1
|
Liu C, Miao Y, Zhao J, Yang S, Cheng S, Zhou W, Guo W, Li A. In vitro simulated digestion of different heat treatments sweet potato polysaccharides and effects on human intestinal flora. Food Chem 2025; 463:141190. [PMID: 39260171 DOI: 10.1016/j.foodchem.2024.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The aim of this study was to investigate the changes of untreated and steamed (100 °C, 20 min), fried (150 °C, 10 min), and baked (200 °C, 30 min) sweet potato polysaccharides during in vitro digestion and their effects on the intestinal flora. The results showed that the reducing sugar content of all four sweet potato polysaccharides increased significantly during digestion. During in vitro fecal fermentation, the content of reducing sugars and total carbohydrates decreased significantly. It indicated that all four polysaccharides showed degradation of polysaccharides during fermentation. Compared to the blank group, the total SCFAs content of the four polysaccharide sample groups was significantly increased. It was worth noting that sweet potato polysaccharides increased the percentage of Bacteroidetes and decreased the percentage of Proteobacteria in the intestinal flora. The findings provide evidence that sweet potato polysaccharides regulate intestinal flora and maintain intestinal health through interactions with intestinal flora.
Collapse
Affiliation(s)
- Chuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jingwen Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shihui Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenjia Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenkui Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China.
| | - Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China; Heilongjiang Green Food Science Research Institute, Harbin, China.
| |
Collapse
|
2
|
Morishima S, Abe A, Okamoto S, Kapoor MP, Osumi M, Oda M, Okubo T, Ozeki M, Nishio M, Inoue R. Partially hydrolyzed guar gum suppresses binge alcohol-induced liver fat accumulation via gut environment modulation in mice. J Gastroenterol Hepatol 2024. [PMID: 39313361 DOI: 10.1111/jgh.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Alcohol-associated liver disease (ALD), including alcoholic fatty liver, is a serious problem in many countries, and its economic costs to society are enormous. There is evidence indicating the relations between gut environments and liver disease, and thus, improvement of gut environment is expected to be an effective approach for ALD prevention. In this study, we explored the preventive effect of partially hydrolyzed guar gum (PHGG) on ALD focusing on the gut-liver axis. Two weeks of PHGG pre-feeding suppressed the liver fat accumulation in the experimental binge alcohol model mouse. In cecal microbiome, PHGG pre-feeding increased beneficial Bifidobacterium with its metabolite acetate concentration and suppressed the alcohol-induced increase in the potential pathobiont Streptococcus. PHGG pre-feeding increased colonic gene expression of angiogenin genes, which act as antimicrobial peptides and decreased expression of genes for mast cell protease, which suggests a potential involvement in leaky gut. Correlation network analysis based on evaluated parameters revealed four relations worth noticing. (i) The abundance of Bifidobacterium positively correlated with cecal acetate. (ii) Cecal acetate negatively correlated with Streptococcus via colonic angiogenin expression. (iii) Streptococcus positively correlated with liver fat area. (iv) Cecal acetate had direct negative correlation with liver fat area. Considering these relations comprehensively, acetate produced by Bifidobacterium may be a key mediator in ALD prevention; it inhibited growth of potential pathobiont Streptococcus and also directly regulated liver lipid metabolism reaching through portal vein. This study demonstrated that regularly intake of PHGG may be effective in reducing the risk of alcoholic fatty liver via gut-liver axis.
Collapse
Affiliation(s)
- So Morishima
- Laboratory of Food Function, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Saki Okamoto
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | | | - Masahide Osumi
- Laboratory of Nutritional Chemistry, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Machi Oda
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Tsutomu Okubo
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Ozeki
- Laboratory of Food Function, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Masahiro Nishio
- Laboratory of Nutritional Chemistry, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
3
|
Noguera-Fernández N, Candela-González J, Orenes-Piñero E. Probiotics, Prebiotics, Fecal Microbiota Transplantation, and Dietary Patterns in Inflammatory Bowel Disease. Mol Nutr Food Res 2024; 68:e2400429. [PMID: 39194379 DOI: 10.1002/mnfr.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Indexed: 08/29/2024]
Abstract
SCOPE Inflammatory bowel disease (IBD) is one of the most common chronic and debilitating functional bowel disorders affecting around 11% of the population across the world. IBD is associated with 3.6 million physician visits per year, being the most common reason visiting a gastroenterologist and the second most common reason to be absent from work, sharply increasing the health care costs. METHODS AND RESULTS Several treatments seem to be effective in IBD symptoms relief, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary patterns. Probiotics (living microorganisms that can be supplemented) can protect against pathogenic bacteria due to their antimicrobial qualities. Prebiotics (nondigestible food ingredients) promote the growth of beneficial microbial strains in the gut, giving a health benefit to the host. FMT is supposed to directly change the recipient's microbial composition when a transfer of gastrointestinal microbiota from a healthy donor is carried out. And finally, dietary patterns are in the spotlight, due to the presence of certain nutrients in the gastrointestinal tract affecting gastrointestinal motility, sensitivity, barrier function, and gut microbiota. CONCLUSION It is particularly important to know what treatment options are available and which are the most efficient in relieving IBD symptoms and improving IBD patient's quality of life.
Collapse
Affiliation(s)
- Noah Noguera-Fernández
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Lorca, Murcia, 30800, Spain
| | - Joana Candela-González
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Lorca, Murcia, 30800, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Lorca, Murcia, 30800, Spain
| |
Collapse
|
4
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
5
|
Abe A, Kapoor MP, Morishima S, Ozeki M, Sato N, Takara T, Naito Y. Effectiveness of Partially Hydrolyzed Guar Gum on Cognitive Function and Sleep Efficiency in Healthy Elderly Subjects in a Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study. Nutrients 2024; 16:1211. [PMID: 38674901 PMCID: PMC11054110 DOI: 10.3390/nu16081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The consumption of functional foods in a daily diet is a promising approach for the maintenance of cognitive health. The present study examines the effects of water-soluble prebiotic dietary-fiber, partially hydrolyzed guar gum (PHGG), on cognitive function and mental health in healthy elderly individuals. Participants consumed either 5 g/day of PHGG or a placebo daily for 12 weeks in this randomized, double-blind, placebo-controlled, and parallel-group study. An assessment of cognitive functions, sleep quality, and subjective mood evaluations was performed at baseline and after 8 and 12 weeks of either PHGG or placebo intake. The visual memory scores in cognitive function tests and sleepiness on rising scores related to sleep quality were significantly improved in the PHGG group compared to the placebo group. No significant differences were observed in mood parameters between the groups. Vigor-activity scores were significantly improved, while the scores for Confusion-Bewilderment decreased significantly in the PHGG group when compared to the baseline. In summary, supplementation with PHGG was effective in improving cognitive functions, particularly visual memory, as well as enhancing sleep quality and vitality in healthy elderly individuals (UMIN000049070).
