcumin, piperine and placebo groups. One study from Panahi et al. demonstrated a significant difference in BMI levels between the curcumin and piperine and placebo groups (p <0.01). The meta-analysis showed that FPG levels, HOMA-IR and BMI improved among patients with diabetes given in curcumin and piperine with reported mean differences (MD) of = -7.61, 95% CI [-15.26, 0.03], p = 0.05, MD = -0.36, 95% CI [-0.77 to 0.05], p = 0.09, and MD = -0.41, 95% CI [-0.85 to 0.03], p = 0.07, respectively). Conclusions The supplementation of curcumin and piperine showed a numerical reduction in FPG, HOMA-IR and BMI, but were not statistically significant. Further research is needed as there is a paucity of studies included in the review.
Collapse
Affiliation(s)
| | - Erich Tamio
- Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
| | | | - Steven Alvianto
- Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
| | | | - Maria Riastuti Iryaningrum
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
| |
Collapse
|
35
|
Hota D, Padhy BM, Maiti R, Bisoi D, Sahoo JP, Patro BK, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Bagchi D. A Placebo-Controlled, Double-Blind Clinical Investigation to Evaluate the Efficacy of a Patented Trigonella foenum-graecum Seed Extract "Fenfuro®" in Type 2 Diabetics. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:147-156. [PMID: 37459747 DOI: 10.1080/27697061.2023.2233008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.
Collapse
Affiliation(s)
- Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Biswa M Padhy
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Orissa, India
| | - Debasis Bisoi
- Department of Pharmacology, AIIMS, Bibinagar, Hyderabad, India
| | - Jyoti Prakash Sahoo
- Department of Pharmacology, SCB Medical College & Hospital, Cuttack, Orissa, India
| | - Binod K Patro
- Department of Community and Family Medicine, AIIMS, Bhubaneswar, Orissa, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Manashi Bagchi
- Department of R&D, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
36
|
Hu M, Cai JY, He Y, Chen K, Hao F, Kang JS, Pan Y, Tie L, Li XJ. Protective effects of curcumin on desipramine-induced islet β-cell damage via AKAP150/PKA/PP2B complex. Acta Pharmacol Sin 2024; 45:327-338. [PMID: 37845344 PMCID: PMC10789796 DOI: 10.1038/s41401-023-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Tricyclic antidepressants (TCAs) are widely used to treat depression and anxiety-related mood disorders. But evidence shows that TCAs elevate blood glucose levels and inhibit insulin secretion, suggesting that TCAs are a risk factor, particularly for individuals with diabetes. Curcumin is a bioactive molecule from the rhizome of the Curcuma longa plant, which has shown both antidepressant and anti-diabetic activities. In the present study, we investigated the protective effect of curcumin against desipramine-induced apoptosis in β cells and the underlying molecular mechanisms. In the mouse forced swimming test (FST), we found that lower doses of desipramine (5 and 10 mg/kg) or curcumin (2.5 mg/kg) alone did not affect the immobility time, whereas combined treatment with curcumin (2.5 mg/kg) and desipramine (5, 10 mg/kg) significantly decreased the immobility time. Furthermore, desipramine dose-dependently inhibited insulin secretion and elevated blood glucose levels, whereas the combined treatment normalized insulin secretion and blood glucose levels. In RIN-m5F pancreatic β-cells, desipramine (10 μM) significantly reduced the cell viability, whereas desipramine combined with curcumin dose-dependently prevented the desipramine-induced impairment in glucose-induced insulin release, most effectively with curcumin (1 and 10 μM). We demonstrated that desipramine treatment promoted the cleavage and activation of Caspase 3 in RIN-m5F cells. Curcumin treatment inhibited desipramine-induced apoptosis, increased mitochondrial membrane potential and Bcl-2/Bax ratio. Desipramine increased the generation of reactive oxygen species, which was reversed by curcumin treatment. Curcumin also inhibited the translocation of forkhead box protein O1 (FOXO1) from the cytoplasm to the nucleus and suppressed the binding of A-kinase anchor protein 150 (AKAP150) to protein phosphatase 2B (PP2B, known as calcineurin) that was induced by desipramine. These results suggest that curcumin protects RIN-m5F pancreatic β-cells against desipramine-induced apoptosis by inhibiting the phosphoinositide 3-kinase/AKT/FOXO1 pathway and the AKAP150/PKA/PP2B interaction. This study suggests that curcumin may have therapeutic potential as an adjunct to antidepressant treatment.
