1
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
2
|
Huang B, Zhao L, Campbell SC. Bidirectional Link Between Exercise and the Gut Microbiota. Exerc Sport Sci Rev 2024; 52:132-144. [PMID: 39190614 DOI: 10.1249/jes.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exercise is well known to exert beneficial changes to the gut microbiota. An emerging area is how the gut microbiota may regulate exercise tolerance. This review will summarize the current evidence on how exercise influences gut microbial communities, with emphasis on how disruptions or depletion of an intact gut microbiota impacts exercise tolerance as well as future directions.
Collapse
Affiliation(s)
- Belle Huang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | | | | |
Collapse
|
3
|
Chen CW, Chen HC, She SC, Lai CT, Chen WJ, Kuo TBJ, Yang CCH. Levilactobacillus brevis SG031 modulates mood-related behaviors and attenuates stress-related sleep disturbance and autonomic dysfunction via gut microbiota modulation in Wistar-Kyoto rats. Life Sci 2024; 351:122804. [PMID: 38852801 DOI: 10.1016/j.lfs.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS The probiotic bacterium Levilactobacillus brevis (L. brevis) has been proposed as a potential solution to manage mood disorders and alleviate stress-related sleep disturbances. However, the underlying mechanisms of its effects have not been fully elucidated. The aim of this study was to explore the impact and potential mechanisms of L. brevis SG031 supplementation on anxiety/depression-like behaviors and stress-induced changes in sleep patterns and sleep-related autonomic function. MAIN METHODS Male Wistar-Kyoto rats were administered low, medium, or high doses of L. brevis SG031 or a vehicle for 4 weeks, followed by behavioral tests to evaluate anxiety and depression. After an additional 2 weeks of SG031 or vehicle administration, a cage-exchange paradigm was performed with 24-hour physiological signal measurements under different stress conditions. Fecal samples were collected to construct a 16S rRNA library and assess fecal short-chain fatty acids (SCFAs). KEY FINDINGS High-dose SG031 administration yielded reduced depression-like responses and enhanced social interaction in behavioral tests. It also exhibited a protective effect against stress-induced sleep disturbance characterized by decreased sleep time, increased awake time, and autonomic dysfunction during sleep. Fecal examination indicated that high-dose SG031 administration exerted beneficial effects on gut health by maintaining the gut microbial abundance, preserving stability of the microbial composition, and enriching the gut with SCFAs, which were associated with improvements in sleep and autonomic function. SIGNIFICANCE These findings collectively underscore the multifaceted potential of SG031 in addressing mental health and stress-related sleep challenges through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chieh-Wen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hung-Chang Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Chieh She
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ting Lai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Jen Chen
- College of Management, Chang Jung Christian University, Tainan, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; Center for Mind and Brain Medicine, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Stylemans D, Vandecruys M, Leunis S, Engelborghs S, Gargioli D, Monbaliu D, Cornelissen V, Van Craenenbroeck AH, De Smet S. Physical Exercise After Solid Organ Transplantation: A Cautionary Tale. Transpl Int 2024; 37:12448. [PMID: 38414660 PMCID: PMC10898592 DOI: 10.3389/ti.2024.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
An increasing body of randomized controlled trials suggests the safety of engaging in moderate to vigorous intensity exercise training following solid organ transplantation. Fueled by emerging sport events designed for transplant recipients and the ever-growing body of research highlighting the diverse health benefits of physical activity, transplant recipients are now increasingly participating in strenuous and occasionally competitive physical endeavors that largely surpass those evaluated in controlled research settings. This viewpoint article adopts a cautionary stance to counterbalance the prevalent one-sided optimistic perspective regarding posttransplant physical activity. While discussing methodological limitations, we explore plausible adverse impacts on the cardiovascular, immunological, and musculoskeletal systems. We also examine the physiological consequences of exercising in the heat, at high altitude, and in areas with high air pollution. Risks associated with employing performance-enhancing strategies and the conceivable psychological implications regarding physical activity as a tribute to the 'gift of life' are discussed. With a deliberate focus on the potential adverse outcomes of strenuous posttransplant physical activity, this viewpoint aims to restore a balanced dialogue on our comprehension of both beneficial and potentially detrimental outcomes of physical activity that ultimately underscores the imperative of well-informed decision-making and tailored exercise regimens in the realm of posttransplant care.
Collapse
Affiliation(s)
- Dimitri Stylemans
- Department of Respiratory Diseases, Pulmonary Rehabilitation, University Hospitals Leuven, Leuven, Belgium
| | - Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sofie Leunis
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sofie Engelborghs
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Davide Gargioli
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Transplantoux Foundation, Leuven, Belgium
| | - Véronique Cornelissen
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Hadžić E, Starcevic A, Rupčić T, Zucko J, Čvrljak T, Renko I, Knjaz D, Novak D. Effects of Soluble Dietary Fibre on Exercise Performance and Perception of Fatigue in Young Basketball Players. Food Technol Biotechnol 2023; 61:389-401. [PMID: 38022878 PMCID: PMC10666946 DOI: 10.17113/ftb.61.03.23.8124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Research background In this study, we investigated the effects of soluble dietary fibre on improving neuromuscular and cardiovascular endurance and perception of fatigue in a closely monitored group of basketball players. Prebiotics have been sidelined in sports nutrition and their effect on performance remains poorly investigated and understood. Experimental approach Eighteen healthy male basketball players were divided into two groups; one received 17 g/day of soluble dietary fibre (Nutriose®) for four weeks and the other group received placebo. Their morphological characteristics, neuromuscular and cardiovascular endurance, and rating of perceived exertion according to the rating of perceived exertion (RPE) scale were assessed. Measurements were taken before supplementation and after four weeks of supplementation. Faecal samples were collected from all participants immediately before and after the supplementation period, their total DNA extracted and sent for amplicon sequencing. Results and conclusions In this study, fibre had no statistically significant effect on the vertical-type explosive power, no statistically significant effect on sprint-type explosive power, nor on aerobic and anaerobic endurance in the experimental group. Soluble fibre had a statistically significant effect on reducing the rating of perceived exertion of basketball players during the competitive part of the season (RPE 7.27±0.04 versus 8.82±0.81). This was confirmed by two-way ANOVA with replication, which showed that within-group interaction (p=0.0193), before and after dietary intake (p=0.0049), and between-group interaction before and after dietary intake (p=0.0313) had a significant effect on the result. The overall conclusion of the study is that soluble dietary fibre supplementation does not improve neuromuscular and cardiovascular endurance over a 4-week period. However, fibre supplementation could have a significant effect on reducing the rating of perceived exertion, as shown by the statistics. Both amplicon sequencing and subsequent bioinformatics results suggest that this could be the result of the beneficial effect on the intestinal microbiota and its metabolites. Novelty and scientific contribution This work highlights the importance of prebiotics in sports nutrition. Dietary fibre has been a neglected component of sports nutrition. This study demonstrated a statistically significant positive effect on the perception of fatigue, highlighting the need for further studies in this direction.
