1
|
Zhang J, Hu W, Zou Z, Li Y, Kang F, Li J, Dong S. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis 2024; 11:101122. [PMID: 38523674 PMCID: PMC10958717 DOI: 10.1016/j.gendis.2023.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 03/26/2024] Open
Abstract
In recent years, researchers have become focused on the relationship between lipids and bone metabolism balance. Moreover, many diseases related to lipid metabolism disorders, such as nonalcoholic fatty liver disease, atherosclerosis, obesity, and menopause, are associated with osteoporotic phenotypes. It has been clinically observed in humans that these lipid metabolism disorders promote changes in osteoporosis-related indicators bone mineral density and bone mass. Furthermore, similar osteoporotic phenotype changes were observed in high-fat and high-cholesterol-induced animal models. Abnormal lipid metabolism (such as increased oxidized lipids and elevated plasma cholesterol) affects bone microenvironment homeostasis via cross-organ communication, promoting differentiation of mesenchymal stem cells to adipocytes, and inhibiting commitment towards osteoblasts. Moreover, disturbances in lipid metabolism affect the bone metabolism balance by promoting the secretion of cytokines such as receptor activator of nuclear factor-kappa B ligand by osteoblasts and stimulating the differentiation of osteoclasts. Conclusively, this review addresses the possible link between lipid metabolism disorders and osteoporosis and elucidates the potential modulatory mechanisms and signaling pathways by which lipid metabolism affects bone metabolism balance. We also summarize the possible approaches and prospects of intervening lipid metabolism for osteoporosis treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Hsu FY, Yang SC, Suk FM, Shirakawa H, Chiu WC, Liao YJ. Dietary rice bran attenuates hepatic stellate cell activation and liver fibrosis in mice through enhancing antioxidant ability. J Nutr Biochem 2024; 125:109565. [PMID: 38176621 DOI: 10.1016/j.jnutbio.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/07/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Various endogenous and exogenous stimuli can result in an inflammatory response and collagen deposition in the liver, which affect liver function and increase the risk of developing liver cirrhosis and cancer. Rice bran, the main by-product of rice milling, contains various nutrients which possess hepatoprotective activities. In this study, we investigated the effects of rice bran on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Mice were fed a rice-bran-containing diet (10% rice bran w/w) or a standard diet with or without an injection of 20% CCl4 to induce liver fibrosis. Our results showed that feeding a rice-bran-containing diet could alleviate CCl4-induced liver damage, collagen deposition, and expressions of fibrosis-related genes, including α-smooth muscle actin (α-SMA), collagen 1a2 (COL1A2), and transforming growth factor-β (TGF-β) in liver tissues. Moreover, consumption of rice bran enhanced phase II detoxification and antioxidant gene expressions, including Gsta3, Gstp1, Catalase, SOD1, SOD2, and SOD3. Treatment with γ-oryzanol, the major bioactive compound in rice bran, decreased the sensitivity of hepatic stellate cells (HSCs) to TGF-β1-induced α-SMA, COL1A2, and phosphorylated smad2 expressions. In conclusion, a rice-bran-containing diet may have beneficial effects on liver fibrogenesis through increased antioxidant and detoxification activities. γ-Oryzanol, the major bioactive compound of rice bran, can inhibit activation of HSCs.
Collapse
Affiliation(s)
- Fang-Yu Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Son JE, Jo JY, Kim S, Park MJ, Lee Y, Park SS, Park SY, Jung SM, Jung SK, Kim JY, Byun S. Rice Bran Extract Suppresses High-Fat Diet-Induced Hyperlipidemia and Hepatosteatosis through Targeting AMPK and STAT3 Signaling. Nutrients 2023; 15:3630. [PMID: 37630819 PMCID: PMC10457887 DOI: 10.3390/nu15163630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rice bran, a by-product of rice milling, is abundant in bioactive molecules and is highly recognized for its health-promoting properties, particularly in improving metabolic conditions. Building on this knowledge, we aimed to optimize the extraction conditions to maximize the functional efficacy of rice bran extract (RBE) and further validate its impact on lipid metabolism. We found that the optimized RBE (ORBE) significantly suppressed high-fat diet-induced weight gain, hyperlipidemia, and hepatosteatosis in mouse models. ORBE treatment not only suppressed lipid uptake in vivo, but also reduced lipid accumulation in HepG2 cells. Importantly, we discovered that ORBE administration resulted in activation of AMPK and inhibition of STAT3, which are both crucial players in lipid metabolism in the liver. Collectively, ORBE potentially offers promise as a dietary intervention strategy against hyperlipidemia and hepatosteatosis. This study underlines the value of optimized extraction conditions in enhancing the functional efficacy of rice bran.
Collapse
Affiliation(s)
- Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Jay-Young Jo
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.-Y.J.); (S.Y.P.)
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Ju Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yerin Lee
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seong Shil Park
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Shin Young Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.-Y.J.); (S.Y.P.)