Collapse
Affiliation(s)
- Aya Abe
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan; (M.P.K.); (S.M.); (M.O.); (N.S.)
| | - Mahendra Parkash Kapoor
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan; (M.P.K.); (S.M.); (M.O.); (N.S.)
| | - So Morishima
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan; (M.P.K.); (S.M.); (M.O.); (N.S.)
| | - Makoto Ozeki
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan; (M.P.K.); (S.M.); (M.O.); (N.S.)
| | - Norio Sato
- Department of Research and Development, Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan; (M.P.K.); (S.M.); (M.O.); (N.S.)
| | - Tsuyoshi Takara
- Medical Corporation Seishinkai, Takara Clinic, 9F Taisei Bldg., 2-3-2, Higashi-gotanda, Shinagawa, Tokyo 141-0022, Japan;
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kamigyoku, Kyoto 602-8566, Japan;
| |
Collapse
|
6
|
Redondo-Cuevas L, Belloch L, Martín-Carbonell V, Nicolás A, Alexandra I, Sanchis L, Ynfante M, Colmenares M, Mora M, Liebana AR, Antequera B, Grau F, Molés JR, Cuesta R, Díaz S, Sancho N, Tomás H, Gonzalvo J, Jaén M, Sánchez E, Garayoa A, Moreno N, Gallén A, Cortés-Castell E, Cortés-Rizo X. Do Herbal Supplements and Probiotics Complement Antibiotics and Diet in the Management of SIBO? A Randomized Clinical Trial. Nutrients 2024; 16:1083. [PMID: 38613116 PMCID: PMC11013329 DOI: 10.3390/nu16071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) arises from dysbiosis in the small intestine, manifesting with abdominal symptoms. This study aims to assess the efficacy of combined antibiotic therapy, herbal supplements, probiotics, and dietary modifications in SIBO management. A total of 179 SIBO-diagnosed patients underwent clinical evaluation and breath testing. Patients were categorized into hydrogen (H2-SIBO) and methane (CH4-SIBO) groups. The control group received standard antibiotic therapy and a low-FODMAP diet, while the intervention group received additional herbal antibiotics, probiotics, and prebiotics. After treatment, both groups exhibited reduced gas levels, particularly in CH4-SIBO. Clinical remission rates were higher in the intervention group, especially in CH4-SIBO cases. Logistic regression analysis showed gas concentrations at diagnosis as significant predictors of treatment success. In conclusion, adjunctive herbal supplements and probiotics did not significantly impact gas levels, but showed potential for clinical improvement, especially in CH4-SIBO.
Collapse
Affiliation(s)
- Lucia Redondo-Cuevas
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Lucia Belloch
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Vanesa Martín-Carbonell
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Angela Nicolás
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Iulia Alexandra
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Laura Sanchis
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Marina Ynfante
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Michel Colmenares
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - María Mora
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Ana Reyes Liebana
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Beatriz Antequera
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Francisco Grau
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - José Ramón Molés
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Rubén Cuesta
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Samuel Díaz
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Noelia Sancho
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Héctor Tomás
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - José Gonzalvo
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Mercedes Jaén
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Eva Sánchez
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Ana Garayoa
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| | - Nadia Moreno
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Ana Gallén
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
| | - Ernesto Cortés-Castell
- Department of Pharmacology, Pediatrics and Organic Chemistry, Miguel Hernández University of Elche, 03550 Elche, Spain;
| | - Xavier Cortés-Rizo
- Valencian Digestive Institute (IVADI), 46021 Valencia, Spain; (L.R.-C.); (L.B.); (M.Y.); (M.C.); (A.R.L.); (F.G.); (J.R.M.); (N.S.); (M.J.); (X.C.-R.)
- Digestive Section, Hospital de Sagunto Internal Medicine Service, 46520 Valencia, Spain; (I.A.)
| |
Collapse
|
7
|
Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A, Marcu D. Local and Systemic Effects of Bioactive Food Ingredients: Is There a Role for Functional Foods to Prime the Gut for Resilience? Foods 2024; 13:739. [PMID: 38472851 DOI: 10.3390/foods13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Scientific advancements in understanding the impact of bioactive components in foods on the gut microbiota and wider physiology create opportunities for designing targeted functional foods. The selection of bioactive ingredients with potential local or systemic effects holds promise for influencing overall well-being. An abundance of studies demonstrate that gut microbiota show compositional changes that correlate age and disease. However, navigating this field, especially for non-experts, remains challenging, given the abundance of bioactive ingredients with varying levels of scientific substantiation. This narrative review addresses the current knowledge on the potential impact of the gut microbiota on host health, emphasizing gut microbiota resilience. It explores evidence related to the extensive gut health benefits of popular dietary components and bioactive ingredients, such as phytochemicals, fermented greens, fibres, prebiotics, probiotics, and postbiotics. Importantly, this review distinguishes between the potential local and systemic effects of both popular and emerging ingredients. Additionally, it highlights how dietary hormesis promotes gut microbiota resilience, fostering better adaptation to stress-a hallmark of health. By integrating examples of bioactives, this review provides insights to guide the design of evidence-based functional foods aimed at priming the gut for resilience.
Collapse
Affiliation(s)
| | - Marcel van de Wouw
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | - Amira Kassis
- Neat Science, 1618 Chatel-Saint-Denis, Switzerland
| | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
Gong L, Liu F, Liu J, Wang J. Dietary fiber (oligosaccharide and non-starch polysaccharide) in preventing and treating functional gastrointestinal disorders - Challenges and controversies: A review. Int J Biol Macromol 2024; 258:128835. [PMID: 38128805 DOI: 10.1016/j.ijbiomac.2023.128835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are a group of chronic or recurrent gastrointestinal functional diseases, including functional dyspepsia, irritable bowel syndrome, and functional constipation. A lack of safe and reliable treatments for abdominal pain-related FGIDs has prompted interest in new therapies. Evidence has shown that supplementation with dietary fiber may help treat FGIDs. Dietary fibers (DFs) have been demonstrated to have regulatory effects on the gut microbiota, microbiota metabolites, and gastrointestinal movement and have important implications for preventing and treating FGIDs. However, the adverse effects of some DFs, such as fermentable oligosaccharides, on FGIDs are unclear. This review provides an overview of the DFs physiological properties and functional characteristics that influence their use in management of FGIDs, with emphasis on structural modification technology to improve their therapeutic activities. The review highlights that the use of appropriate or novel fibers is a potential therapeutic approach for FGIDs.
Collapse
Affiliation(s)
- Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
9
|
Pi XE, Fu H, Yang XX, Yu ZC, Teng WL, Zhang Y, Ye XW, Quan HH, Lu LZ, Liu W. Bacterial, short-chain fatty acid and gas profiles of partially hydrolyzed guar gum in vitro fermentation by human fecal microbiota. Food Chem 2024; 430:137006. [PMID: 37541036 DOI: 10.1016/j.foodchem.2023.137006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
Carbohydrates with different structures have metabolic differences in the human body, as well as individual differences. The present study aimed to investigate the effects of bacterial, short-chain fatty acids (SCFAs) and gas profiles of partially hydrolyzed guar gum (PHGG) on the fecal microbiota of 41 Chinese individuals by simulated fermentation in vitro. Results showed that PHGG stimulated the growth of Bifidobacterium and Faecalibacterium, inhibited the growth of Escherichia-Shigella, Klebsiella, and Dorea, and induced the production of fermentation gases (CO2, and H2) and SCFAs (acetic acid, butyric acid). Furthermore, Bifidobacterium was significantly increased in the young female and the old male-originated samples, while Klebsiella was significantly decreased in the old female ones after PHGG intervention, and there were also certain differences in gases and SCFAs among different population samples. These findings indicate that PHGG can modulate gut microbiota and metabolism well, whereas its use varies in different populations.