Collapse
Affiliation(s)
- Edin Hadžić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Antonio Starcevic
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tomislav Rupčić
- University of Zagreb, Faculty of Kinesiology, Horvaćanski zavoj 15, 10110 Zagreb, Croatia
| | - Jurica Zucko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Toni Čvrljak
- University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ira Renko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Knjaz
- University of Zagreb, Faculty of Kinesiology, Horvaćanski zavoj 15, 10110 Zagreb, Croatia
| | - Dario Novak
- University of Zagreb, Faculty of Kinesiology, Horvaćanski zavoj 15, 10110 Zagreb, Croatia
| |
Collapse
|
6
|
Zhang Q, Shan B, Xu X, Mao B, Tang X, Zhao J, Zhang H, Cui S, Chen W. Lactiplantibacillus Plantarum CCFM8724 Reduces the Amounts of Oral Pathogens and Alters the Oral Microbiota in Children With Dental Caries: a Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:361-370. [PMID: 35512770 DOI: 10.1080/07315724.2022.2043200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective Early childhood caries (ECC) is closely related to the disorders of oral microbiota. Probiotics antagonize pathogenic bacteria and regulate the composition of the microbiota. We aimed to investigate the effects of Lactiplantibacillus plantarum CCFM8724 on Streptococcus mutans, Candida albicans, and oral microbiota of patients.Methods Children with ECC aged 3‒6 years were randomly divided into probiotic and placebo groups in the double-blind controlled trial. The intervention and washout periods were 28 days and 14 days, respectively. On days 1 and 28, dental plaques were collected. The effects of L. plantarum CCFM8724 on the oral microbiota of patients were investigated by sequencing the V3-V4 region of 16S rDNA. On days 1, 14, 28 and 42, qPCR was used to investigate the effect of L. plantarum CCFM8724 on the amounts of S. mutans and C. albicans in the saliva of children with ECC.Results L. plantarum CCFM8724 significantly reduced the amounts of S. mutans and C. albicans in saliva of children with ECC (p < 0.01). After consumption of L. plantarum CCFM8724, the abundance of Firmicutes, Granulicatella and Gemella increased, whereas the abundance of Proteobacteria, Neisseria, Bifidobacterium and Catonella decreased. Conclusion: Our results emphasize that probiotics could play a beneficial role in the prevention and treatment of ECC in children from an oral microecological perspective.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Baokun Shan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xianyin Xu
- Department of Stomatology, Wuxi Children's Hospital, Wuxi, Jiangsu, P.R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, P.R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
7
|
Deng R, Wang M, Song Y, Shi Y. A Bibliometric Analysis on the Research Trend of Exercise and the Gut Microbiome. Microorganisms 2023; 11:microorganisms11040903. [PMID: 37110325 PMCID: PMC10141121 DOI: 10.3390/microorganisms11040903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
This article aims to provide an overview of research hotspots and trends in exercise and the gut microbiome, a field which has recently gained increasing attention. The relevant publications on exercise and the gut microbiome were identified from the Web of Science Core Collection database. The publication types were limited to articles and reviews. VOSviewer 1.6.18 (Centre for Science and Technology Studies, Leiden University, Leiden, the Netherlands) and the R package "bibliometrix" (R Foundation: Vienna, Austria) were used to conduct a bibliometric analysis. A total of 327 eligible publications were eventually identified, including 245 original articles and 82 reviews. A time trend analysis showed that the number of publications rapidly increased after 2014. The leading countries/regions in this field were the USA, China, and Europe. Most of the active institutions were from Europe and the USA. Keyword analysis showed that the relationship between disease, the gut microbiome, and exercise occurs throughout the development of this field of research. The interactions between the gut microbiota, exercise, status of the host's internal environment, and probiotics, are important facets as well. The research topic evolution presents a trend of multidisciplinary and multi-perspective comprehensive analysis. Exercise might become an effective intervention for disease treatment by regulating the gut microbiome. The innovation of exercise-centered lifestyle intervention therapy may become a significant trend in the future.
Collapse
Affiliation(s)
- Ruiyi Deng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Mopei Wang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing 100191, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
8
|
Nami Y, Haghshenas B, Javanmard A, Samari M, Mohammadi N, Oroojalian F, Mokhtarzadeh A. A critical review of the recent concept of artificial mechanical uterus design in relation to the maternal microbiome: An Update to past researches. J Reprod Immunol 2023; 156:103828. [PMID: 36796148 DOI: 10.1016/j.jri.2023.103828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The microbiome in the female reproductive tract plays an essential role in immune modulation and reproductive health. However, various microbes become established during pregnancy, the balance of which plays a crucial role in embryonic development and healthy births. The contribution of disturbances in the microbiome profile to embryo health is poorly understood. A better understanding of the relationship between reproductive outcomes and the vaginal microbiota is needed to optimize the chances of healthy births. In this regards, microbiome dysbiosis refers to conditions in which the pathways of communication and balance within the normal microbiome are imbalanced due to the intrusion of pathogenic microorganisms into the reproductive system. This review summarizes the current state of knowledge on the natural human microbiome, with a focus on the natural uterine microbiome, mother-to-child transmission, dysbiosis, and the pattern of microbial change in pregnancy and parturition, and reviews the effects of artificial uterus probiotics during pregnancy. These effects can be studied in the sterile environment of an artificial uterus, and microbes with potential probiotic activity can be studied as a possible therapeutic approach. The artificial uterus is a technological device or biobag used as an incubator, allowing extracorporeal pregnancy. Establishing beneficial microbial communities within the artificial womb using probiotic species could modulate the immune system of both the fetus and the mother. The artificial womb could be used to select the best strains of probiotic species to fight infection with specific pathogens. Questions about the interactions and stability of the most appropriate probiotics, as well as dosage and duration of treatment, need to be answered before probiotics can be a clinical treatment in human pregnancy.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Arash Javanmard
- Animal Genetics and Breeding, Department of Animal Science, Faculty of Agriculture, University of Tabriz, 5166616471 Tabriz, East Azerbaijan, Iran
| | - Mahya Samari
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Nahid Mohammadi
- Animal Genetics and Breeding, Department of Animal Science, Faculty of Agriculture, University of Tabriz, 5166616471 Tabriz, East Azerbaijan, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Peña-Ocaña BA, Hoshiko Y, Silva-Flores M, Maeda T, Pérez-Torres I, García-Contreras R, Gutiérrez-Sarmiento W, Hernández-Esquivel L, Marín-Hernández Á, Sánchez-Thomas R, Saavedra E, Rodríguez-Zavala JS, Jasso-Chávez R. Cultivation of gastrointestinal microbiota in a new growth system revealed dysbiosis and metabolic disruptions in carcinoma-bearing rats. Front Microbiol 2022; 13:949272. [PMID: 36118191 PMCID: PMC9479207 DOI: 10.3389/fmicb.2022.949272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
A challenge in the study of gastrointestinal microbiota (GITm) is the validation of the genomic data with metabolic studies of the microbial communities to understand how the microbial networks work during health and sickness. To gain insights into the metabolism of the GITm, feces from healthy and sick rats with cancer were inoculated in a defined synthetic medium directed for anaerobic prokaryote growth (INC-07 medium). Significant differences between cultures of healthy and sick individuals were found: 1) the consumption of the carbon source and the enzyme activity involved in their catabolism (e.g., sucrase, lactase, lipases, aminotransferases, and dehydrogenases); 2) higher excretion of acetic, propionic, isobutyric, butyric, valeric, and isovaleric acids; 3) methane production; 4) ability to form biofilms; and 5) up to 500 amplicon sequencing variants (ASVs) identified showed different diversity and abundance. Moreover, the bowel inflammation induced by cancer triggered oxidative stress, which correlated with deficient antioxidant machinery (e.g., NADPH-producing enzymes) determined in the GITm cultures from sick individuals in comparison with those from control individuals. Altogether, the data suggested that to preserve the microbial network between bacteria and methanogenic archaea, a complete oxidation of the carbon source may be essential for healthy microbiota. The correlation of 16S rRNA gene metabarcoding between cultures and feces, as well as metabolomic data found in cultures, suggest that INC-07 medium may be a useful tool to understand the metabolism of microbiota under gut conditions.
