1
|
Berbegal-Sáez P, Gallego-Landin I, Macía J, Alegre-Zurano L, Castro-Zavala A, Welz PS, Benitah SA, Valverde O. Lack of Bmal1 leads to changes in rhythmicity and impairs motivation towards natural stimuli. Open Biol 2024; 14:240051. [PMID: 39045857 PMCID: PMC11267724 DOI: 10.1098/rsob.240051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Maintaining proper circadian rhythms is essential for coordinating biological functions in mammals. This study investigates the effects of daily arrhythmicity using Bmal1-knockout (KO) mice as a model, aiming to understand behavioural and motivational implications. By employing a new mathematical analysis based on entropy divergence, we identified disrupted intricate activity patterns in mice derived by the complete absence of BMAL1 and quantified the difference regarding the activity oscillation's complexity. Changes in locomotor activity coincided with disturbances in circadian gene expression patterns. Additionally, we found a dysregulated gene expression profile particularly in brain nuclei like the ventral striatum, impacting genes related to reward and motivation. Further investigation revealed that arrhythmic mice exhibited heightened motivation for food and water rewards, indicating a link between circadian disruptions and the reward system. This research sheds light on how circadian clock alterations impact the gene expression regulating the reward system and how this, in turn, can lead to altered seeking behaviour and motivation for natural rewards. In summary, the present study contributes to our understanding of how reward processing is under the regulation of circadian clock machinery.
Collapse
Affiliation(s)
- Paula Berbegal-Sáez
- Department of Medicine and Life Sciences (MELIS), Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ines Gallego-Landin
- Department of Medicine and Life Sciences (MELIS), Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Macía
- Department of Medicine and Life Sciences (MELIS), Synthetic Biology for Biomedical Applications, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Department of Medicine and Life Sciences (MELIS), Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Department of Medicine and Life Sciences (MELIS), Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick-Simon Welz
- Program in Cancer Research, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Salvador A. Benitah
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelon08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Olga Valverde
- Department of Medicine and Life Sciences (MELIS), Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
2
|
Müller SG, Jardim NS, Lutz G, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 benefits against anxiety-like phenotype associated with synaptic plasticity impairment and NMDAR-mediated neurotoxicity in young mice exposed to a lifestyle model. Chem Biol Interact 2023; 378:110486. [PMID: 37054933 DOI: 10.1016/j.cbi.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Lifestyle habits including energy-dense foods and ethanol intake are associated with anxiety disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been reported to modulate serotonergic and opioidergic systems and elicit an anxiolytic-like phenotype in animal models. This study investigated if the modulation of synaptic plasticity and NMDAR-mediated neurotoxicity contributes to the (m-CF3-PhSe)2 anxiolytic-like effect in young mice exposed to a lifestyle model. Swiss male mice (25-days old) were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) from the postnatal day (PND) 25-66 and sporadic ethanol (2 g/kg) (3 x a week, intragastrically, i.g.) from PND 45 to 60. From PND 60 to 66, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g). The corresponding vehicle (control) groups were carried out. After, mice performed anxiety-like behavioral tests. Mice exposed only to an energy-dense diet or sporadic ethanol did not show an anxiety-like phenotype. (m-CF3-PhSe)2 abolished the anxiety-like phenotype in young mice exposed to a lifestyle model. Anxious-like mice showed increased levels of cerebral cortical NMDAR2A and 2B, NLRP3 and inflammatory markers, and decreased contents of synaptophysin, PSD95, and TRκB/BDNF/CREB signaling. (m-CF3-PhSe)2 reversed cerebral cortical neurotoxicity, the increased levels of NMDA2A and 2B, and decreased levels of synaptic plasticity-related signaling in the cerebral cortex of young mice exposed to a lifestyle model. In conclusion, the (m-CF3-PhSe)2 anxiolytic-like effect was associated with the modulation of NMDAR-mediated neurotoxicity and synaptic plasticity in the cerebral cortex of young mice exposed to the lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Natália S Jardim
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Lutz
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Gilson Zeni
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
3
|
Aucoin M, LaChance L, Naidoo U, Remy D, Shekdar T, Sayar N, Cardozo V, Rawana T, Chan I, Cooley K. Diet and Anxiety: A Scoping Review. Nutrients 2021; 13:nu13124418. [PMID: 34959972 PMCID: PMC8706568 DOI: 10.3390/nu13124418] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022] Open
Abstract
Anxiety disorders are the most common group of mental disorders. There is mounting evidence demonstrating the importance of nutrition in the development and progression of mental disorders such as depression; however, less is known about the role of nutrition in anxiety disorders. This scoping review sought to systematically map the existing literature on anxiety disorders and nutrition in order to identify associations between dietary factors and anxiety symptoms or disorder prevalence as well as identify gaps and opportunities for further research. The review followed established methodological approaches for scoping reviews. Due to the large volume of results, an online program (Abstrackr) with artificial intelligence features was used. Studies reporting an association between a dietary constituent and anxiety symptoms or disorders were counted and presented in figures. A total of 55,914 unique results were identified. After a full-text review, 1541 articles met criteria for inclusion. Analysis revealed an association between less anxiety and more fruits and vegetables, omega-3 fatty acids, “healthy” dietary patterns, caloric restriction, breakfast consumption, ketogenic diet, broad-spectrum micronutrient supplementation, zinc, magnesium and selenium, probiotics, and a range of phytochemicals. Analysis revealed an association between higher levels of anxiety and high-fat diet, inadequate tryptophan and dietary protein, high intake of sugar and refined carbohydrates, and “unhealthy” dietary patterns. Results are limited by a large percentage of animal and observational studies. Only 10% of intervention studies involved participants with anxiety disorders, limiting the applicability of the findings. High quality intervention studies involving participants with anxiety disorders are warranted.