Collapse
Affiliation(s)
- Min Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jia-Ying Cai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Kui Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Feng Hao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jin-Sen Kang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
37
|
Li J, Sun Y, Li G, Cheng C, Sui X, Wu Q. The Extraction, Determination, and Bioactivity of Curcumenol: A Comprehensive Review. Molecules 2024; 29:656. [PMID: 38338400 PMCID: PMC10856406 DOI: 10.3390/molecules29030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Curcuma wenyujin is a member of the Curcuma zedoaria (zedoary, Zingiberaceae) family, which has a long history in traditional Chinese medicine (TCM) due to its abundant biologically active constituents. Curcumenol, a component of Curcuma wenyujin, has several biological activities. At present, despite different pharmacological activities being reported, the clinical usage of curcumenol remains under investigation. To further determine the characteristics of curcumenol, the extraction, determination, and bioactivity of the compound are summarized in this review. Existing research has reported that curcumenol exerts different pharmacological effects in regard to a variety of diseases, including anti-inflammatory, anti-oxidant, anti-bactericidal, anti-diabetic, and anti-cancer activity, and also ameliorates osteoporosis. This review of curcumenol provides a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinbing Sui
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- Zhuhai M.U.S.T. Science and Technology Research Institute, Zhuhai 519031, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| |
Collapse
|
38
|
Zhu K, Bi J, Zhang Q, Yang Y, Li J, Liang Y. Mechanism of action of curcumin targeting TRPM2/NLRP3 signaling axis to mediate cell death in the treatment of knee osteoarthritis. Hum Exp Toxicol 2024; 43:9603271241308798. [PMID: 39679472 DOI: 10.1177/09603271241308798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
OBJECTS This study intends to explore the possible mechanisms of curcumin's action after knee osteoarthritis. METHODS Chondrocytes alone were used to mimic the cellular inflammatory response with interleukin IL-1β. Overexpressing TRPM2 chondrocytes were constructed using cell transfection technique for mechanism verification. The proliferation of chondrocytes was assessed by CCK8 assay, cellular ROS level was detected by flow cytometry, cellular inflammatory factor content was detected by ELISA kit, and molecules of cellular pyroptosis-related signaling pathway were detected by western blot and immunofluorescence. In vivo experiments, a rat knee osteoarthritis model was constructed. Cartilage integrity was assessed by histological analysis, cellular inflammatory factor content was detected by ELISA kit, and cellular pyroptosis-related signaling pathway molecules were detected by western blot and immunohistochemistry. RESULTS Curcumin targeting the TRPM2/NLRP3 signaling axis significantly inhibited IL-1β induced decrease in cell viability, increase in ROS level, secretion of inflammatory factors such as TNF-α, IL-6, IL-10, etc., as well as decreased the expression of cellular scaffolding-related proteins, such as GSDMD, NLRP3 and pro-caspase-1, etc. (p < .05). Meanwhile, curcumin targeting the TRPM2/NLRP3 signaling axis also significantly improved the pathological state of cartilage tissue, maintained cartilage integrity, and reduced the secretion of inflammatory factors, and treated osteoarthritis of the knee in rats by mediating cellular pyroptosis. CONCLUSIONS Curcumin can effectively improve the inflammatory response of chondrocytes through the TRPM2/NLRP3 signaling axis in the treatment of osteoarthritis of the knee in rats.