Collapse
Affiliation(s)
- Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Yuki Hoshiko
- Division of Environment-Conscious Chemistry and Bioengineering, Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Toshinari Maeda
- Division of Environment-Conscious Chemistry and Bioengineering, Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Israel Pérez-Torres
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wilbert Gutiérrez-Sarmiento
- Instituto Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- *Correspondence: Ricardo Jasso-Chávez
| |
Collapse
|
10
|
Łagowska K, Bajerska J, Kamiński S, Del Bo’ C. Effects of Probiotics Supplementation on Gastrointestinal Symptoms in Athletes: A Systematic Review of Randomized Controlled Trials. Nutrients 2022; 14:nu14132645. [PMID: 35807826 PMCID: PMC9268154 DOI: 10.3390/nu14132645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
This study examines the effectiveness of probiotic supplementation on gastrointestinal (GI) symptoms, the gut barrier function, and inflammatory markers in athletes based on data from randomised controlled trials. Searches were conducted in PubMed, the Cochrane Library, and the Web of Science up to October 2021. The protocol for this review was registered with PROSPERO (CRD42021284938). Two reviewers independently screened the titles, abstracts, and full texts to identify articles on the influence of probiotics or symbiotics on GI symptoms, gut barrier function, and cytokines, and the quality of the studies was assessed using RoB2. Ten articles involving 822 athletes were included in this review. A single strain Lactobacillus bacteria was used in three studies, seven studies used a Lactobacillus and Bifidobacterium multi-strain cocktail, and one study used this cocktail with a prebiotic. Only slight evidence was found for a positive effect of probiotics on GI symptoms in athletes during training, exercise, and competition, so it was not possible to identify the best product for managing GI symptoms in athletes. Due to the small number of studies, it was also difficult to find a direct association between the reduced exercise-induced perturbations in cytokines, gut barrier function, and GI symptoms after probiotic supplementation.
Collapse
Affiliation(s)
- Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (J.B.); (S.K.)
- Correspondence: ; Tel.: +48-61-8487332
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (J.B.); (S.K.)
| | - Szymon Kamiński
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (J.B.); (S.K.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
11
|
Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M, Santacroce L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med 2022; 52:2355-2369. [PMID: 35596883 PMCID: PMC9474385 DOI: 10.1007/s40279-022-01696-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
Gut microbiota refers to those microorganisms in the human digestive tract that display activities fundamental in human life. With at least 4 million different bacterial types, the gut microbiota is composed of bacteria that are present at levels sixfold greater than the total number of cells in the entire human body. Among its multiple functions, the microbiota helps promote the bioavailability of some nutrients and the metabolization of food, and protects the intestinal mucosa from the aggression of pathogenic microorganisms. Moreover, by stimulating the production of intestinal mediators able to reach the central nervous system (gut/brain axis), the gut microbiota participates in the modulation of human moods and behaviors. Several endogenous and exogenous factors can cause dysbiosis with important consequences on the composition and functions of the microbiota. Recent research underlines the importance of appropriate physical activity (such as sports), nutrition, and a healthy lifestyle to ensure the presence of a functional physiological microbiota working to maintain the health of the whole human organism. Indeed, in addition to bowel disturbances, variations in the qualitative and quantitative microbial composition of the gastrointestinal tract might have systemic negative effects. Here, we review recent studies on the effects of physical activity on gut microbiota with the aim of identifying potential mechanisms by which exercise could affect gut microbiota composition and function. Whether physical exercise of variable work intensity might reflect changes in intestinal health is analyzed.
Collapse
Affiliation(s)
- Angelika Elzbieta Wegierska
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.,Italian Athletics Federation (FIDAL), Rome, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
12
|
Miranda-Comas G, Petering RC, Zaman N, Chang R. Implications of the Gut Microbiome in Sports. Sports Health 2022; 14:894-898. [PMID: 35034531 PMCID: PMC9631033 DOI: 10.1177/19417381211060006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CONTEXT Two-thirds of an individual's gut microbiota is unique and influenced by dietary and exercise habits, age, sex, genetics, ethnicity, antibiotics, health, and disease. It plays important roles in nutrient and vitamin metabolism, inflammatory modulation, immune system function, and overall health of an individual. Specifically, in sports it may help decrease recovery time and improve athletic performance. EVIDENCE ACQUISITION PubMed and Medline databases were used for the literature search. Bibliographies based on the original search were utilized to pursue further literature search. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 4. RESULTS Diet and exercise play very important roles in the composition of the gut microbiota in the athletic and nonathletic individual. Ingestion of carbohydrates during and after exercise seems to have an anti-inflammatory effect postexercise. Supplementation with probiotic seems to aid in recovery after exercise, too, especially restoring the "normal" gut microbiota. Physically active individuals of all levels have more alpha diversity and "health-promoting gut species" in their microbiome than nonactive individuals, along with higher concentrations of short-chain fatty acids (SCFA) and SCFA-producing organisms. However, exercise interventions should be longer than 8 weeks to see these positive characteristics. Immune function is highly influenced by the gut microbiota's response to exercise. A transient immune dysfunction occurs after prolonged high-intensity exercise, which correlates with microbiota dysregulation. Nevertheless, long-term exposure to exercise will enhance the immune response and lead to positive changes in the gut microbiota. CONCLUSION Although the exact mechanisms of the effects that diet, exercise, and genetics have on the gut microbiota remain largely unknown, there is evidence that suggests overall health benefits. In the athletic population, these benefits can ultimately lead to performance improvement.