Collapse
Affiliation(s)
- Monique Aucoin
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
| | - Laura LaChance
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- St. Mary's Hospital Centre, Montreal, QC H3T 1M5, Canada
| | - Umadevi Naidoo
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Daniella Remy
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
- Anthrophi Technologies, Toronto, ON M6H1W2, Canada
| | - Tanisha Shekdar
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
| | - Negin Sayar
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
| | - Valentina Cardozo
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
| | - Tara Rawana
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
| | - Irina Chan
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, ON M2K 1E2, Canada
- School of Public Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Ultimo 2007, Australia
- Pacific College of Health Sciences, San Diego, CA 92108, USA
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore 2480, Australia
| |
Collapse
|
4
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
5
|
Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Common Neural Mechanisms of Palatable Food Intake and Drug Abuse: Knowledge Obtained with Animal Models. Curr Pharm Des 2020; 26:2372-2384. [DOI: 10.2174/1381612826666200213123608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
Eating is necessary for survival, but it is also one of the great pleasures enjoyed by human beings.
Research to date shows that palatable food can be rewarding in a similar way to drugs of abuse, indicating
considerable comorbidity between eating disorders and substance-use disorders. Analysis of the common characteristics
of both types of disorder has led to a new wave of studies proposing a Gateway Theory of food as a vulnerability
factor that modulates the development of drug addiction. The homeostatic and hedonic mechanisms of
feeding overlap with some of the mechanisms implicated in drug abuse and their interaction plays a crucial role in
the development of drug addiction. Studies in animal models have shown how palatable food sensitizes the reward
circuit and makes individuals more sensitive to other substances of abuse, such as cocaine or alcohol. However,
when palatable food is administered continuously as a model of obesity, the consequences are different, and
studies provide controversial data. In the present review, we will cover the main homeostatic and hedonic mechanisms
that regulate palatable food intake behavior and will explain, using animal models, how different types of
diet and their intake patterns have direct consequences on the rewarding effects of psychostimulants and ethanol.
Collapse
Affiliation(s)
- Maria C. Blanco-Gandía
- Department of Psychology and Sociology, University of Zaragoza, C/ Ciudad Escolar s/n, 44003, Teruel, Spain
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicologia, Universitat de Valencia, Avda. Blasco Ibanez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicologia, Universitat de Valencia, Avda. Blasco Ibanez, 21, 46010 Valencia, Spain
| |
Collapse
|
6
|
Ruiz-Gayo M, Olmo ND. Interaction Between Circadian Rhythms, Energy Metabolism, and Cognitive Function. Curr Pharm Des 2020; 26:2416-2425. [PMID: 32156228 DOI: 10.2174/1381612826666200310145006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
The interaction between meal timing and light regulates circadian rhythms in mammals and not only determines the sleep-wake pattern but also the activity of the endocrine system. Related with that, the necessity to fulfill energy needs is a driving force that requires the participation of cognitive skills whose performance has been shown to undergo circadian variations. These facts have led to the concept that cognition and feeding behaviour can be analysed from a chronobiological perspective. In this context, research carried out during the last two decades has evidenced the link between feeding behaviour/nutritional habits and cognitive processes, and has highlighted the impact of circadian disorders on cognitive decline. All that has allowed hypothesizing a tight relationship between nutritional factors, chronobiology, and cognition. In this connection, experimental diets containing elevated amounts of fat and sugar (high-fat diets; HFDs) have been shown to alter in rodents the circadian distribution of meals, and to have a negative impact on cognition and motivational aspects of behaviour that disappear when animals are forced to adhere to a standard temporal eating pattern. In this review, we will present relevant studies focussing on the effect of HFDs on cognitive aspects of behaviour, paying particular attention to the influence that chronobiological alterations caused by these diets may have on hippocampaldependent cognition.
Collapse
Affiliation(s)
- Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nuria D Olmo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|