Collapse
Affiliation(s)
- Xiong-E Pi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China.
| | - Hao Fu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Xiao-Xia Yang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zai-Chun Yu
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei-Lin Teng
- Department of Infectious Disease Control and Prevention, HangZhou Center for Disease Control and Prevention, Hangzhou 310006, China
| | - Yinjun Zhang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xue-Wei Ye
- Shulan International Medical College, Department of Basic Medical Sciences, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hui Hui Quan
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China.
| | - Li-Zhi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China.
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China.
| |
Collapse
|
10
|
Paudel D, Nair DVT, Tian S, Hao F, Goand UK, Joseph G, Prodes E, Chai Z, Robert CE, Chassaing B, Patterson AD, Singh V. Dietary fiber guar gum-induced shift in gut microbiota metabolism and intestinal immune activity enhances susceptibility to colonic inflammation. Gut Microbes 2024; 16:2341457. [PMID: 38630030 PMCID: PMC11028019 DOI: 10.1080/19490976.2024.2341457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V. T. Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eleni Prodes
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhi Chai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chloé E.M. Robert
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases”, CNRS UMR 8104, Université Paris Cité, Paris, France
- INSERM U1306, Microbiome-Host Interaction group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Tian S, Chu Q, Ma S, Ma H, Song H. Dietary Fiber and Its Potential Role in Obesity: A Focus on Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14853-14869. [PMID: 37815013 DOI: 10.1021/acs.jafc.3c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dietary fiber is a carbohydrate polymer with ten or more monomeric units that are resistant to digestion by human digestive enzymes, and it has gained widespread attention due to its significant role in health improvement through regulating gut microbiota. In this review, we summarized the interaction between dietary fiber, gut microbiota, and obesity, and the beneficial effects of dietary fiber on obesity through the modulation of microbiota, such as modifying selective microbial composition, producing starch-degrading enzymes, improving gut barrier function, reducing the inflammatory response, reducing trimethylamine N-oxide, and promoting the production of gut microbial metabolites (e.g., short chain fatty acids, bile acids, ferulic acid, and succinate). In addition, factors affecting the gut microbiota composition and metabolites by dietary fiber (length of the chain, monosaccharide composition, glycosidic bonds) were also concluded. Moreover, strategies for enhancing the biological activity of dietary fiber (fermentation technology, ultrasonic modification, nanotechnology, and microfluidization) were subsequently discussed. This review may provide clues for deeply exploring the structure-activity relationship between dietary fiber and antiobesity properties by targeting specific gut microbiota.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Huan Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
12
|
Napolitano M, Fasulo E, Ungaro F, Massimino L, Sinagra E, Danese S, Mandarino FV. Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms 2023; 11:2369. [PMID: 37894027 PMCID: PMC10609453 DOI: 10.3390/microorganisms11102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by chronic abdominal pain and altered bowel habits. It can be subclassified in different subtypes according to the main clinical manifestation: constipation, diarrhea, mixed, and unclassified. Over the past decade, the role of gut microbiota in IBS has garnered significant attention in the scientific community. Emerging research spotlights the intricate involvement of microbiota dysbiosis in IBS pathogenesis. Studies have demonstrated reduced microbial diversity and stability and specific microbial alterations for each disease subgroup. Microbiota-targeted treatments, such as antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and even diet, offer exciting prospects for managing IBS. However, definitive conclusions are hindered by the heterogeneity of these studies. Further research should focus on elucidating the mechanisms, developing microbiome-based diagnostics, and enabling personalized therapies tailored to an individual's microbiome profile. This review takes a deep dive into the microscopic world inhabiting our guts, and its implications for IBS. Our aim is to elucidate the complex interplay between gut microbiota and each IBS subtype, exploring novel microbiota-targeted treatments and providing a comprehensive overview of the current state of knowledge.
Collapse
Affiliation(s)
- Maria Napolitano
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Ernesto Fasulo
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Federica Ungaro
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Luca Massimino
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Emanuele Sinagra
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy;
| | - Silvio Danese
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Vito Mandarino
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
| |
Collapse
|
13
|
Sanada TJ, Hosomi K, Park J, Naito A, Sakao S, Tanabe N, Kunisawa J, Tatsumi K, Suzuki T. Partially hydrolyzed guar gum suppresses the progression of pulmonary arterial hypertension in a SU5416/hypoxia rat model. Pulm Circ 2023; 13:e12266. [PMID: 37448440 PMCID: PMC10336776 DOI: 10.1002/pul2.12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
This study investigated the effects of partially hydrolyzed guar gum (PHGG) on the development of pulmonary arterial hypertension using a SU5416/hypoxia rat model. Our results demonstrated that PHGG treatment suppressed the development of pulmonary hypertension and vascular remodeling with an altered gut microbiota composition.
Collapse
Affiliation(s)
- Takayuki J. Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN)OsakaJapan
- Department of Respirology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN)OsakaJapan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical ResearchNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)OsakaJapan
| | - Akira Naito
- Department of Respirology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of RespirologyChibaken Saiseikai Narashino HospitalNarashinoJapan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN)OsakaJapan
- Artificial Intelligence Center for Health and Biomedical ResearchNational Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Graduate School of MedicineOsaka UniversityOsakaJapan
- Graduate School of DentistryOsaka UniversityOsakaJapan
- Graduate School of ScienceOsaka UniversityOsakaJapan
- Department of Microbiology and Immunology, Graduate School of MedicineKobe UniversityHyogoJapan
- International Vaccine Design Center, Institute of Medical ScienceUniversity of TokyoTokyoJapan
- Research Organization for Nano and Life InnovationWaseda UniversityTokyoJapan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
14
|
Barber C, Sabater C, Guarner F, Margolles A, Azpiroz F. Metabolic response of intestinal microbiota to guar gum consumption. Front Nutr 2023; 10:1160694. [PMID: 37457982 PMCID: PMC10349393 DOI: 10.3389/fnut.2023.1160694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Guar gum is used extensively as a thickening agent in food, but it remains uncertain whether and to what extent it is fermented by colonic microbiota and whether it has microbiota modulatory properties. Aim To determine the metabolic response of intestinal microbiota to guar gum consumption, specifically, the extent of initial fermentation and subsequent adaptation. Methods Single-center, single arm, open label, proof-of-concept study testing the effect of guar gum on microbiota metabolism and adaptation. Healthy male subjects (n = 12) were administered gum guar (8 g/day) for 18 days. Outcomes were measured before, at initial and late administration: (a) anal gas evacuations (number/day); (b) digestive sensations (daily scales); and (c) fecal gut microbiota taxonomy and metabolic functions by shotgun sequencing. Results At initial consumption, guar gum induced a transient increase in anal gas evacuations and digestive sensations; gas evacuation completely reverted upon continuous administration, whereas sensations reverted only in part. Guar gum induced moderate changes in human microbiota composition at both taxonomic and functional levels. Positive associations between effects on microbiota (proliferation of Agathobaculum butyriciproducens and Lachnospira pectinoschiza) and hedonic sensations were detected. Conclusion Guar gum is metabolized by intestinal microbiota, and, upon continuous consumption, induces a selective adaptation of microbial taxonomy and function. These data highlight the potential interest of guar gum for novel prebiotic ingredient formulation.