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.-Y.J.); (S.Y.P.)
| |
Collapse
|
4
|
Huang PX, Yeh CL, Yang SC, Shirakawa H, Chang CL, Chen LH, Chiu YS, Chiu WC. Rice Bran Supplementation Ameliorates Gut Dysbiosis and Muscle Atrophy in Ovariectomized Mice Fed with a High-Fat Diet. Nutrients 2023; 15:3514. [PMID: 37630706 PMCID: PMC10458250 DOI: 10.3390/nu15163514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Rice bran, a byproduct of rice milling, is rich in fiber and phytochemicals and confers several health benefits. However, its effects on gut microbiota and obesity-related muscle atrophy in postmenopausal status remain unclear. In this study, we investigated the effects of rice bran on gut microbiota, muscle synthesis, and breakdown pathways in estrogen-deficient ovariectomized (OVX) mice receiving a high-fat diet (HFD). ICR female mice were divided into five groups: sham, OVX mice receiving control diet (OC); OVX mice receiving HFD (OH); OVX mice receiving control diet and rice bran (OR); and OVX mice receiving HFD and rice bran (OHR). After twelve weeks, relative muscle mass and grip strength were high in rice bran diet groups. IL-6, TNF-α, MuRf-1, and atrogin-1 expression levels were lower, and Myog and GLUT4 were higher in the OHR group. Rice bran upregulated the expression of occludin and ZO-1 (gut tight junction proteins). The abundance of Akkermansiaceae in the cecum was relatively high in the OHR group. Our finding revealed that rice bran supplementation ameliorated gut barrier dysfunction and gut dysbiosis and also maintained muscle mass by downregulating the expression of MuRf-1 and atrogin-1 (muscle atrophy-related factors) in HFD-fed OVX mice.
Collapse
Affiliation(s)
- Pei-Xin Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
| | - Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan;
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Chao-Lin Chang
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan;
| | - Li-Hsin Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
| | - Yen-Shuo Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan
| |
Collapse
|
5
|
Sivamaruthi BS, Alagarsamy K, Thangaleela S, Bharathi M, Kesika P, Chaiyasut C. Composition, Microbiota, Mechanisms, and Anti-Obesity Properties of Rice Bran. Foods 2023; 12:foods12061300. [PMID: 36981226 PMCID: PMC10048552 DOI: 10.3390/foods12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Rice is a major cereal crop and a staple food for nearly 50% of people worldwide. Rice bran (RB) is a nutrient-rich by-product of rice processing. RB is rich in carbohydrates, fibers, proteins, lipids, minerals, and several trace elements (phosphorus, calcium, magnesium, potassium, and manganese). The extraction process and storage have influenced RB extracts and RB oil's quality. The RB composition has also varied on the rice cultivars. The color of RB indicates the richness of the bioactive compounds, especially anthocyanins. γ-oryzanol, tocopherols, tocotrienols, and unsaturated fatty acids are major components of RB oil. It has been established that RB supplementation could improve the host's health status. Several preclinical and clinical studies have reported that RB has antioxidant, anticancer, anti-inflammatory, anticolitis, and antidiabetic properties. The beneficial biological properties of RB are partially attributed to its ability to alter the host microbiome and help to maintain and restore eubiosis. Non-communicable diseases (NCDs), including heart disease, diabetes, cancer, and lung disease, account for 74% of deaths worldwide. Obesity is a global health problem and is a major reason for the development of NCDs. The medical procedures for managing obesity are expensive and long-term health supplements are required to maintain a healthy weight. Thus, cost-effective natural adjuvant therapeutic strategy is crucial to treat and manage obesity. Several studies have revealed that RB could be a complementary pharmacological candidate to treat obesity. A comprehensive document with basic information and recent scientific results on the anti-obesity activity of RB and RB compounds is obligatory. Thus, the current manuscript was prepared to summarize the composition of RB and the influence of RB on the host microbiome, possible mechanisms, and preclinical and clinical studies on the anti-obesity properties of RB. This study suggested that the consumption of RB oil and dietary RB extracts might assist in managing obesity-associated health consequences. Further, extended clinical studies in several ethnic groups are required to develop dietary RB-based functional and nutritional supplements, which could serve as an adjuvant therapeutic strategy to treat obesity.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karthikeyan Alagarsamy