Collapse
Affiliation(s)
- Gerardo Miranda-Comas
- Department of Rehabilitation and
Human Performance, Icahn School of Medicine at Mount Sinai, New York, New
York,Gerardo
Miranda-Comas, MD, 1510 Ashford Avenue, Apartment 802, San Juan, PR
00911 ()
(Twitter: @SportsMDgmirand)
| | - Ryan C. Petering
- Department of Family Medicine,
Oregon Health & Science University School of Medicine, Portland,
Oregon
| | - Nadia Zaman
- PM&R, Tufts University School
of Medicine, Boston, Massachusetts
| | - Richard Chang
- Department of Rehabilitation and
Human Performance, Icahn School of Medicine at Mount Sinai, New York, New
York
| |
Collapse
|
13
|
Kuniyoshi TM, O’Connor PM, Lawton E, Thapa D, Mesa-Pereira B, Abulu S, Hill C, Ross RP, Oliveira RPS, Cotter PD. An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti- Listeria activity in a model human gut environment. Gut Microbes 2022; 14:2004071. [PMID: 35104196 PMCID: PMC8812795 DOI: 10.1080/19490976.2021.2004071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
Pediocin PA-1 is a class IIa bacteriocin that is particularly effective against the foodborne pathogen Listeria monocytogenes. The loss of activity of PA-1 pediocin due to methionine oxidation is one of the challenges that limit the wider application of the bacteriocin. In this study, we heterologously expressed an oxidation resistant form of pediocin PA-1, i.e., pediocin M31L, and compared its activity to that of native pediocin PA-1 and to penocin A, a pediocin-like bacteriocin that displays a narrower antimicrobial spectrum. Minimal inhibitory concentration assays revealed that pediocin M31L was as effective as PA-1 and more effective than synthetic penocin A against Listeria with negligible activity against a range of obligate anaerobic commensal gut bacterial species. The anti-Listeria activity of these pediocins was also assessed in a simulated human distal colon model assay using the L. monocytogenes, spiked at 6.5 ± 0.13 Log CFU/mL, as a bioindicator. At 24 h, pediocin M31L and penocin A (2.6 μM) reduced Listeria counts to 3.5 ± 0.4 and 3.64 ± 0.62 Log CFU/mL, respectively, whereas Listeria counts were considerably higher, i.e. 7.75 ± 0.43 Log CFU/mL, in the non-bacteriocin-containing control. Ultimately, it was established that synthetic penocin A and the stable pediocin M31L derivative, heterologously produced, display effective anti-Listeria activity in a human gut environment.
Collapse
Affiliation(s)
- Taís M. Kuniyoshi
- Biochemical and Pharmaceutical Technology Department, University of São Paulo, São Paulo, Brazil
| | - Paula M. O’Connor
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elaine Lawton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dinesh Thapa
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Beatriz Mesa-Pereira
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sara Abulu
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Ricardo P. S. Oliveira
- Biochemical and Pharmaceutical Technology Department, University of São Paulo, São Paulo, Brazil
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
15
|
Impact of Probiotics on the Performance of Endurance Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111576. [PMID: 34770090 PMCID: PMC8583504 DOI: 10.3390/ijerph182111576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Background: Probiotic supplements contain different strains of living microorganisms that promote the health of the host. These dietary supplements are increasingly being used by athletes to improve different aspects such as athletic performance, upper respiratory tract infections (URTIs), the immune system, oxidative stress, gastrointestinal (GI) problems, etc. This study aimed to identify the current evidence on the management of probiotics in endurance athletes and their relationship with sports performance. Methods: A systematic review of the last five years was carried out in PubMed, Scopus, Web of science, Sportdiscus and Embase databases. Results: Nine articles met the quality criteria. Of these, three reported direct benefits on sports performance. The remaining six articles found improvements in the reduction of oxidative stress, increased immune response and decreased incidence of URTIs. There is little scientific evidence on the direct relationship between the administration of probiotics in endurance athletes and sports performance. Conclusions: Benefits were found that probiotics could indirectly influence sports performance by improving other parameters such as the immune system, response to URTIs and decreased oxidative stress, as well as the monitoring of scheduled workouts.
Collapse
|
16
|
Adjunctive Probiotics Alleviates Asthmatic Symptoms via Modulating the Gut Microbiome and Serum Metabolome. Microbiol Spectr 2021; 9:e0085921. [PMID: 34612663 PMCID: PMC8510161 DOI: 10.1128/spectrum.00859-21] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Asthma is a multifactorial disorder, and microbial dysbiosis enhances lung inflammation and asthma-related symptoms. Probiotics have shown anti-inflammatory effects and could regulate the gut-lung axis. Thus, a 3-month randomized, double-blind, and placebo-controlled human trial was performed to investigate the adjunctive efficacy of probiotics in managing asthma. Fifty-five asthmatic patients were randomly assigned to a probiotic group (n = 29; received Bifidobacterium lactis Probio-M8 powder and Symbicort Turbuhaler) and a placebo group (n = 26; received placebo and Symbicort Turbuhaler), and all 55 subjects provided details of their clinical history and demographic data. However, only 31 patients donated a complete set of fecal and blood samples at all three time points for further analysis. Compared with those of the placebo group, co-administering Probio-M8 with Symbicort Turbuhaler significantly decreased the fractional exhaled nitric oxide level at day 30 (P = 0.049) and improved the asthma control test score at the end of the intervention (P = 0.023). More importantly, the level of alveolar nitric oxide concentration decreased significantly among the probiotic receivers at day 30 (P = 0.038), and the symptom relief effect was even more obvious at day 90 (P = 0.001). Probiotic co-administration increased the resilience of the gut microbiome, which was reflected by only minor fluctuations in the gut microbiome diversity (P > 0.05, probiotic receivers; P < 0.05, placebo receivers). Additionally, the probiotic receivers showed significantly changes in some species-level genome bins (SGBs), namely, increases in potentially beneficial species Bifidobacterium animalis, Bifidobacterium longum, and Prevotella sp. CAG and decreases in Parabacteroides distasonis and Clostridiales bacterium (P < 0.05). Compared with that of the placebo group, the gut metabolic potential of probiotic receivers exhibited increased levels of predicted microbial bioactive metabolites (linoleoyl ethanolamide, adrenergic acid, erythronic acid) and serum metabolites (5-dodecenoic acid, tryptophan, sphingomyelin) during/after intervention. Collectively, our results suggested that co-administering Probio-M8 synergized with conventional therapy to alleviate diseases associated with the gut-lung axis, like asthma, possibly via activating multiple anti-inflammatory pathways. IMPORTANCE The human gut microbiota has a potential effect on the pathogenesis of asthma and is closely related to the disease phenotype. Our trial has demonstrated that co-administering Probio-M8 synergized with conventional therapy to alleviate asthma symptoms. The findings of the present study provide new insights into the pathogenesis and treatment of asthma, mechanisms of novel therapeutic strategies, and application of probiotics-based therapy.