Collapse
Affiliation(s)
- Claudia Barber
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry, IPLA-CSIC, Asturias, Spain
- Health Research Institute of Asturias, ISPA, Asturias, Spain
| | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, IPLA-CSIC, Asturias, Spain
- Health Research Institute of Asturias, ISPA, Asturias, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| |
Collapse
|
15
|
Minor G, Sentongo T, Heine RG, Zemrani B. Tolerability and safety of a semi-elemental enteral formula with partially hydrolyzed guar gum (PHGG) in tube-fed children aged 1-4 years: An open-label, single-arm study. Clin Nutr ESPEN 2023; 55:392-399. [PMID: 37202073 DOI: 10.1016/j.clnesp.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Partially hydrolyzed guar gum (PHGG) is a water-soluble fiber supporting digestive health with well-established safety and efficacy. This open-label, single-arm, multicenter trial aimed to assess the tolerability and safety of a semi-elemental enteral formula containing PHGG at 12 g/L in tube-fed young children. METHODS Children aged 1-4 years with stable conditions requiring tube feeding to provide ≥80% of their nutritional needs received the study formula for seven days. Tolerability, safety, adequacy of energy/protein intake, and weight change were assessed. RESULTS Of 24 children (mean age 33.5 months; 10 [41.7%] female), 23 (95.8%) commenced treatment and 18 (75%) completed the study. All children had underlying neuro-developmental disabilities, often in association with gastrointestinal comorbidities requiring treatment for constipation (70.8%) or gastroesophageal reflux (66.7%). The formula was well-tolerated by 19 (82.6%) subjects, while 4 (17.4%; 95% CI: 5%, 39%) subjects withdrew early from the study due to gastrointestinal intolerance. The mean (SD) percentage energy and protein intake across the 7-day period were 103.5% (24.7) and 139.5% [50], respectively. Weight remained stable over the 7-day period (p = 0.43). The study formula was associated with a shift towards softer and more frequent stools. Pre-existing constipation was generally well controlled, and 3/16 (18.7%) subjects ceased laxatives during the study. Adverse events were reported in 12 (52%) subjects and were deemed 'probably related' or 'related' to the formula in 3 (13%) subjects. Gastrointestinal adverse events appeared more common in fiber-naïve patients (p = 0.09). CONCLUSION The present study indicates that the study formula was safe and generally well tolerated in young tube-fed children. CLINICALTRIALS GOV IDENTIFIER NCT04516213.
Collapse
Affiliation(s)
- Gerard Minor
- Pediatric Gastroenterology, Hepatology & Nutrition, KIDZ Medical Services, Hollywood, FL, USA.
| | - Timothy Sentongo
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition, Comer Children's Hospital, University of Chicago, Chicago, IL, USA.
| | - Ralf G Heine
- Clinical Research and Development, Pediatric Medical Nutrition, Nestlé Health Science, Vevey, Switzerland.
| | - Boutaina Zemrani
- Clinical Research and Development, Pediatric Medical Nutrition, Nestlé Health Science, Vevey, Switzerland.
| |
Collapse
|
16
|
Zhao Y, Zou DW. Gut microbiota and irritable bowel syndrome. J Dig Dis 2023; 24:312-320. [PMID: 37458142 DOI: 10.1111/1751-2980.13204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that poses a significant health concern. Although its etiology remains unknown, there is growing evidence that gut dysbiosis is involved in the development and exacerbation of IBS. Previous studies have reported altered microbial diversity, abundance, and composition in IBS patients when compared to controls. However, whether dysbiosis or aberrant changes in the intestinal microbiota can be used as a hallmark of IBS remains inconclusive. We reviewed the literatures on changes in and roles of intestinal microbiota in relation to IBS and discussed various gut microbiota manipulation strategies. Gut microbiota may affect IBS development by regulating the mucosal immune system, brain-gut-microbiome interaction, and intestinal barrier function. The advent of high-throughput multi-omics provides important insights into the pathogenesis of IBS and promotes the development of individualized treatment for IBS. Despite advances in currently available microbiota-directed therapies, large-scale, well-organized, and long-term randomized controlled trials are highly warranted to assess their clinical effects. Overall, gut microbiota alterations play a critical role in the pathophysiology of IBS, and modulation of microbiota has a significant therapeutic potential that requires to be further verified.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duo Wu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
18
|
Sasaki D, Sasaki K, Abe A, Ozeki M, Kondo A. Effects of partially hydrolyzed guar gums of different molecular weights on a human intestinal in vitro fermentation model. J Biosci Bioeng 2023:S1389-1723(23)00113-5. [PMID: 37105857 DOI: 10.1016/j.jbiosc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Partially hydrolyzed guar gums (PHGGs) are prebiotic soluble dietary fibers. High molecular-weight PHGGs have rapid fermentation and high short-chain fatty acid (SCFA) productivity rates, compared to low molecular-weight PHGGs. Therefore, low molecular-weight PHGGs may have less pronounced prebiotic effects than high molecular-weight PHGGs. However, the effects of PHGGs of different molecular weights on the human intestinal microbiota, as well as their fermentation ability and prebiotic effects, have not been investigated. The aim of this study was to evaluate the effects of two PHGGs of different molecular weights, Sunfiber-R (SF-R; 20 kDa) and Sunfiber-V (SF-V; 5 kDa), on human colonic microbiota and SCFA production. A human intestinal in vitro fermentation model was operated by fecal samples with and without the PHGGs. The addition of 0.2% SF-R or SF-V increased the relative abundance of Bacteroides spp., especially that of Bacteroides uniformis. This increase corresponded to a significant (p = 0.030) and non-significant (p = 0.073) increase in propionate production in response to SF-R and SF-V addition, respectively. Both fibers increased the relative abundance of Faecalibacterium and stimulated an increase in the abundance of unclassified Lachnospiraceae and Bifidobacterium. In conclusion, the low molecular-weight PHGG exerted prebiotic effects on human colonic microbiota to increase SCFA production and bacteria that are beneficial to human health in a manner similar to that of the high molecular-weight forms of PHGG.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
19
|
Abe A, Morishima S, Kapoor MP, Inoue R, Tsukahara T, Naito Y, Ozeki M. Partially hydrolyzed guar gum is associated with improvement in gut health, sleep, and motivation among healthy subjects. J Clin Biochem Nutr 2023; 72:189-197. [PMID: 36936875 PMCID: PMC10017317 DOI: 10.3164/jcbn.22-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 01/15/2023] Open
Abstract
Partially hydrolyzed guar gum dietary fiber is well recognized for a number of health benefits. In the present study, we aim to investigate the effects of partially hydrolyzed guar gum on constipation, intestinal microbiota as well as mental health in healthy subjects. In the randomized, parallel, double-blind, and placebo-controlled study the enrolled healthy men and women volunteers took either 3 g/day (T3) or 5 g/day (T5) of dietary fiber intakes for eight consecutive weeks compared to placebo (T0). The fecal characteristics, fecal microbiota, defecation characteristics, and quality of life (QOL) questionnaire were investigated. The results revealed a significant suppression in fecal potent harmful mucolytic bacteria in the T3 and T5 groups compared to the T0 group. The defecation frequency, excretory feeling, and scores of sleep and motivation questionnaire were also improved in the dietary fiber intake groups, showing a significant difference in the T5 group compared to the T0 group. In summary, the consumption of partially hydrolyzed guar gum dietary fiber is found effective in suppressing the potent harmful mucolytic bacteria that could be associated with the improvement of constipation-related symptoms including mental health in terms of sleep and motivation among the healthy subjects.