- Department of Microbiology (Aided), PSG College of Arts and Science, Avinashi Road, Civil Aerodrome Post, Coimbatore 641014, Tamil Nadu, India
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Thongnak L, Jaruan O, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Jaikumkao K, Sriyotai W, Mahatheeranont S, Lungkaphin A. Resistant starch from black rice, Oryza sativa L. var. ameliorates renal inflammation, fibrosis and injury in insulin resistant rats. Phytother Res 2023; 37:935-948. [PMID: 36379906 DOI: 10.1002/ptr.7675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
It has recently been reported that black rice (BR) extract has anti-obesity, anti-diabetic, and anti-osteoporosis effects. It has been shown to reduce obese-related kidney dysfunction in animal models. This study aimed to investigate the effect of resistant starch from BR (RS) on renal inflammation, oxidative stress, and apoptosis in obese insulin resistant rats. Male Wistar rats were divided into six groups: normal diet (ND), ND treated with 150 mg of RS (NDRS150), high-fat (HF) diet, HF treated with 100 and 150 mg of RS (HFRS100), (HFRS150), and HF treated with metformin as a positive control. Insulin resistance was shown in the HF rats by glucose intolerance, increased insulin, total area under the curve of glucose and homeostasis model assessment of insulin resistance and dyslipidemia. The resulting metabolic disturbance in the HF rats caused renal inflammation, fibrosis and apoptosis progressing to kidney injury and dysfunction. Prebiotic RS including anthocyanin from BR at doses of 100 and 150 mg ameliorated insulin resistance, dyslipidemia and liver injury. Treatment with RS reduced TGF-β fibrotic and apoptotic pathways by inhibition of NF-κB and inflammatory cytokines which potentially restore kidney damage and dysfunction. In conclusion, prebiotic RS from BR ameliorated obesity induced renal injury and dysfunction by attenuating inflammatory, fibrotic, and apoptotic pathways in insulin resistant rats induced by HF.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Onanong Jaruan
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Woraprapa Sriyotai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Devi K, Kumar V, Kumar V, Mahajan N, Kaur J, Sharma S, Kumar A, Khan R, Bishnoi M, Kondepudi KK. Modified cereal bran (MCB) from finger millet, kodo millet, and rice bran prevents high-fat diet-induced metabolic derangements. Food Funct 2023; 14:1459-1475. [PMID: 36648164 DOI: 10.1039/d2fo02095e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cereal bran consumption improves gastrointestinal and metabolic health. Unprocessed cereal brans have a limited shelf-life and contain anti-nutrient phytochemicals. In the present study, lipids and antinutrients (flavonoids, tannin, and polyphenol) were removed from finger millet, kodo millet and rice bran using chemo-enzymatic processing. The thus-obtained modified cereal brans (MCBs) were evaluated for their potential in preventing high fat diet (HFD)-induced obesity. C57BL/6 mice were fed a HFD or a HFD supplemented with 10% w/w modified finger millet bran (mFMB), modified kodo millet bran (mKMB), modified rice bran (mRB), or a combination of the modified brans (1 : 1 : 1) for twelve weeks. The MCBs reduced HFD-induced body weight gain, improved glucose homeostasis, decreased the Firmicutes/Bacteroidetes ratio, and increased the short chain fatty acid (SCFA) levels in the cecum. Liver dyslipidemia, oxidative stress, inflammation, visceral white adipose tissue (vWAT) hypertrophy, and lipolysis were also prevented by the MCBs. Among the individual MCBs, mRB showed a greater effect in preventing HFD-induced increase in the inflammatory cytokines (IL-6, TNF-α, and LPS) than mFMB and mKMB. mFMB and mKMB supplementation more significantly restored the relative abundance of Akkermansia muciniphila and butyrate-producing genera such as Lachnospiraceae, Eubacterium, and Ruminococcus than mRB. Ex vivo gut permeability assay, immunohistochemistry of tight junction proteins, and gene expression analysis in the colon revealed that the combination of three brans was better in preventing HFD-induced leaky gut in comparison to the individual brans. Hierarchical clustering analysis showed that the combination group was clustered closest to the NPD group, suggesting an additive effect. Our study implies that a combination of mFMB, mKMB, and mRB could be used as a nutraceutical or functional food ingredient for preventing HFD-induced gut derangements and associated metabolic complications.