Collapse
|
17
|
Vijaykumar S, Raamkumar AS, McCarty K, Mutumbwa C, Mustafa J, Au C. Themes, communities and influencers of online probiotics chatter: A retrospective analysis from 2009-2017. PLoS One 2021; 16:e0258098. [PMID: 34673767 PMCID: PMC8530318 DOI: 10.1371/journal.pone.0258098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/19/2021] [Indexed: 12/02/2022] Open
Abstract
We build on recent examinations questioning the quality of online information about probiotic products by studying the themes of content, detecting virtual communities and identifying key influencers in social media using data science techniques. We conducted topic modelling (n = 36,715 tweets) and longitudinal social network analysis (n = 17,834 tweets) of probiotic chatter on Twitter from 2009-17. We used Latent Dirichlet Allocation (LDA) to build the topic models and network analysis tool Gephi for building yearly graphs. We identified the top 10 topics of probiotics-related communication on Twitter and a constant rise in communication activity. However the number of communities grew consistently to peak in 2014 before dipping and levelling off by 2017. While several probiotics industry actors appeared and disappeared during this period, the influence of one specific actor rose from a hub initially to an authority in the latter years. With multi-brand advertising and probiotics promotions mostly occupying the Twitter chatter, scientists, journalists, or policymakers exerted minimal influence in these communities. Consistent with previous research, we find that probiotics-related content on social media veers towards promotions and benefits. Probiotic industry actors maintain consistent presence on Twitter while transitioning from hubs to authorities over time; scientific entities assume an authoritative role without much engagement. The involvement of scientific, journalistic or regulatory stakeholders will help create a balanced informational environment surrounding probiotic products.
Collapse
Affiliation(s)
- Santosh Vijaykumar
- Department of Psychology, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | - Kristofor McCarty
- Department of Psychology, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Cuthbert Mutumbwa
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jawwad Mustafa
- Department of Psychology, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Cyndy Au
- Kong Chian School of Business, Singapore Management University, Singapore, Singapore
| |
Collapse
|
18
|
Sturov NV, Popov SV, Zhukov VA. Pathogenetic Role and Possibilities for Correction of Gut Microbiota Disorders in Urinary Tract Infections. ANTIBIOTICS AND CHEMOTHERAPY 2021; 66:100-108. [DOI: 10.37489/0235-2990-2021-66-7-8-100-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article presents current data on the role of gut microbiota in the development of urinary tract infections. The main pathogenetic mechanisms contributing to the chronic recurrent course of the disease, the spread of antimicrobial resistance, as well as their connection to the disorders of gut microbiota are shown. It is known that most pathogens of urinary infections originate from the gut microbiota, where they exist for a long time, forming reservoirs. The normal composition and functions of the microbiota prevent colonization of the intestine by pathogenic bacteria and reduce the risk of developing this disease. Ways of correction through diet, probiotics, as well as fecal microbiota transplantation are considered. Modulation of gut microbiota may be a promising approach in the treatment and prevention of urinary tract infections. Meanwhile, a qualitative evidence base on the effectiveness of this strategy has not been formed. Further research in this direction is required.
Collapse
|
19
|
Pugh JN, Phelan MM, Caamaño-Gutiérrez E, Sparks SA, Morton JP, Close GL, Owens DJ. Four Weeks of Probiotic Supplementation Alters the Metabolic Perturbations Induced by Marathon Running: Insight from Metabolomics. Metabolites 2021; 11:metabo11080535. [PMID: 34436476 PMCID: PMC8400326 DOI: 10.3390/metabo11080535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Few data are available that describe how probiotics influence systemic metabolism during endurance exercise. Metabolomic profiling of endurance athletes will elucidate mechanisms by which probiotics may confer benefits to the athlete. In this study, twenty-four runners (20 male, 4 female) were block randomised into two groups using a double-blind matched-pairs design according to their most recent Marathon performance. Runners were assigned to 28-days of supplementation with a multi-strain probiotic (PRO) or a placebo (PLB). Following 28-days of supplementation, runners performed a competitive track Marathon race. Venous blood samples and muscle biopsies (vastus lateralis) were collected on the morning of the race and immediately post-race. Samples were subsequently analysed by untargeted 1H-NMR metabolomics. Principal component analysis (PCA) identified a greater difference in the post-Marathon serum metabolome in the PLB group vs. PRO. Univariate tests identified 17 non-overlapped metabolites in PLB, whereas only seven were identified in PRO. By building a PLS-DA model of two components, we revealed combinations of metabolites able to discriminate between PLB and PRO post-Marathon. PCA of muscle biopsies demonstrated no discernible difference post-Marathon between treatment groups. In conclusion, 28-days of probiotic supplementation alters the metabolic perturbations induced by a Marathon. Such findings may be related to maintaining the integrity of the gut during endurance exercise.
Collapse
Affiliation(s)
- Jamie N. Pugh
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
| | - Marie M. Phelan
- NMR Metabolomics Shared Research Facility, Technology Directorate, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Eva Caamaño-Gutiérrez
- Computational Biology Facility, Technology Directorate, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - S. Andy Sparks
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk L39 4QP, UK;
| | - James P. Morton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
| | - Graeme L. Close
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
| | - Daniel J. Owens
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
- Correspondence:
| |
Collapse
|
20
|
Honceriu C, Curpan AS, Ciobica A, Ciobica A, Trus C, Timofte D. Connections between Different Sports and Ergogenic Aids-Focusing on Salivary Cortisol and Amylase. ACTA ACUST UNITED AC 2021; 57:medicina57080753. [PMID: 34440959 PMCID: PMC8400367 DOI: 10.3390/medicina57080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Athletes are exposed to a tremendous amount of stress, both physically and mentally, when performing high intensity sports with frequent practices, pushing numerous athletes into choose to use ergogenic aids such as caffeine or β-alanine to significantly improve their performance and ease the stress and pressure that is put onto the body. The beneficial or even detrimental effects of these so-called ergogenic aids can be appreciated through the use of numerous diagnostic tools that can analyze various body fluids. In the recent years, saliva samples are gaining more ground in the field of diagnostic as it is a non-invasive procedure, contains a tremendous amount of analytes that are subject to pathophysiological changes caused by diseases, exercises, fatigue as well as nutrition and hydration. Thus, we describe here the current progress regarding potential novel biomarkers for stress and physical activity, salivary α-amylase and salivary cortisol, as well as their use and measurement in combination with different already-known or new ergogenic aids.
Collapse
Affiliation(s)
- Cezar Honceriu
- Faculty of Physical Education and Sports, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
| | - Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, B dul Carol I, No 8, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
- Correspondence: (A.C.); (C.T.)
| | - Andrei Ciobica
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (A.C.); (D.T.)