Collapse
Affiliation(s)
- Aya Abe
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
- To whom correspondence should be addressed. E-mail:
| | - So Morishima
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Mahendra P. Kapoor
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Nagatoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | | | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| |
Collapse
|
20
|
Mysonhimer AR, Holscher HD. Gastrointestinal Effects and Tolerance of Nondigestible Carbohydrate Consumption. Adv Nutr 2022; 13:2237-2276. [PMID: 36041173 PMCID: PMC9776669 DOI: 10.1093/advances/nmac094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 01/29/2023] Open
Abstract
Nondigestible carbohydrates (NDCs) are food components, including nonstarch polysaccharides and resistant starches. Many NDCs are classified as dietary fibers by the US FDA. Because of their beneficial effects on human health and product development, NDCs are widely used in the food supply. Although there are dietary intake recommendations for total dietary fiber, there are no such recommendations for individual NDCs. NDCs are heterogeneous in their chemical composition and physicochemical properties-characteristics that contribute to their tolerable intake levels. Guidance on tolerable intake levels of different NDCs is needed because overconsumption can lead to undesirable gastrointestinal side effects, further widening the gap between actual and suggested fiber intake levels. In this review, we synthesize the literature on gastrointestinal effects of NDCs that the FDA accepts as dietary fibers (β-glucan, pectin, arabinoxylan, guar gum, alginate, psyllium husk, inulin, fructooligosaccharides and oligofructose, galactooligosaccharides, polydextrose, cellulose, soy fiber, resistant maltodextrin/dextrin) and present tolerable intake dose recommendations for their consumption. We summarized the findings from 103 clinical trials in adults without gastrointestinal disease who reported gastrointestinal effects, including tolerance (e.g., bloating, flatulence, borborygmi/rumbling) and function (e.g., transit time, stool frequency, stool consistency). These studies provided doses ranging from 0.75-160 g/d and lasted for durations ranging from a single-meal tolerance test to 28 wk. Tolerance was NDC specific; thus, recommendations ranged from 3.75 g/d for alginate to 25 g/d for soy fiber. Future studies should address gaps in the literature by testing a wider range of NDC doses and consumption forms (solid compared with liquid). Furthermore, future investigations should also adopt a standard protocol to examine tolerance and functional outcomes across studies consistently.
Collapse
|
21
|
Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022; 10:microorganisms10122507. [PMID: 36557760 PMCID: PMC9787832 DOI: 10.3390/microorganisms10122507] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary fiber is fermented by the human gut microbiota, producing beneficial microbial metabolites, such as short-chain fatty acids. Over the last few centuries, dietary fiber intake has decreased tremendously, leading to detrimental alternations in the gut microbiota. Such changes in dietary fiber consumption have contributed to the global epidemic of obesity, type 2 diabetes, and other metabolic disorders. The responses of the gut microbiota to the dietary changes are specific to the type, amount, and duration of dietary fiber intake. The intricate interplay between dietary fiber and the gut microbiota may provide clues for optimal intervention strategies for patients with type 2 diabetes and other noncommunicable diseases. In this review, we summarize current evidence regarding dietary fiber intake, gut microbiota modulation, and modification in human health, highlighting the type-specific cutoff thresholds of dietary fiber for gut microbiota and metabolic outcomes.
Collapse
|
22
|
Monma T, Iwamoto J, Ueda H, Tamamushi M, Kakizaki F, Konishi N, Yara S, Miyazaki T, Hirayama T, Ikegami T, Honda A. Evaluation of gut dysbiosis using serum and fecal bile acid profiles. World J Clin Cases 2022; 10:12484-12493. [PMID: 36579096 PMCID: PMC9791502 DOI: 10.12998/wjcc.v10.i34.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Dysbiosis in the intestinal microflora can affect the gut production of microbial metabolites, and toxic substances can disrupt the barrier function of the intestinal wall, leading to the development of various diseases. Decreased levels of Clostridium subcluster XIVa (XIVa) are associated with the intestinal dysbiosis found in inflammatory bowel disease (IBD) and Clostridium difficile infection (CDI). Since XIVa is a bacterial group responsible for the conversion of primary bile acids (BAs) to secondary BAs, the proportion of intestinal XIVa can be predicted by determining the ratio of deoxycholic acid (DCA)/[DCA + cholic acid (CA)] in feces orserum. For example, serum DCA/(DCA+CA) was significantly lower in IBD patients than in healthy controls, even in the remission period. These results suggest that a low proportion of intestinal XIVa in IBD patients might be a precondition for IBD onset but not a consequence of intestinal inflammation. Another report showed that a reduced serum DCA/(DCA + CA) ratio could predict susceptibility to CDI. Thus, the BA profile, particularly the ratio of secondary to primary BAs, can serve as a surrogate marker of the intestinal dysbiosis caused by decreased XIVa.
Collapse
Affiliation(s)
- Tadakuni Monma
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Junichi Iwamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Hajime Ueda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Makoto Tamamushi
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Fumio Kakizaki
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Naoki Konishi
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Shoichiro Yara
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Takeshi Hirayama
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Tadashi Ikegami
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Inashiki-Gun 300-0395, Japan
| |
Collapse
|
23
|
Liu T, Hu X, Chen P, Zhang R, Zhang S, Chang W, Wang J, Wang S. Effect of partially hydrolyzed guar gum on the composition and metabolic function of the intestinal flora of healthy mice. J Food Biochem 2022; 46:e14508. [PMID: 36332190 DOI: 10.1111/jfbc.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, has shown beneficial physiological effects in various disease models and is used as a prebiotic to regulate intestinal function. However, its role in healthy states remains unclear. The purpose of this study was to investigate the effects of PHGG on gut flora composition and predict metabolic function in healthy mice. Our study showed that PHGG supplementation had significant duration-dependent effects on the composition and function of the intestinal flora of healthy mice. In specific, although the long-term supplementation of PHGG may increase the abundance of some beneficial bacterial species and promote beneficial phenotypes, it may also cause increased body weight and decreased abundance and diversity of gut microorganisms. Therefore, the long-term use of PHGG as a nutritional product still requires further investigation. PRACTICAL APPLICATIONS: As the importance of the gut microbiota has become more widely recognized, interventions that modulate the microbiome and its interaction with the host have gained much attention. While the capability of some prebiotics has largely been shown to have many beneficial effects, the evidence leaves much desirable, and microbiota regulation is explored differently in healthy or diseased states. Currently, the scientific community and regulatory authorities are beginning to pay attention to these unregulated and over-the-counter products claiming to possess probiotic and prebiotic properties. Studies exploring the rationality of these prebiotics as nutraceuticals for use in health states are essential. This study focuses on the effects of PHGG, a prebiotic, on intestinal flora, metabolism, and function when used in a healthy state over a long period. It is helpful to have a clearer understanding of the effect of PHGG on intestinal flora and the possible mechanisms of action to exert effects, which are indicative for the future application of PHGG as a nutraceutical or therapeutic agent..