Collapse
Affiliation(s)
- Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ajay Kumar
- Institute of Nanoscience and Technology (INST), Knowledge city-Sector 81, SAS Nagar, Punjab 140306, India
| | - Rehan Khan
- Institute of Nanoscience and Technology (INST), Knowledge city-Sector 81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India. .,Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.,Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
8
|
Hashimoto-Hill S, Colapietro L, Woo V, Antonacci S, Whitt J, Engleman L, Alenghat T. Dietary phytate primes epithelial antibacterial immunity in the intestine. Front Immunol 2022; 13:952994. [PMID: 36341403 PMCID: PMC9627201 DOI: 10.3389/fimmu.2022.952994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Although diet has long been associated with susceptibility to infection, the dietary components that regulate host defense remain poorly understood. Here, we demonstrate that consuming rice bran decreases susceptibility to intestinal infection with Citrobacter rodentium, a murine pathogen that is similar to enteropathogenic E. coli infection in humans. Rice bran naturally contains high levels of the substance phytate. Interestingly, phytate supplementation also protected against intestinal infection, and enzymatic metabolism of phytate by commensal bacteria was necessary for phytate-induced host defense. Mechanistically, phytate consumption induced mammalian intestinal epithelial expression of STAT3-regulated antimicrobial pathways and increased phosphorylated STAT3, suggesting that dietary phytate promotes innate defense through epithelial STAT3 activation. Further, phytate regulation of epithelial STAT3 was mediated by the microbiota-sensitive enzyme histone deacetylase 3 (HDAC3). Collectively, these data demonstrate that metabolism of dietary phytate by microbiota decreases intestinal infection and suggests that consuming bran and other phytate-enriched foods may represent an effective dietary strategy for priming host immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theresa Alenghat
- Division of Immunobiology, and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Wang O, Zhang N, Han C, Huang J. Regular exercise combined with ferulic acid exhibits antiobesity effect and regulates metabolic profiles in high-fat diet-induced mice. Front Nutr 2022; 9:957321. [PMID: 35967808 PMCID: PMC9363793 DOI: 10.3389/fnut.2022.957321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Exercise (Ex) has been recognized as an effective way of obesity prevention, but it shows a dual effect on the body's antioxidant system. Ferulic acid (FA) is a kind of phenolic acid with well-known antioxidant capacity and numerous health benefits. Therefore, the aim of the study was to compare the antiobesity effect of Ex, FA, and Ex combined with FA (Ex-FA) in vivo and to illustrate the potential mechanisms. Mice were fed a high-fat diet (HFD) with or without administration of Ex, FA, and Ex-FA for 13 weeks. The body weight, antioxidant ability, Ex performance, and lipid profiles in the serum, liver, and skeletal muscle were compared among the groups, and serum metabolomics analysis was conducted. The results showed that Ex, FA, and Ex-FA exhibited a similar effect on body weight management. Ex had a more beneficial function by alleviating HFD-induced dyslipidemia than FA, while FA exerted a more efficient effect in mitigating lipid deposition in the liver and skeletal muscle. Ex-FA showed comprehensive effects in the regulation of the lipid contents in serum, liver, and skeletal muscle, and provoked enhancement effects on antioxidant ability and Ex capacity. Mice administered with Ex, FA, and Ex-FA showed different metabolic profiles, which might be achieved through different metabolic pathways. The findings of this research implied that Ex coupled with FA could become an effective and safe remedy for the management of dietary-induced obesity.
Collapse
Affiliation(s)
- Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Trace Element Nutrition of National Health Commission of People's Republic of China, Beijing, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chao Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Trace Element Nutrition of National Health Commission of People's Republic of China, Beijing, China
| | - Jian Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Trace Element Nutrition of National Health Commission of People's Republic of China, Beijing, China
| |
Collapse
|
10
|
Luo S, He L, Zhang H, Li Z, Liu C, Chen T. Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food Funct 2022; 13:7707-7719. [PMID: 35758533 DOI: 10.1039/d2fo00569g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rice bran is an important by-product of the milling industry. Arabinoxylan extracted from rice bran (RAX) is available in large quantities and is structurally different from other arabinoxylans from cereals. The anti-obesity effects of RAX and the role of microbiota have not been studied. In this work, we investigated the beneficial effects of RAX in C57BL/6J mice fed a high-fat diet (HFD). We found that supplementation of RAX significantly ameliorated HFD-induced obesity. RAX decreased HFD induced lipid accumulation and regulated genes related to hepatic fatty acid metabolism. Regulated lipid metabolism is associated with reduced systemic inflammation as indicated by TNF-α and IL-6. RAX normalized the gut microbiota and its major metabolites short-chain fatty acids (SCFAs). RAX restored the alpha diversity of the gut microbiota and increased the relative abundance of anti-inflammatory bacteria including Bifidobacterium and Akkermansia. RAX decreased pro-inflammatory bacteria including Anaerotruncus, Helicobacter, Coprococcus, and Desulfovibrio. Our results suggest that systemic inflammation bridges to the gut microbiota through LPS and SCFAs. RAX modulates the gut microbiota and SCFA production in the large intestine, thereby reducing systemic inflammation and ameliorating obesity. In brief, RAX prevented obesity through a mechanism related to the modulation of the microbiota and its metabolites.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Li He
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Huibin Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chengmei Liu
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Tingting Chen
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
11
|