Collapse
Affiliation(s)
- Kai Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianping Bi
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingkun Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanchen Liang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
39
|
Dmello MM, Bhagwat G. Novel Approaches to Control Diabetes. Curr Diabetes Rev 2024; 20:e090823219599. [PMID: 37559237 DOI: 10.2174/1573399820666230809152742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Diabetes is a chronic, long-term, incurable, but controllable condition. Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia that results from defects in insulin secretion, insulin action, or both. People who have diabetes often experience a variety of symptoms, including blurry vision, excessive thirst, fatigue, frequent urination, hunger, and weight loss. This review article includes a discussion on diabetes types, symptoms, diagnostic tests, and various therapies for treating, controlling, and managing blood glucose levels, with a focus on its most recent innovation of therapies and medications. Diabetes management will also be reviewed, along with clinical pharmacodynamics, bioavailability, advantages, and complications of combined drugs/medications.
Collapse
Affiliation(s)
- Malissa Mathew Dmello
- Department of MES's, H. K. College of Pharmacy, Jogeshwari (West), Mumbai, 400102, Maharashtra, India
| | - Geeta Bhagwat
- Department of Pharmaceutics, DY Patil University School of Pharmacy, Nerul, Navi-Mumbai 400607, India
| |
Collapse
|
40
|
Dinesh S, Sharma S, Chourasiya R. Therapeutic Applications of Plant and Nutraceutical-Based Compounds for the Management of Type 2 Diabetes Mellitus: A Narrative Review. Curr Diabetes Rev 2024; 20:e050523216593. [PMID: 37151065 DOI: 10.2174/1573399819666230505140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus is a condition caused by a deficiency in insulin production or sensitivity that is defined by persistent hyperglycemia as well as disturbances in glucose, lipid, and protein metabolism. Uncurbed diabetes or incessant hyperglycemic condition can lead to severe complications, including renal damage, visual impairment, cardiovascular disease, neuropathy, etc., which promotes diabetes-associated morbidity and mortality rates. The therapeutic management of diabetes includes conventional medications and nutraceuticals as complementary therapies. Nutraceuticals are bioactive compounds derived from food sources that have health-promoting properties and are instrumental in the management and treatment of various maladies. Nutraceuticals are clinically exploited to tackle DM pathogenesis, and the clinical evidence suggests that nutraceuticals can modulate biochemical parameters related to diabetes pathogenesis and comorbidities. Hypoglycemic medicines are designed to mitigate DM in traditional medicinal practice. This review intends to emphasize and comment on the various therapeutic strategies available to manage this chronic condition, conventional drugs, and the potential role of nutraceuticals in managing the complexity of the disease and reducing the risk of complications. In contrast to conventional antihyperglycemic drugs, nutraceutical supplements offer a higher efficacy and lesser adverse effects. To substantiate the efficacy and safety of various functional foods in conjunction with conventional hypoglycemic medicines, additional data from clinical studies are required.
Collapse
Affiliation(s)
- Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, 560043, India
| | | |
Collapse
|
41
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
42
|
Rohilla M, Rishabh, Bansal S, Garg A, Dhiman S, Dhankhar S, Saini M, Chauhan S, Alsubaie N, Batiha GES, Albezrah NKA, Singh TG. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169:115881. [PMID: 37989030 DOI: 10.1016/j.biopha.2023.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and β-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and β-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.