Collapse
Affiliation(s)
- Tong Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Hu
- Department of Environmental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Peng Chen
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Renlingzi Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenjun Chang
- Department of Environmental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Álvarez-Mercado AI, Plaza-Diaz J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022; 14:4116. [PMID: 36235768 PMCID: PMC9573424 DOI: 10.3390/nu14194116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022] Open
Abstract
A polysaccharide is a macromolecule composed of more than ten monosaccharides with a wide distribution and high structural diversity and complexity in nature. Certain polysaccharides are immunomodulators and play key roles in the regulation of immune responses during the progression of some diseases. In addition to stimulating the growth of certain intestinal bacteria, polysaccharides may also promote health benefits by modulating the gut microbiota. In the last years, studies about the triad gut microbiota-polysaccharides-health have increased exponentially. In consequence, in the present review, we aim to summarize recent knowledge about the function of dietary polysaccharides on gut microbiota composition and how these effects affect host health.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
25
|
Short- and Long-Term Effects of a Prebiotic Intervention with Polyphenols Extracted from European Black Elderberry—Sustained Expansion of Akkermansia spp. J Pers Med 2022; 12:jpm12091479. [PMID: 36143265 PMCID: PMC9504334 DOI: 10.3390/jpm12091479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: The intestinal microbiome has emerged as a central factor in human physiology and its alteration has been associated with disease. Therefore, great hopes are placed in microbiota-modulating strategies. Among various approaches, prebiotics, substrates with selective metabolization conferring a health benefit to the host, are promising candidates. Herein, we studied the prebiotic properties of a purified extract from European black elderberries, with a high and standardized content of polyphenols and anthocyanins. (2) Methods: The ELDERGUT trial represents a 9-week longitudinal intervention study divided into 3 distinct phases, namely a baseline, an intervention and a washout period, three weeks each. The intervention consisted of capsules containing 300 mg elderberry extract taken twice a day. Patient-reported outcomes and biosamples were collected weekly. Microbiome composition was assessed using 16S amplicon metagenomics. (3) Results: The supplementation was well tolerated. Microbiome trajectories were highly individualized with a profound shift in diversity indices immediately upon initiation and after termination of the compound. This was accompanied by corresponding changes in species abundance over time. Of particular interest, the relative abundance of Akkermansia spp. continued to increase in a subset of participants even beyond the supplementation period. Associations with participant metadata were detected.
Collapse
|
26
|
Patel SM, Young MC. The Identification and Management of Small Intestinal Bacterial Overgrowth. Phys Med Rehabil Clin N Am 2022; 33:587-603. [DOI: 10.1016/j.pmr.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Chan TC, Yu VMW, Luk JKH, Chu LW, Yuen JKY, Chan FHW. Effectiveness of Partially Hydrolyzed Guar Gum in Reducing Constipation in Long Term Care Facility Residents: A Randomized Single-Blinded Placebo-Controlled Trial. J Nutr Health Aging 2022; 26:247-251. [PMID: 35297467 DOI: 10.1007/s12603-022-1747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To assess the effectiveness of partially hydrolyzed guar gum (PHGG) in improving constipation and reducing the use of laxatives among long term care facility (LTCF) residents. DESIGN A single-center, prospective, randomized, placebo-controlled, single-blinded parallel-group trial from September 2021 to November 2021. SETTING Four LTCF in Hong Kong. PARTICIPANTS Fifty-two LTCF residents with chronic constipation (mean age: 83.9±7.6 years, male 38%). INTERVENTION 5g PHGG mixed with 200ml water per day for 4 weeks was given to intervention group participants. Control group received 200ml water for 4 weeks. Participants continued their usual as-needed laxative (lactulose, senna or dulcolax) on their own initiative. MEASUREMENTS Baseline measurements included age, gender, Charlson comorbidity index, Roackwood's Clinical Frailty Scale, body mass index and daily dietary fiber intake. Outcome measures were fecal characteristics assessed by Bristol Stool Form Scale, bowel opening frequency and laxative use frequency at baseline, first, second, third and fourth week of trial. Adverse events were measured. The study was registered on ClinicalTrial.gov; identifier: NCT05037565. RESULTS There was no significant difference in bowel frequency and stool characteristics between the treatment group and control group. However, there was a significantly lower frequency of lactulose, senna, and total laxative use in the treatment group compared with controls in the third and fourth week. There was no significant difference in adverse effects between the two groups. CONCLUSION This study showed that daily dietary fibre supplementation by using PHGG for 4 weeks in LTCF residents results in significantly less laxative use than placebo. It may be an effective way to reduce laxative dependence among older people living in LTCFs.
Collapse
Affiliation(s)
- T C Chan
- Tuen-Ching Chan, Department of Medicine and Geriatrics, Fung Yiu King Hospital, 9 Sandy Bay Road, Pokfulam, Hong Kong, , Tel: 28556133, Fax: 28196182
| | | | | | | | | | | |
Collapse
|
28
|
Gu Y, Li L, Yang M, Liu T, Song X, Qin X, Xu X, Liu J, Wang B, Cao H. Bile acid-gut microbiota crosstalk in irritable bowel syndrome. Crit Rev Microbiol 2022; 49:350-369. [PMID: 35389754 DOI: 10.1080/1040841x.2022.2058353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction with an increasing prevalence, and its precise aetiology remains unclear. Gut microbiota dysbiosis has been found to be associated with IBS pathogenesis. In addition, a high incidence of bile acid diarrhoea and disturbed bile acid metabolism has been observed in IBS patients. The abundant microorganisms inhabited in human gut have essential functions in bile acid biotransformation, and can immensely affect the size and constitution of bile acid pool. Meanwhile, the alterations of bile acid profile can inversely interfere with the gut microbiota. This review discussed the role of intricate correlations between bile acids and gut microbiota in IBS pathogenesis and delineated the possible molecular mechanisms, mainly the signalling induced by farnesoid X receptor and transmembrane G protein-coupled receptor 5. Besides, some biomarkers for identifying bile acid diarrhoea in IBS population were listed, assisting the diagnosis and classification of IBS. Moreover, it also assessed some therapeutic strategies for IBS that regulate the bile acid-gut microbiota axis, such as dietary modulation, probiotics/prebiotics, faecal microbiota transplantation, and antibiotics. Collectively, this article illustrated the relationship between bile acids and gut microbiota in IBS pathophysiology and might offer some novel therapeutic options for IBS.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghua Liu
- Department of Gastroenterology, Tianjin TEDA hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Suresh H, Zhou J, Ho V. The Short-Term Effects and Tolerability of Low-Viscosity Soluble Fibre on Gastroparesis Patients: A Pilot Clinical Intervention Study. Nutrients 2021; 13:4298. [PMID: 34959850 PMCID: PMC8704257 DOI: 10.3390/nu13124298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Gastroparesis is a motility disorder that causes severe gastric symptoms and delayed gastric emptying, where the majority of sufferers are females (80%), with 29% of sufferers also diagnosed with Type-1 or Type-2 diabetes. Current clinical recommendations involve stringent dietary restriction and includes the avoidance and minimization of dietary fibre. Dietary fibre lowers the glycaemic index of food, reduces inflammation and provides laxation. Lack of dietary fibre in the diet can affect long-term gastrointestinal health. Our previously published rheological study demonstrated that "low-viscosity" soluble fibres could be a potentially tolerable source of fibre for the gastroparetic population. A randomised controlled crossover pilot clinical study was designed to compare Partially-hydrolysed guar gum or PHGG (test fibre 1), gum Arabic (test fibre 2), psyllium husk (positive control) and water (negative control) in mild-to-moderate symptomatic gastroparesis patients (requiring no enteral tube feeding). The principal aim of the study was to determine the short-term physiological effects and tolerability of the test fibres. In n = 10 female participants, post-prandial blood glucose, gastroparesis symptoms, and breath test measurements were recorded. Normalized clinical data revealed that test fibres PHGG and gum Arabic were able to regulate blood glucose comparable to psyllium husk, while causing far fewer symptoms, equivalent to negative control. The test fibres did not greatly delay mouth-to-caecum transit, though more data is needed. The study data looks promising, and a longer-term study investigating these test fibres is being planned.