Wang S, Wang W, Mao H, Zhu M, Xu Z, Wang J, Zhang X, Li B, Xiang X, Wang Z. Lipidomics Reveals That Rice or Flour as a Single Source of Carbohydrates Cause Adverse Health Effects in Rats. Front Nutr 2022; 9:887757. [PMID: 35673359 PMCID: PMC9167423 DOI: 10.3389/fnut.2022.887757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The type of diet is very important for the maintenance of health and nutrition. How the sole source of carbohydrates from rice- or flour-based diet affect blood sugar has not been elucidated for a long time. In order to explore the effects of these diets, sixty SD rats were randomly divided into three groups: control group (C group, AIN-93, standard diet), rice diet group (R group), and flour diet group (F group). All the rats were fed for 7 weeks in total by the assigned diets for 4 weeks (stage 1, S1) and all by the AIN-93 diet for 3 weeks (stage 2, S2). The body weights of all the rats were monitored and serum samples were taken for testing blood glucose, biochemical indicators and untargeted lipidome. It was found that both rice and flour-based diets caused weight gain, but the flour diet had a significant increase in blood sugar and low-density lipoprotein (LDL), while a significant decrease in albumin (ALB) and triglycerides (TG). Twenty-three and 148 lipids were changed by lipidomics in the rice diet group and flour diet group, respectively, and two lipids showed the same changes in the two groups, all belonging to TGs, namely TG (16:0/16:0/16:1) and TG (16:0/16:1/18:2), which showed that a single diet source had a significant effect on the health of rats. Fortunately, we can recover this effect through the subsequent standard diet, allowing the rats to return to normal blood sugar, weight and biochemical indicators. A model can predict the diet types through the logistic regression method. Finally, we proposed that a single diet increased blood sugar and weight through a decrease in TGs, and blood sugar and weight returned to normal after a standard diet. Taken together, the short-term negative effects caused by a single diet can be recovered by a standard diet and further proves the importance of diet types.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Wenjun Wang
- Beijing Junfeix Technology Co., Ltd., Beijing, China
| | - Hongmei Mao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Mingyu Zhu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Zihan Xu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Jun Wang
- Shenzhen Polytechnic, School of Food and Drug, Shenzhen, China
| | - Xuesong Zhang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Baolong Li
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Xuesong Xiang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
- *Correspondence: Xuesong Xiang
| | - Zhu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
- Zhu Wang
| |
Collapse
|
12
|
Gao Y, Yuan S, Chen Y, Liu F, Wei Z, Cao W, Li RW, Xu J, Xue C, Tang Q. The improvement effect of astaxanthin-loaded emulsions on obesity is better than that of astaxanthin in the oil phase. Food Funct 2022; 13:3720-3731. [PMID: 35266464 DOI: 10.1039/d1fo03185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emulsion-based delivery systems have been reported to improve the solubility, stability and bioavailability of astaxanthin. In this study, the ability of astaxanthin-loaded emulsions (AL) to ameliorate obesity induced by a high-fat and high-sucrose diet was explored, using astaxanthin in the oil phase (ASTA) as a comparison. After the administration of AL, ASTA (30 mg per kg body weight), or saline on normal or obese mice for 4 weeks, the body fat accumulation levels, hepatic lipid contents and hepatic fatty acid profiles were detected, and AL showed better anti-obesity properties than ASTA. In an acute feeding experiment, it was first observed that the astaxanthin concentration of AL was higher than that of ASTA in the blood and liver of obese mice. What's more, AL altered the microbial co-occurrence patterns in obese mice. Some gut microbial modules that were significantly correlated with obesity-related physiological parameters were identified. Overall, the improvement effect of AL on obesity is better than that of ASTA due to their higher oral absorbability and modulating effects on the gut microbiota, and we suggest AL as a more suitable astaxanthin product type for obese bodies.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuze Chen
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Zihao Wei
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanxiu Cao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Robert W Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China. .,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
13
|
Probiotic Strains Isolated from an Olympic Woman’s Weightlifting Gold Medalist Increase Weight Loss and Exercise Performance in a Mouse Model. Nutrients 2022; 14:nu14061270. [PMID: 35334927 PMCID: PMC8950690 DOI: 10.3390/nu14061270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a worldwide health problem. Calorie-restricted diets constitute a common intervention for treating obesity. However, an improper calorie-restricted diet can lead to malnutrition, fatigue, poor concretion, muscle loss, and reduced exercise performance. Probiotics have been introduced as an alternative treatment for obesity. In the present study, we tested the weight loss and exercise performance enhancement effectiveness of probiotic strains of different origins, including four isolated from an Olympic weightlifting gold medalist (Bifidobacterium longum subsp. longum OLP-01, Lactobacillus plantarum PL-02, Lactobacillus salivarius subsp. salicinius SA-03, and Lactococcus lactis subsp. lactis LY-66). A high-fat diet (HFD) was used to induce obesity in 16 groups of mice (n = 8/group). The mice were administered probiotic supplements at a dosage of 4.1 × 109 CFU/kg/day for 10 weeks. All probiotic supplementation groups showed a significant reduction in body weight and fat mass compared with the HFD group. TYCA06, CS-773, BLI-02, PL-02, bv-77, and OLP-01 were the most effective in facilitating weight loss and fat reduction, which may be due to fatty-acid absorbing activity. PL-02, LY-66, TYCA06, CS-773, and OLP-01 elevated the animals’ grip strength and exhaustive running duration. PL-02, LY-66, and OLP-01 increased tissue glycogen (liver and muscle) levels and muscle capillary density and reduced blood lactate production levels after exercise. In conclusion, OLP-01, PL-02, LY-66, TYCA06, and CS-773 were highly effective in enhancing weight loss and exercise performance. This study should be repeated on humans in the future to further confirm the findings.