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
- Correspondence: (A.C.); (C.T.)
| | - Daniel Timofte
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (A.C.); (D.T.)
| |
Collapse
|
21
|
de Marco Castro E, Murphy CH, Roche HM. Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Front Nutr 2021; 8:656730. [PMID: 34235167 PMCID: PMC8256992 DOI: 10.3389/fnut.2021.656730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is characterised by the presence of diminished skeletal muscle mass and strength. It is relatively common in older adults as ageing is associated with anabolic resistance (a blunted muscle protein synthesis response to dietary protein consumption and resistance exercise). Therefore, interventions to counteract anabolic resistance may benefit sarcopenia prevention and are of utmost importance in the present ageing population. There is growing speculation that the gut microbiota may contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity in the lining of the gut, leading to increased gut permeability and higher metabolic endotoxemia. Animal data suggest that both elements may impact muscle physiology, but human data corroborating the causality of the association between gut microbiota and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may alter anabolic resistance include an attenuation of gut-derived low-grade inflammation and/or the increased digestibility of protein-containing foods and consequent higher aminoacidemia, both in favour of muscle protein synthesis. This review focuses on the putative links between the gut microbiota and skeletal muscle in the context of sarcopenia. We also address the issue of plant protein digestibility because plant proteins are increasingly important from an environmental sustainability perspective, yet they are less efficient at stimulating muscle protein synthesis than animal proteins.
Collapse
Affiliation(s)
- Elena de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Caoileann H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Pavel FM, Vesa CM, Gheorghe G, Diaconu CC, Stoicescu M, Munteanu MA, Babes EE, Tit DM, Toma MM, Bungau S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 11:diagnostics11061090. [PMID: 34203609 PMCID: PMC8232187 DOI: 10.3390/diagnostics11061090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 01/11/2023] Open
Abstract
Two different conditions are included in inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), being distinguished by chronic recurrence of gut inflammation in persons that are genetically predisposed and subjected to environmental causative factors. The normal structure of the gut microbiome and its alterations in IBD were defined in several microbial studies. An important factor in the prolonged inflammatory process in IBD is the impaired microbiome or "dysbiosis". Thus, gut microbiome management is likely to be an objective in IBD treatment. In this review, we analyzed the existing data regarding the pathophysiological/therapeutic implications of intestinal microflora in the development and evolution of IBD. Furthermore, the main effects generated by the administration of probiotics, prebiotics, fecal transplantation, and phytochemicals supplementation were analyzed regarding their potential roles in improving the clinical and biochemical status of patients suffering from Crohn's disease (CD) and ulcerative colitis (UC), and are depicted in the sections/subsections of the present paper. Data from the literature give evidence in support of probiotic and prebiotic therapy, showing effects such as improving remission rate, improving macroscopic and microscopic aspects of IBD, reducing the pro-inflammatory cytokines and interleukins, and improving the disease activity index. Therefore, the additional benefits of these therapies should not be ignored as adjuvants to medical therapy.
Collapse
Affiliation(s)
- Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia C. Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
23
|
Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? WATER 2021. [DOI: 10.3390/w13101348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
Collapse
|
24
|
Tavares-Silva E, Caris AV, Santos SA, Ravacci GR, Thomatieli-Santos RV. Effect of Multi-Strain Probiotic Supplementation on URTI Symptoms and Cytokine Production by Monocytes after a Marathon Race: A Randomized, Double-Blind, Placebo Study. Nutrients 2021; 13:1478. [PMID: 33925633 PMCID: PMC8146695 DOI: 10.3390/nu13051478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Purpose: Performing strenuous exercises negatively impacts the immune and gastrointestinal systems. These alterations cause transient immunodepression, increasing the risk of minor infections, especially in the upper respiratory tract. Recent studies have shown that supplementation of probiotics confers benefits to athletes. Therefore, the objective of the current study was to verify the effects of probiotic supplementation on cytokine production by monocytes and infections in the upper respiratory tract after an acute strenuous exercise. (2) Methods: Fourteen healthy male marathon runners received either 5 billion colony forming units (CFU) of a multi-strain probiotic, consisting of 1 billion CFU of each of Lactobacillus acidophilus LB-G80, Lactobacillus paracasei LPc-G110, Lactococcus subp. lactis LLL-G25, Bifidobacterium animalis subp. lactis BL-G101, and Bifidobacterium bifidum BB-G90, or a placebo for 30 days before a marathon. Plasma cytokines, salivary parameters, glucose, and glutamine were measured at baseline, 24 h before, immediately after, and 1 h after the race. Subjects self-reported upper respiratory tract infection (URTI) using the Wisconsin Upper Respiratory Symptom Survey (WURSS-21). The statistical analyses comprised the general linear model (GLM) test followed by the Tukey post hoc and Student's t-test with p < 0.05. (3) Results: URTI symptoms were significantly lower in the probiotic group compared to placebo. The IL-2 and IL-4 plasma cytokines were lower 24 h before exercise, while the other cytokines showed no significant differences. A lower level of IL-6 produced by monocytes was verified immediately after the race and higher IL-10 at 1 h post. No differences were observed in salivary parameters. Conclusion: Despite the low number of marathoners participating in the study, probiotic supplementation suggests its capability to preserve the functionality of monocytes and mitigate the incidence of URTI.
Collapse
Affiliation(s)
- Edgar Tavares-Silva
- Department of Bioscience, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (E.T.-S.); (S.A.S.)
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04032-020, Brazil;
| | - Aline Venticinque Caris
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04032-020, Brazil;
| | - Samile Amorin Santos
- Department of Bioscience, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (E.T.-S.); (S.A.S.)
| | - Graziela Rosa Ravacci
- Department of Gastroenterology, Medicine Faculty, University of São Paulo, Santos 11015-020, Brazil;
| | | |
Collapse
|
25
|
Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Crit Rev Food Sci Nutr 2021; 62:6225-6237. [PMID: 33724115 DOI: 10.1080/10408398.2021.1898336] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the intestinal flora in health and disease has become a research hotspot. Compared with carbohydrates and fats, proteins are metabolized primarily by microbial fermentation in the intestine. The production of protein fermentation products and metabolites depends on the composition, diversity, and metabolism of the gut microbiota. Several protein fermentation products, including indoles, phenols, polyamines, hydrogen sulfide (H2S), amines, and carnitine, are toxic. This study analyzes the relationship between high-protein diets (HPDs), the intestinal microbiota, and human health and disease. Long-term HPDs increase the risk of intestinal diseases, type 2 diabetes (T2DM), obesity, central nervous system (CNS) diseases, and cardiovascular diseases (CVD) by producing toxic metabolites in the colon, including amines, H2S, and ammonia. Short-term HPDs have little effect on the metabolism of healthy individuals under 65 years old. However, meeting the protein requirements of individuals over 65 years old using HPDs is more challenging. The adverse effects of HPDs on athletes are minimal. Natural compounds (plant extracts, whose main constituents are polysaccharides and polyphenols), prebiotics, probiotics, and regular physical exercise improve gut dysbiosis and reduce disease risk.