Collapse
Affiliation(s)
- Harsha Suresh
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (H.S.); (V.H.)
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (H.S.); (V.H.)
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (H.S.); (V.H.)
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Campbelltown, NSW 2560, Australia
- University Medical Clinic of Camden & Campbelltown (UMCCC), Campbelltown, NSW 2560, Australia
| |
Collapse
|
30
|
Bertuccioli A, Cardinali M, Biagi M, Moricoli S, Morganti I, Zonzini GB, Rigillo G. Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action? Microorganisms 2021; 9:2427. [PMID: 34946029 PMCID: PMC8703584 DOI: 10.3390/microorganisms9122427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous nutraceuticals and botanical food supplements are used with the intention of modulating body weight. A recent review examined the main food supplements used in weight loss, dividing them according to the main effects for which they were investigated. The direct or indirect effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances. The aim of this review is to evaluate whether any prebiotic effects, which could help to explain their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals and herbal food supplements used for weight loss management. Several prebiotic effects have been reported for various nutraceutical substances, which have shown activity on Bifidobacterium spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely independent from those nutraceuticals for which certain products are normally used. Further studies are necessary to clarify the different levels at which a nutraceutical substance can exert its action.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47900 Rimini, Italy;
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy;
| | - Sara Moricoli
- AIFeM, 48100 Ravenna, Italy; (S.M.); (I.M.); (G.B.Z.)
| | | | | | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
31
|
Wang N, Pan D, Guo Z, Xiang X, Wang S, Zhu J, Sun G. Effects of guar gum on blood lipid levels: A systematic review and meta-analysis on randomized clinical trials. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
Zakaria NF, Ahmad NI, Mokhtar E, Zukiman WZHHW, Shah AM. Melanosis coli in a peritoneal dialysis patient: a case report. J Med Case Rep 2021; 15:420. [PMID: 34325745 PMCID: PMC8323308 DOI: 10.1186/s13256-021-02895-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients who undergo peritoneal dialysis (PD) are at risk of gut bacteria translocation leading to peritonitis when there is chronic diarrhea. Chronic diarrhea is defined as any course of diarrhea that lasts at least 4 weeks, which can be continuous or intermittent. Chronic diarrhea of any duration may cause dehydration, electrolyte imbalance, and life-threatening hypovolemic shock. In PD patients, excessive ultrafiltration from the exchanges, combined with severe gastrointestinal loss, may cause hypovolemic shock, electrolyte imbalance, and metabolic acidosis. There are multiple causes of chronic diarrhea in PD patients including infective causes, mitotic lesions, and rarely the regular and excessive use of laxatives, which is a diagnosis of exclusion. CASE PRESENTATION We report a case of Melanau lady with chronic diarrhea secondary to laxative usage in a patient being treated with automated peritoneal dialysis (APD). The patient went into hypovolemic shock, but luckily did not contract peritonitis. A colonoscopy revealed brown to black discoloration of the colon, a feature suggestive of melanosis coli. A biopsy of the intestine further confirmed the diagnosis by histopathological examination. Withdrawal of laxatives and the introduction of probiotics improved the symptoms tremendously. CONCLUSIONS The chronic use of laxatives in PD patients can potentially lead to a devastating problem; thus, the management team must monitor treatment commencement appropriately.
Collapse
Affiliation(s)
- Nor Fadhlina Zakaria
- Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nurul Izah Ahmad
- Nephrology Department, Serdang Hospital, 43400, Serdang, Selangor, Malaysia
| | - Elmina Mokhtar
- Nephrology Department, Serdang Hospital, 43400, Serdang, Selangor, Malaysia
| | | | - Anim Md Shah
- Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Tan H, Nie S. Functional hydrocolloids, gut microbiota and health: picking food additives for personalized nutrition. FEMS Microbiol Rev 2021; 45:6123724. [PMID: 33512498 DOI: 10.1093/femsre/fuaa065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut microbiota respond to particular food components, interact with intestinal mucosa and thereby contribute to health and diseases. Key microbiome features are under comprehensive investigation and are likely to be developed as reliable evidences for clinical diagnosis. And the underlying mechanisms lay the foundation of assembling bespoke nutritional ingredients including functional food additives that may lead to favorable outcomes in facilitating amelioration of host dysfunctions. Functional hydrocolloids serve as multiple food additives with promising application prospects and outstanding adjunctive beneficial characteristics. Therefore, in this review, we introduce the latest advances in food additives-gut microbiota-host axis by summarizing the physiochemical and physiological properties of a collection of functional hydrocolloids from various sources, describing the functional hydrocolloids-related intestinal commensal markers, and deciphering the underlying mechanisms of their beneficial effects, and propose the feasibilities and guidelines for further developments of gut microbiota-oriented personalized nutrition.
Collapse
Affiliation(s)
- Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, China
| |
Collapse
|
34
|
Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-Maleki L. Potential in vivo delivery routes of postbiotics. Crit Rev Food Sci Nutr 2020; 62:3345-3369. [PMID: 33356449 DOI: 10.1080/10408398.2020.1865260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive micro- and macro-molecules (postbiotics) derived from gut beneficial microbes are among natural chemical compounds with medical significance. Currently, a unique therapeutic strategy has been developed with an emphasis on the small molecular weight biomolecules that are made by the microbiome, which endow the host with several physiological health benefits. A large number of postbiotics have been characterized, which due to their unique pharmacokinetic properties in terms of controllable aspects of the dosage and various delivery routes, could be employed as promising medical tools since they exert both prevention and treatment strategies in the host. Nevertheless, there are still main challenges for the in vivo delivery of postbiotics. Currently, scientific literature confirms that targeted delivery systems based on nanoparticles, due to their appealing properties in terms of high biocompatibility, biodegradability, low toxicity, and significant capability to carry both hydrophobic and hydrophilic postbiotics, can be used as a novel and safe strategy for targeted delivery or/and release of postbiotics in various (oral, intradermal, and intravenous) in vivo models. The in vivo delivery of postbiotics are in their emerging phase and require massive investigation and randomized double-blind clinical trials if they are to be applied extensively as treatment strategies. This manuscript provides an overview of the various postbiotic metabolites derived from the gut beneficial microbes, their potential therapeutic activities, and recent progressions in the drug delivery field, as well as concisely giving an insight on the main in vivo delivery routes of postbiotics.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hajipour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
35
|
Potato Preload Mitigated Postprandial Glycemic Excursion in Healthy Subjects: An Acute Randomized Trial. Nutrients 2020; 12:nu12092759. [PMID: 32927753 PMCID: PMC7551673 DOI: 10.3390/nu12092759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
This study investigated the preload effect of the medium and high glycemic index (GI) potato, as well as the combination of partially hydrolyzed guar gum (HG) and potato, when ingested prior to a rice meal, on the iso-carbohydrate basis. In a randomized crossover trial, 17 healthy female subjects consumed (1) rice; (2) co-ingestion of highly cooked potato (HP), and rice (HP + R); (3) co-ingestion of minimally cooked potato (MP) and rice (MP + R); (4) preload HP prior to rice meal (PHP + R); (5) preload MP prior to rice meal (PMP + R); (6) co-ingestion of partially hydrolyzed guar gum (HG), HP and rice (HG + HP + R); (7) preload HG prior to co-ingestion of HP and rice (PHG + HP + R); (8) co-preload of HG and HP prior to rice (PHG + PHP + R); and (9) preload of HP prior to co-ingestion of HG and rice (PHP + HG + R). Postprandial glycemic response (GR) tests and subjective satiety tests were conducted for each test food. Cooked potato as a preload to a rice meal could significantly cut the acute postprandial glycemic excursion by around 1.0 mmol/L, irrespective of the GI of the preload. Co-preload of partial hydrolyzed guar gum and highly cooked potato (PHG + PHP + R) resulted in improved acute GR in terms of peak glucose value and glycemic excursion compared with either HG preload or HP preload. All the meals with preload showed comparable or improved self-reported satiety. Within an equicarbohydrate exchange framework, both high-GI and medium-GI potato preload decreased the postprandial glycemic excursion in young healthy female subjects. The combination of HG and HP as double preload resulted in better GR than both single HG or HP preload did.