Collapse
|
14
|
Huang WC, Xu JW, Li S, Ng XE, Tung YT. Effects of exercise on high-fat diet-induced non-alcoholic fatty liver disease and lipid metabolism in ApoE knockout mice. Nutr Metab (Lond) 2022; 19:10. [PMID: 35172845 PMCID: PMC8849014 DOI: 10.1186/s12986-022-00644-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 01/15/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD), which is growing more common in the Western world, has become the main cause of chronic liver disease and is strongly associated with metabolism syndromes. NAFLD can indicate a wide spectrum of hepatic pathologies, ranging from simple hepatic steatosis and inflammatory non-alcoholic steatohepatitis to more severe stages of fibrosis and cirrhosis. Moreover, evidence has demonstrated that physical inactivity and westernized dietary habits may facilitate the development of NAFLD. Lipid modulation and metabolism could be important factors in the development of steatosis. Lipid species, characterized using a lipidomic approach with untargeted analysis, could provide potential biomarkers for the pathogenesis of NAFLD or therapeutic applications. Thus, in this study, the effects of exercise on the improvement of NAFLD were further investigated from a lipidomic perspective through the aspects of lipid regulation and metabolism. Methods Wild type (WT) C57BL/6 J and C57BL/6-ApoEem1Narl/Narl mice were assigned to one of four groups: WT mice fed a normal chow diet (CD), apolipoprotein E (ApoE) knockout mice fed a normal CD, ApoE knockout mice fed a high-fat diet (HFD), and ApoE knockout mice fed a HFD and provided with swimming exercise. The treatments (e.g., normal diet, HFD, and exercise) were provided for 12 consecutive weeks before the growth curves, biochemistry, fat composition, pathological syndromes, and lipid profiles were determined. Results Exercise significantly reduced the HFD-induced obesity (weight and fat composition), adipocyte hypertrophy, liver lipid accumulation, and pathological steatosis. In addition, exercise ameliorated HFD-induced steatosis in the process of NAFLD. The lipidomic analysis revealed that the changes in plasma triglyceride (14:0/16:0/22:2), phosphatidic acid (18:0/17:2), and phosphatidylglycerol (16:0/20:2) induced by the administration of the HFD could be reversed significantly by exercise. Conclusions The 12-week regular exercise intervention significantly alleviated HFD-induced NAFLD through modulation of specific lipid species in plasma. This finding could elucidate the lipids effects behind the hepatic pathogenesis with exercise.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan
| | - Jin-Wei Xu
- Department of Forestry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Xin Er Ng
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
15
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
16
|
Tung YT, Zeng JL, Ho ST, Xu JW, Lin IH, Wu JH. Djulis Hull Improves Insulin Resistance and Modulates the Gut Microbiota in High-Fat Diet (HFD)-Induced Hyperglycaemia. Antioxidants (Basel) 2021; 11:45. [PMID: 35052549 PMCID: PMC8772896 DOI: 10.3390/antiox11010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, we annotated the major flavonoid glycoside, rutin, of djulis hull crude extract using a Global Natural Products Social Molecular Networking (GNPS) library and its MS/MS spectra. To evaluate the protective effect of djulis hull crude extract and rutin on glucose tolerance, we fed mice a high-fat diet (HFD) for 16 weeks to induce hyperglycaemia. These results showed that crude extract significantly decreased HFD-induced elevation in the area under the curve (AUC) of weekly random blood glucose and oral glucose tolerance tests (OGTT), homeostasis model assessment (HOMA-IR), and advanced glycation end product (AGE) levels, and significantly increased pIRS1 and Glut4 protein expression in epididymal white adipose tissue (eWAT) and liver. Furthermore, the HFD-induced reduction in the activity of glutathione peroxidase (GPx) and catalase (CAT) was reversed by crude extract. In addition, ZO-1 and occludin protein expression in the colon was markedly downregulated in HFD-fed mice, resulting in decreased intestinal permeability and lipopolysaccharide (LPS) translocation, but were restored following crude extract. Moreover, the crude extract intervention had a profound effect on the alpha diversity and microbial community in the gut microbiota. Therefore, djulis hull crude extract could improve blood glucose and increase insulin receptor sensitivity in HFD-induced hyperglycaemia, which is likely due to its modulation of the gut microbiota, preservation of the integrity of the intestinal barrier to reduce body inflammation, increased antioxidant activity, and modulation of insulin signalling.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Jun-Lan Zeng
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.Z.); (J.-W.X.)
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan;
| | - Jin-Wei Xu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.Z.); (J.-W.X.)
| | - I-Hsuan Lin
- Bioinformatics Core Facility, University of Manchester, Manchester M13 9PT, UK;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jyh-Horng Wu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.Z.); (J.-W.X.)