Collapse
Affiliation(s)
- Jie Cai
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wei Wu
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
26
|
Barton W, Cronin O, Garcia‐Perez I, Whiston R, Holmes E, Woods T, Molloy CB, Molloy MG, Shanahan F, Cotter PD, O’Sullivan O. The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures case-study approach. TRANSLATIONAL SPORTS MEDICINE 2021; 4:174-192. [PMID: 34355132 PMCID: PMC8317196 DOI: 10.1002/tsm2.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023]
Abstract
The athlete gut microbiome differs from that of non-athletes in its composition and metabolic function. Short-term fitness improvement in sedentary adults does not replicate the microbiome characteristics of athletes. The objective of this study was to investigate whether sustained fitness improvement leads to pronounced alterations in the gut microbiome. This was achieved using a repeated-measures, case-study approach that examined the gut microbiome of two initially unfit volunteers undertaking progressive exercise training over a 6-month period. Samples were collected every two weeks, and microbiome, metabolome, diet, body composition, and cardiorespiratory fitness data were recorded. Training culminated in both participants completing their respective goals (a marathon or Olympic-distance triathlon) with improved body composition and fitness parameters. Increases in gut microbiota α-diversity occurred with sustained training and fluctuations occurred in response to training events (eg, injury, illness, and training peaks). Participants' BMI reduced during the study and was significantly associated with increased urinary measurements of N-methyl nicotinate and hippurate, and decreased phenylacetylglutamine. These results suggest that sustained fitness improvements support alterations to gut microbiota and physiologically-relevant metabolites. This study provides longitudinal analysis of the gut microbiome response to real-world events during progressive fitness training, including intercurrent illness and injury.
Collapse
Affiliation(s)
- Wiley Barton
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Animal and Grassland Research and Innovation Centre, Teagasc, MooreparkFermoyIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| | - Owen Cronin
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of MedicineNational University of IrelandCorkIreland
| | - Isabel Garcia‐Perez
- Division of Integrated Systems Medicine and Digestive DiseasesDepartment of Surgery and CancerFaculty of MedicineImperial College LondonLondonUK
| | - Ronan Whiston
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| | - Elaine Holmes
- Division of Integrated Systems Medicine and Digestive DiseasesDepartment of Surgery and CancerFaculty of MedicineImperial College LondonLondonUK
| | - Trevor Woods
- Human Performance LaboratoryDepartment of Sport and Physical ActivityNational University of IrelandCorkIreland
| | | | - Michael G. Molloy
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of MedicineNational University of IrelandCorkIreland
| | - Fergus Shanahan
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of MedicineNational University of IrelandCorkIreland
| | - Paul D. Cotter
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| | - Orla O’Sullivan
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| |
Collapse
|
27
|
Łagowska K, Bajerska J. Effects of probiotic supplementation on respiratory infection and immune function in athletes: systematic review and meta-analysis of randomized controlled trials. J Athl Train 2021; 56:1213-1223. [PMID: 33481001 DOI: 10.4085/592-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of probiotic supplementation on upper tract respiratory infection and inflammatory markers in elite athletes. DATA SOURCES We identified sources by searching the PubMed, EBSCO host, Scopus, and Web of Science databases using the following search terms: "probiotic" OR "probiotics" AND "exercise" OR "sport" OR "athletes" AND "URTI" OR "respiratory infection" OR "upper respiratory tract infections" OR "inflammation" OR "inflammatory OR "cytokines". STUDY SELECTION We screened the title and abstracts of 2498 articles using our inclusion critieria. A total of 14 articles were selected for further analysis. DATA EXTRACTION Data from the included studies were extracted by 2 independent reviewers. These data included the study design, participant characteristics, inclusion and exclusion, intervention characteristics, outcome measures, and the main results of the study. DATA SYNTHESIS The meta-analysis did not show any significant effect of probiotic supplementation on the number of days of illness or the mean number and duration of URTI episodes, but there was a significant effect of probiotic supplementation on total symptom severity score (-0.65, 95% CI: -1.05; -0.25, p = 0.02). Lower levels of IL-6 (-2.52 pg/ml, 95% CI: -4.12, -0.51, p = 0.001) and TNF-α (-2.31 pg/ml, 95% CI: -4.12, -0.51, p = 0.008) were also reported after supplementation. CONCLUSIONS This meta-analysis provides evidence that probiotic supplementation, especially among professional athletes, is an effective way to decrease the total URTI symptom severity score. Additionally, probiotic supplementation may decrease TNF-α and IL-6 levels. There is a need for more studies with larger groups to better estimate this effect. It is necessary to determine the best timing, duration, composition and dose of such supplementation.
Collapse
Affiliation(s)
- Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego, Poznań, Poland
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego, Poznań, Poland
| |
Collapse
|
28
|
Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiol Stress 2021; 14:100294. [PMID: 33511258 PMCID: PMC7816019 DOI: 10.1016/j.ynstr.2021.100294] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/08/2023] Open
Abstract
Stress has been shown to disturb the balance of human intestinal microbiota and subsequently causes mental health problems like anxiety and depression. Our previous study showed that ingesting the probiotic strain, Lactobacillus (L.) plantarum P-8, for 12 weeks could alleviate stress and anxiety of stressed adults. The current study was a follow-up work aiming to investigate the functional role of the gut metagenomes in the observed beneficial effects. The fecal metagenomes of the probiotic (n = 43) and placebo (n = 36) receivers were analyzed in depth. The gut microbiomes of the placebo group at weeks 0 and 12 showed a significantly greater Aitchison distance (P < 0.001) compared with the probiotic group. Meanwhile, the Shannon diversity index of the placebo group (P < 0.05) but not the probiotic group decreased significantly at week 12. Additionally, significantly more species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium longum, and Fecalibacterium prausnitzii (P < 0.01) were identified in the fecal metagenomes of the probiotic group, while the abundances of SGBs representing the species Roseburia faecis and Fusicatenibacter saccharivorans decreased significantly (P < 0.05). Furthermore, the 12-week probiotic supplementation enhanced the diversity of neurotransmitter-synthesizing/consuming SGBs and the levels of some predicted microbial neuroactive metabolites (e.g., short-chain fatty acids, gamma-aminobutyric acid, arachidonic acid, and sphingomyelin). Our results showed a potential link between probiotic-induced gut microbiota modulation and stress/anxiety alleviation in stressed adults, supporting that the gut-brain axis was involved in relieving stress-related symptoms. The beneficial effect relied not only on microbial diversity changes but more importantly gut metagenome modulations at the SGB and functional gene levels. Stress and anxiety are related to gut dysbiosis. Ingesting Lactobacillus plantarum P-8 (P-8) improved stress/anxiety symptoms. Symptoms were relieved by modulating gut microbiota and neuroactive potential.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To provide a focused analysis of the challenges to gut health in athletes and examine recent research aimed at determining the impact of probiotics on preventing gastrointestinal (GI) symptoms and loss of barrier function in athletes. RECENT FINDINGS Frequency and severity of GI symptoms during training or competition were reduced by approximately one-third in studies demonstrating efficacy. Improvement of GI symptoms with probiotic supplementation was measured in both single-strain Lactobacillus and multi-strain Lactobacillus and Bifidobacterim probiotics, while improvement in gut barrier function was only measured for multi-strain probiotics. Likelihood of efficacy increased with duration of supplementation. The greatest efficacy for reducing GI symptom frequency and severity, as well as improving or preserving gut barrier function during exercise training and competition, appears to be for multi-strain Lactobacillus and Bifidobacterium probiotic cocktails supplemented for at least 11 weeks.