Collapse
Affiliation(s)
- Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India
| | - Rishabh
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula, Haryana 134118, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India; M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nisreen Khalid Aref Albezrah
- Obstetric and Gynecology Department, Medicine College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
43
|
Gong Y, Wang P, Cao R, Wu J, Ji H, Wang M, Hu C, Huang P, Wang X. Exudate Absorbing and Antimicrobial Hydrogel Integrated with Multifunctional Curcumin-Loaded Magnesium Polyphenol Network for Facilitating Burn Wound Healing. ACS NANO 2023; 17:22355-22370. [PMID: 37930078 DOI: 10.1021/acsnano.3c04556] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Burns are among the most common causes of trauma worldwide. Reducing the healing time of deep burn wounds has always been a major challenge. Traditional dressings not only require a lengthy medical procedure but also cause unbearable pain and secondary damage to patients. In this study, we developed an exudate-absorbing and antimicrobial hydrogel with a curcumin-loaded magnesium polyphenol network (Cur-Mg@PP) to promote burn wound healing. That hydrogel was composed of an ε-poly-l-lysine (ε-PLL)/polymer poly(γ-glutamic acid) (γ-PGA) hydrogel (PP) and curcumin-loaded magnesium polyphenol network (Cur-Mg). Because of the strong water absorption property of ε-PLL and γ-PGA, Cur-Mg@PP powder can quickly absorb the wound exudate and transform into a moist and viscous hydrogel, thus releasing payloads such as magnesium ion (Mg2+) and curcumin (Cur). The released Mg2+ and Cur demonstrated good therapeutic efficacy on analgesic, antioxidant, anti-inflammation, angiogenesis, and tissue regeneration. Our findings provide a strategy for accelerating burn wound healing.
Collapse
Affiliation(s)
- Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ran Cao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
44
|
Wang T, Wang YY, Shi MY, Liu L. Mechanisms of action of natural products on type 2 diabetes. World J Diabetes 2023; 14:1603-1620. [DOI: 10.4239/wjd.v14.i11.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been considered a global public health concern. Currently, various therapeutic modalities are available for T2DM management, including dietary modifications, moderate exercise, and use of hypoglycemic agents and lipid-lowering medications. Although the curative effect of most drugs on T2DM is significant, they also exert some adverse side effects. Biologically active substances found in natural medicines are important for T2DM treatment. Several recent studies have reported that active ingredients derived from traditional medicines or foods exert a therapeutic effect on T2DM. This review compiled important articles regarding the therapeutic effects of natural products and their active ingredients on islet β cell function, adipose tissue inflammation, and insulin resistance. Additionally, this review provided an in-depth understanding of the multiple regulatory effects on different targets and signaling pathways of natural medicines in the treatment of T2DM as well as a theoretical basis for clinical effective application.
Collapse
Affiliation(s)
- Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Meng-Yue Shi
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
45
|
Hossain MM, Tovar J, Cloetens L, Nilsson A. Inclusion of Oat Polar Lipids in a Solid Breakfast Improves Glucose Tolerance, Triglyceridemia, and Gut Hormone Responses Postprandially and after a Standardized Second Meal: A Randomized Crossover Study in Healthy Subjects. Nutrients 2023; 15:4389. [PMID: 37892464 PMCID: PMC10609583 DOI: 10.3390/nu15204389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, it has been indicated that oat polar lipids included in a liquid meal may have the potential to beneficially modulate various cardiometabolic variables. The purpose of this study was to evaluate the effects of oat polar lipids in a solid food matrix on acute and second meal glucose tolerance, blood lipids, and concentrations of gut-derived hormones. The oat polar lipids were consumed at breakfast and effects on the biomarkers were investigated in the postprandial period and following a standardized lunch. Twenty young, healthy subjects consumed in total four different breakfast meals in a crossover study design. The breakfasts consisted of 1. White wheat bread (WWB) with an added 7.5 g of oat polar lipids (PLL); 2. WWB with an added 15 g of oat polar lipids (PLH); 3. WWB with and added 16.6 g of rapeseed oil (RSO) as a representative of commonly consumed oils; and 4. WWB consumed alone, included as a reference. All products with added lipids contained equivalent amounts of fat (16.6 g) and available carbohydrates (50 g). Rapeseed oil was added to the oat polar lipid meals to equal 16.6 g of total fat. The standardized lunch was composed of WWB and meatballs and was served 3.5 h after the breakfast. Test variables (blood glucose, serum insulin, triglyceride (TG), free fatty acids (FFA), ghrelin, GLP-1, PYY, and GIP) were measured at fasting and repeatedly during the 5.5 h after ingestion of the breakfast. After breakfast, PLH substantially lowered postprandial glucose and insulin responses (iAUC 0-120 min) compared with RSO and WWB (p < 0.05). Furthermore, a reduced glycaemic response to lunch (210-330 min) was observed following the PLH breakfast compared to all of the other breakfasts served (p < 0.05). Oat polar lipids (PLH) significantly reduced TG and ghrelin and increased circulating gut hormones GLP-1 and PYY compared to RSO (p < 0.05). The results show that exchanging part of the dietary lipids with oat polar lipids has the potential to improve postprandial blood glucose regulation and gut hormones and thus may have a preventive effect against type 2 diabetes.