| |
Collapse
|
17
|
Tung YT, Zeng JL, Ho ST, Xu JW, Li S, Wu JH. Anti-NAFLD Effect of Djulis Hull and Its Major Compound, Rutin, in Mice with High-Fat Diet (HFD)-Induced Obesity. Antioxidants (Basel) 2021; 10:1694. [PMID: 34829565 PMCID: PMC8615009 DOI: 10.3390/antiox10111694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the main cause of chronic liver disease worldwide, and the increasing trend of NAFLD has burdened the healthcare system. NAFLD encompasses a wide range of liver pathologies, from simple benign hepatocyte steatosis to more severe inflammatory nonalcoholic steatohepatitis. Djulis (Chenopodium formosanum Koidz.) is traditionally used as a native cereal and a food supplement that promotes human health through its antioxidant, hepatoprotection, skin protection, hypolipidemic, hypoglycemic, and antitumor effects. Djulis hull, regarded as agricultural waste, is usually removed during food processing and contains high rutin content. The present study evaluated the anti-NAFLD effect of Djulis hull and its major compound, rutin, in mice with high-fat diet (HFD)-induced obesity. Male C57BL/6J mice were randomly divided into one of five diet groups (n = 6 per group) and fed the following for 16 weeks: (1) normal diet group (ND), (2) HFD group (HFD), (3) HFD and oral gavage of low dose (50 mg/kg) of Djulis hull crude extract group (HFD/LCE), (4) HFD and oral gavage of high dose (250 mg/kg) of Djulis hull crude extract group (HFD/HCE), or (5) HFD and oral gavage (50 mg/kg) of rutin (HFD/R) group. We found that Djulis hull crude extract markedly reduced HFD-induced elevation in body weight and fat around the kidney weights, hepatic injury indicators (AST and ALT), and steatosis and hypertrophy. Furthermore, Djulis hull crude extract administration significantly affected DG(20:4/18:1), PA(22:0/17:1), PC(10:0/17:0), and PA(18:4/20:5) in HFD-induced obese mice. In addition, treating HFD-induced obese rats with Djulis hull crude extract significantly increased fatty acid oxidation by increasing the protein expression of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the liver. Moreover, the administration of Djulis hull crude extract significantly decreased the inflammatory response (PPARγ, IL-6, and TNF-α) to modulate oxidative damage. Therefore, Djulis hull crude extract attenuated the progression of NAFLD by reducing inflammation mediated by PPARγ and enhancing the expression levels of genes involved in fatty acid oxidation mediated by AMPK signaling.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Jun-Lan Zeng
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.Z.); (J.-W.X.)
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan;
| | - Jin-Wei Xu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.Z.); (J.-W.X.)
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jyh-Horng Wu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.Z.); (J.-W.X.)
| |
Collapse
|
18
|
Garcia JL, Vileigas DF, Gregolin CS, Costa MR, Francisqueti-Ferron FV, Ferron AJT, De Campos DHS, Moreto F, Minatel IO, Bazan SGZ, Corrêa CR. Rice (Oryza sativa L.) bran preserves cardiac function by modulating pro-inflammatory cytokines and redox state in the myocardium from obese rats. Eur J Nutr 2021; 61:901-913. [PMID: 34636986 PMCID: PMC8854237 DOI: 10.1007/s00394-021-02691-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022]
Abstract
Purpose This study aimed to evaluate the effect of rice bran (RB) supplementation to a high-sugar fat (HSF) diet on cardiac dysfunction in an experimental obesity model.
Methods Male Wistar rats were distributed into three groups: control, high-sugar fat, and high-sugar fat supplemented with 11% RB for 20 weeks. Results HSF diet promoted obesity and metabolic complications. Obese rats showed cardiac structural and functional impairment associated with high levels of interleukin-6, tumoral necrosis factor alpha, and malondialdehyde, and decreased activity of superoxide dismutase and catalase in the myocardium. RB supplementation was able to mitigate obesity and its metabolic alterations in HSF diet-fed animals. Moreover, the RB also prevented structural and functional damage, inflammation, and redox imbalance in the heart of these animals. Conclusion This study suggests that RB supplementation prevents cardiac dysfunction in rats fed on HSF by modulating systemic metabolic complications and inflammation and oxidative stress in the myocardium, representing potential alternative therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Moreto
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
| | - Igor Otávio Minatel
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | | | |
Collapse
|
19
|
Yu Y, Gaine GK, Zhou L, Zhang J, Wang J, Sun B. The classical and potential novel healthy functions of rice bran protein and its hydrolysates. Crit Rev Food Sci Nutr 2021; 62:8454-8466. [PMID: 34028308 DOI: 10.1080/10408398.2021.1929057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rice bran protein (RBP) is a plant protein obtained from rice bran, a byproduct produced during rice milling process. It has been proved to be a high quality protein due to containing all of the essential amino acids and the content closing to the FAO/WHO recommended ideal pattern. Recent studies indicated that RBP and rice bran protein hydrolysates (RBPH) served variety biological functions. In this review, we summarized the classical functions of RBP and RBPH mediating antioxidant activity, chronic diseases prevention (such as antihypertensive effect, anti-diabetic effect, cholesterol-lowering activity), and anti-cancer effect. We also proposed their potential novel functions on anti-obesity effect, attenuating sarcopenia, promoting wound healing. Furthermore, the potential benefit to coronavirus disease 2019 (COVID-19) patients was put forward, which might provide new strategy for development and utilization of RBP and RBPH.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Goutom Kumar Gaine