Collapse
|
36
|
Komiya S, Naito Y, Okada H, Matsuo Y, Hirota K, Takagi T, Mizushima K, Inoue R, Abe A, Morimoto Y. Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study. J Clin Biochem Nutr 2020; 67:105-111. [PMID: 32801476 PMCID: PMC7417798 DOI: 10.3164/jcbn.20-53] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the advances in assisted reproductive technology, approximately 8-12% of the individuals worldwide who are willing to conceive are unable to do so. Fertility depends on a receptive state of the endometrium and hormonal adaptations as well as the immune system. Local and systemic immunities are greatly influenced by the microbiota. The aim of the present study was to compare the gut microbiota in female patients with that in infertility with fertile control subjects and to evaluate the effect of prebiotic partially hydrolyzed guar gum supplementation on gut dysbiosis and the outcome of pregnancy in patients treated with assisted reproductive technology. Dietary fiber can reconstitute the host intestinal microbiota and modify the immune function; however, clinical data regarding the effect of dietary fiber treatment on the success of assisted reproductive technology is lacking. To investigate the gut microbiota in fertile and infertile females, we conducted 16S metagenomic analysis of fecal samples. In total 18 fertile female subjects and 18 patients with infertility matched by age were recruited, and fecal samples were obtained to analyze the gut microbiome using 16S rRNA V3-V4 sequencing. The unweighted and weighted principal coordinate analyses showed a trend indicating microbial structural differences in β-diversity between these two groups. The abundance of the phylum Verrucomicrobia was higher in patients with infertility. At the genus level, a decrease in the abundance of the genera Stenotrophomonas, Streptococcus, and Roseburia and an increase in the abundance of the genera Unclassified [Barnesiellaceae] and Phascolarctobacterium was observed in patients with infertility. Twelve patients agreed to receive the combined therapy comprising embryo transfer by assisted reproductive technology and oral supplementation with partially hydrolyzed guar gum. The success of pregnancy by this combined therapy was 58.3% (7/12), and the failure was 41.7% (5/12). Predictive factors for pregnancy before treatment were characterized by a decrease in the abundance of Paraprevotella and Blautia and an increase in the abundance of Bifidobacterium. Predictive factors for pregnancy before treatment were characterized by a decrease in the abundance of Paraprevotella and Blautia and an increase tendency in the abundance of Bifidobacterium. In conclusion, the present study showed differences in the abundance of gut microbiota between fertile and infertile groups; moreover, partially hydrolyzed guar gum supplementation helped improve gut dysbiosis and the success of pregnancy in females with infertility.
Collapse
Affiliation(s)
- Shinnosuke Komiya
- HORAC Grand Front Osaka Clinic, 15th-floor tower B Grand Front Osaka, 3-1 Ofuka-cho, Kita-ku, Osaka 530-0011, Japan.,Obstetrics and Gynecology, Kansai Medical University Graduated School, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hidetaka Okada
- Obstetrics and Gynecology, Kansai Medical University Graduated School, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Tomohisa Takagi
- Obstetrics and Gynecology, Kansai Medical University Graduated School, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan.,Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Katsura Mizushima
- Obstetrics and Gynecology, Kansai Medical University Graduated School, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Yoshiharu Morimoto
- HORAC Grand Front Osaka Clinic, 15th-floor tower B Grand Front Osaka, 3-1 Ofuka-cho, Kita-ku, Osaka 530-0011, Japan
| |
Collapse
|
37
|
Reider SJ, Moosmang S, Tragust J, Trgovec-Greif L, Tragust S, Perschy L, Przysiecki N, Sturm S, Tilg H, Stuppner H, Rattei T, Moschen AR. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial. Nutrients 2020; 12:nu12051257. [PMID: 32354152 PMCID: PMC7281958 DOI: 10.3390/nu12051257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1–V3 and V3–V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and β-diversity (Bray–Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in Ruminococcus, Fusicatenibacter, Faecalibacterium and Bacteroides and a reduction in Roseburia, Lachnospiracea and Blautia. The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.
Collapse
Affiliation(s)
- Simon J. Reider
- Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.J.R.); (J.T.); (N.P.)
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Simon Moosmang
- Institute of Pharmacy/Pharmacognosy & Center for Molecular Biosciences Innsbruck, Leopold-Franzens Universität, 6020 Innsbruck, Austria; (S.M.); (S.S.); (H.S.)
| | - Judith Tragust
- Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.J.R.); (J.T.); (N.P.)
| | - Lovro Trgovec-Greif
- Division of Computational Systems Biology, Department of Microbiology, University of Vienna, 1010 Vienna, Austria; (L.T.-G.); (L.P.); (T.R.)
| | - Simon Tragust
- General Zoology Institute of Biology, University Halle, 06108 Halle, Germany;
| | - Lorenz Perschy
- Division of Computational Systems Biology, Department of Microbiology, University of Vienna, 1010 Vienna, Austria; (L.T.-G.); (L.P.); (T.R.)
| | - Nicole Przysiecki
- Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.J.R.); (J.T.); (N.P.)
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Sonja Sturm
- Institute of Pharmacy/Pharmacognosy & Center for Molecular Biosciences Innsbruck, Leopold-Franzens Universität, 6020 Innsbruck, Austria; (S.M.); (S.S.); (H.S.)
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy & Center for Molecular Biosciences Innsbruck, Leopold-Franzens Universität, 6020 Innsbruck, Austria; (S.M.); (S.S.); (H.S.)
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology, University of Vienna, 1010 Vienna, Austria; (L.T.-G.); (L.P.); (T.R.)
| | - Alexander R. Moschen
- Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.J.R.); (J.T.); (N.P.)
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|