Collapse
Affiliation(s)
- Mohammad Mukul Hossain
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| | - Lieselotte Cloetens
- Division of Pure and Applied Biochemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Anne Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden; (J.T.); (A.N.)
| |
Collapse
|
46
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Cao L, Zhao S, Han K, Fan L, Zhao C, Yin S, Hu H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J Nutr Biochem 2023; 120:109427. [PMID: 37549833 DOI: 10.1016/j.jnutbio.2023.109427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death driven by excessive oxidation of polyunsaturated phospholipids on cellular membranes. Accumulating evidence suggests that ferroptosis has been implicated in the pathological process of various diseases, such as cardiovascular diseases, neurological diseases, liver diseases, kidney injury, lung injury, diabetes, and cancer. Targeting ferroptosis is therefore considered to be a reasonable strategy to fight against ferroptosis-associated diseases. Many dietary bioactive agents have been identified to be able to either suppress or promote ferroptosis, indicating that ferroptosis-based intervention by dietary approach may be an effective strategy for preventing and treating diseases associated with ferroptosis dysregulation. In this review, we summarize the present understanding of the functional role of ferroptosis in the pathogenesis of aforementioned diseases with an emphasis on the evidence of managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis and propose issues that need to be addressed to promote practical application of dietary approach targeting ferroptosis.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China.
| |
Collapse
|
48
|
Shen J, Zhang J, Wu W, Banerjee P, Zhou S. Biocompatible Anisole-Nonlinear PEG Core-Shell Nanogels for High Loading Capacity, Excellent Stability, and Controlled Release of Curcumin. Gels 2023; 9:762. [PMID: 37754443 PMCID: PMC10529957 DOI: 10.3390/gels9090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Curcumin, a nontoxic and cheap natural medicine, has high therapeutic efficacy for many diseases, including diabetes and cancers. Unfortunately, its exceedingly low water-solubility and rapid degradation in the body severely limit its bioavailability. In this work, we prepare a series of biocompatible poly(vinyl anisole)@nonlinear poly(ethylene glycol) (PVAS@PEG) core-shell nanogels with different PEG gel shell thickness to provide high water solubility, good stability, and controllable sustained release of curcumin. The PVAS nanogel core is designed to attract and store curcumin molecules for high drug loading capacity and the hydrophilic nonlinear PEG gel shell is designed to offer water dispersibility and thermo-responsive drug release. The nanogels prepared are monodispersed in a spherical shape with clear core-shell morphology. The size and shell thickness of the nanogels can be easily controlled by changing the core-shell precursor feeding ratios. The optimized PVAS@PEG nanogels display a high curcumin loading capacity of 38.0 wt%. The nanogels can stabilize curcumin from degradation at pH = 7.4 and release it in response to heat within the physiological temperature range. The nanogels can enter cells effectively and exhibit negligible cytotoxicity to both the B16F10 and HL-7702 cells at a concentration up to 2.3 mg/mL. Such designed PVAS@PEG nanogels have great potential to be used for efficient drug delivery.
Collapse
Affiliation(s)
- Jing Shen
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
- Department of Chemistry, Yunnan Normal University, Kunming 650092, China
| | - Jiangtao Zhang
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| | - Weitai Wu
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Probal Banerjee
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| |
Collapse
|
49
|
Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, Sethi G. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances. ENVIRONMENTAL RESEARCH 2023; 233:116476. [PMID: 37348632 DOI: 10.1016/j.envres.2023.116476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.
Collapse
Affiliation(s)
- Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, 345050, Dubai, United Arab Emirates
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India; Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | | | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India; Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
50
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|