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
20
|
Rondanelli M, Peroni G, Giacosa A, Fazia T, Bernardinelli L, Naso M, Faliva MA, Tartara A, Gasparri C, Perna S. Effectiveness of Rice Germ Supplementation on Body Composition, Metabolic Parameters, Satiating Capacity, and Amino Acid Profiles in Obese Postmenopausal Women: A Randomized, Controlled Clinical Pilot Trial. Nutrients 2021; 13:nu13020439. [PMID: 33572825 PMCID: PMC7911912 DOI: 10.3390/nu13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Rice germ (RG) may be a safe and effective dietary supplement for obesity in menopause, considering its high protein content and considerable amounts of essential amino acids, good fatty acids, and fiber. This pilot randomized, blinded, parallel-group, placebo-controlled pilot trial investigated the effectiveness of 4-weeks RG supplementation (25 g twice a day) on body composition, as primary outcome, measured by Dual Energy X-Ray Absorptiometry (DXA), and metabolic parameters, as secondary outcomes, like amino acid profiles and satiating capacity, in obese postmenopausal women following a tailored hypocaloric diet (25–30% less than daily energy requirements). Twenty-seven women were randomly assigned to the supplemented group (14) or placebo group (13). There was a significant interaction between time and group for body mass index (BMI) (p < 0.0001), waist (p = 0.002) and hip circumferences (p = 0.01), total protein (0.008), albumin (0.005), Homeostasis Model Assessment index score (p = 0.04), glycine (p = 0.002), glutamine (p = 0.004), and histidine (p = 0.007). Haber’s means over time showed a clearly greater feeling of satiety for the supplemented compared to the placebo group. These findings indicate that RG supplementation in addition to a tailored diet counterbalanced the metabolic changes typical of menopause, with improvements in BMI, body composition, insulin resistance, amino acid profiles, and satiety.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy; (M.N.); (M.A.F.); (A.T.); (C.G.)
- Correspondence: ; Tel.: +39-0382381739
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, via Amati 111, 20900 Monza, Italy;
| | - Teresa Fazia
- Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Science, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| | - Maurizio Naso
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy; (M.N.); (M.A.F.); (A.T.); (C.G.)
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy; (M.N.); (M.A.F.); (A.T.); (C.G.)
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy; (M.N.); (M.A.F.); (A.T.); (C.G.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy; (M.N.); (M.A.F.); (A.T.); (C.G.)
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Sakhir 32038, Bahrain;
| |
Collapse
|
21
|
Siqueira JS, Francisqueti-Ferron FV, Garcia JL, Silva CCVDA, Costa MR, Nakandakare-Maia ET, Moreto F, Ferreira ALA, Minatel IO, Ferron AJT, Corrêa CR. Rice bran modulates renal disease risk factors in animals submitted to high sugar-fat diet. J Bras Nefrol 2021; 43:156-164. [PMID: 33475676 PMCID: PMC8257273 DOI: 10.1590/2175-8239-jbn-2020-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: Obesity, diabetes, and hypertension are common risk factors for chronic
kidney disease (CKD). CKD arises due to many pathological insults, including
inflammation and oxidative stress, which affect renal function and destroy
nephrons. Rice bran (RB) is rich in vitamins and minerals, and contains
significant amount of antioxidants. The aim of this study was to evaluate the
preventive effect of RB on renal disease risk factors. Methods: Male Wistar rats (±325 g) were divided into two experimental groups to
received a high sugar-fat diet (HSF, n = 8) or high sugar-fat diet with rice
bran (HSF + RB, n = 8) for 20 weeks. At the end, renal function, body
composition, metabolic parameters, renal inflammatory and oxidative stress
markers were analyzed. Results: RB prevented obesity [AI (HSF= 9.92 ± 1.19 vs HSF + RB= 6.62 ± 0.78)],
insulin resistance [HOMA (HSF= 83 ± 8 vs. HSF + RB= 42 ±
11)], dyslipidemia [TG (HSF= 167 ± 41 vs. HSF + RB=92 ±
40)], inflammation [TNF-α (HSF= 80 ± 12 vs. HSF + RB=57 ±
14), IL-6 (903 ± 274 vs. HSF + RB=535 ± 277)], oxidative
stress [protein carbonylation (HSF= 3.38 ± 0.18 vs. HSF +
RB=2.68 ± 0.29), RAGE (HSF=702 ± 36 vs. RSF + RB=570 ±
190)], and renal disease [protein/creatinine ratio (HSF=1.10 ± 0.38
vs. HSF + RB=0.49 ± 0.16)]. Conclusion: In conclusion, rice bran prevented renal disease by modulating risk
factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernando Moreto
- Universidade Estadual Paulista, Faculdade de Medicina, Botucatu, SP, Brasil
| | | | - Igor Otávio Minatel
- Universidade Estadual Paulista, Instituto de Biociências, Botucatu, SP, Brasil
| | | | | |
Collapse
|
22
|
Discovery and characterization of pentacyclic triterpenoid acids in Styrax as potent and reversible pancreatic lipase inhibitors. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|