Collapse
Affiliation(s)
- Mary P Miles
- Department of Health and Human Development, Montana State University-Bozeman, Box 3540, Herrick Hall, Bozeman, MT, 59717, USA.
| |
Collapse
|
30
|
Biogenic Silver Nanoparticles Synthesis from New Record Aquatic Bacteria of Nile Tilapia and Evaluation of their Biological Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current study investigates the isolation identification of bioactive strain from fish collected from El-Burrllus region in Egypt. The objective of the current study is to identify and assess the biological profile of a new record strain in Egypt Bacillus maritimus. The molecular identification of the selected promising isolate and phylogenetic analysis confirmed the accurate identity of the isolate as Bacillus maritimus. The novelty of the present study was not due to only to the fact that the Bacillus maritimus isolate was the first record from brackish-water Egyptian fish gut, but also due to the fact that there is no previous study on the bioactivity of Bacillus maritimus and their efficiency as biogenic nanoparticles synthesis. The bioactivities for the Bacillus maritimus were investigated through different biochemical assays as antioxidant, anti-inflammatory and antimicrobial activity against six of the tested human pathogens namely; Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumoniae ATCC 13883 and Streptococcus pyogenes ATCC 19615. Bacillus maritimus bacteria were grown in nutrient broth for 24 h at 37°C and the optical density was determined at 600 nm using the UV-visible spectrophotometer. The optical density (OD) of the broth was adjusted to 0.5 with sterile phosphate-buffered saline, pH 7.4 (PBS). the bacterial isolate showed antioxidant, and anti-inflammatory activities. In addition the bacteria showed great reducing agent ability as a biogenic agent for the silver nanoparticles. The phytochemical screening of the Bacillus maritimus isolates have showed varieties of bioactive groups in addition to total phenolic compounds, flavonoids, tannic acid, carbohydrates, sulfated polysaccharides, total proteins and lipids. This study highlighted also that the Bacillus maritimus isolate could also produce novel secondary metabolites. The current study report for the first time the Bacillus maritimus in Egypt. Further studies are needed to isolate and characterize more bioactive strains from Egyptian Fishes that could possibly act as novel bioactive compounds source of medical and agricultures importance.
Collapse
|
31
|
Analysis of the Impact of a Multi-Strain Probiotic on Body Composition and Cardiorespiratory Fitness in Long-Distance Runners. Nutrients 2020; 12:nu12123758. [PMID: 33297458 PMCID: PMC7762398 DOI: 10.3390/nu12123758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Use of probiotic supplements, the benefits of which have not been proven in sportspeople, is becoming more widespread among runners. The aim of this study was to evaluate the effect of a multi-strain probiotic on body composition, cardiorespiratory fitness and inflammation in the body. The randomised, double-blind study included 66 long-distance runners. The intervention factor was a multi-strain probiotic or placebo. At the initial and final stages of the study, evaluation of body composition and cardiorespiratory fitness was performed and the presence of inflammation determined. In the group of men using the probiotic, an increase in lean body mass (p = 0.019) and skeletal muscle mass (p = 0.022) was demonstrated, while in the group of women taking the probiotic, a decrease in the content of total body fat (p = 0.600) and visceral fat (p = 0.247) was observed. Maximum oxygen consumption (VO2max) increased in women (p = 0.140) and men (p = 0.017) using the probiotic. Concentration of tumour necrosis factor-alpha decreased in women (p = 0.003) and men (p = 0.001) using the probiotic and in women (p = 0.074) and men (p = 0.016) using the placebo. Probiotic therapy had a positive effect on selected parameters of body composition and cardiorespiratory fitness of study participants and showed a tendency to reduce inflammation.
Collapse
|
32
|
Zubeldia-Varela E, Barber D, Barbas C, Perez-Gordo M, Rojo D. Sample pre-treatment procedures for the omics analysis of human gut microbiota: Turning points, tips and tricks for gene sequencing and metabolomics. J Pharm Biomed Anal 2020; 191:113592. [PMID: 32947167 DOI: 10.1016/j.jpba.2020.113592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
The connection between gut microbiota and human health is becoming increasingly relevant and the number of groups working in this field is constantly growing. In this context, from high-throughput gene sequencing to metabolomics analysis, the omics technologies have contributed enormously to unveil the secret crosstalk between us and our microbes. All the omics technologies produce a great amount of information, and processing this information is time-consuming and expensive. For this reason, a correct experimental design and a careful pre-analytical planning are crucial. To study the human gut microbiota, faeces are the sample of choice. Faecal material is complex, and procedures for collecting and preserving faeces are not well-established. Furthermore, increasing evidence suggests that multiple confounding factors, such as antibiotics consumption, mode of delivery, diet, aging and several diseases and disorders can alter the composition and functionality of the microbiota. This review is focused on the discussion of critical general issues during the pre-analytical planning, from patient handling to faeces sampling, including collection procedures, transport, storage conditions and possible pre-treatments, which are critical for a successful research in omics with a special attention to metabolomics and gene sequencing. We also point out that the adoption of standard operating procedures in the field is needed to guarantee accuracy and reproducibility of results.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Domingo Barber
- Institute of Applied and Molecular Medicine (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marina Perez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Institute of Applied and Molecular Medicine (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
33
|
Dodoo CC, Stapleton P, Basit AW, Gaisford S. The potential of Streptococcus salivarius oral films in the management of dental caries: An inkjet printing approach. Int J Pharm 2020; 591:119962. [PMID: 33049357 DOI: 10.1016/j.ijpharm.2020.119962] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The use of probiotics, which can be administered in oro-dispersible films (ODFs) and have prolonged activity in the mouth, was explored. ODFs made of xylitol and containing Streptococcus salivarius were formulated using inkjet printing and tested against Streptococcus mutans - a causative organism of dental caries. The testing of the prepared ODFs involved co-incubating an ink-jetted formulation of S. salivarius and xylitol with S. mutans and monitoring the microbial growth kinetics in real-time using isothermal microcalorimetry and colony plate counts. Cell-free supernatants (CFS) of S. salivarius were also tested against S. mutans. The phosphate solubilisation potential of S. salivarius was also determined and found to be negative, an indication that the species will not deplete phosphate from teeth. From the tests, it was observed that the formulation reduced the S. mutans population from 7.9 to 5.04 Log CFU/mL post-calorimetry (approximately 3 Log reduction) which was comparable to the 99.9% reduction expected during antimicrobial activity testing. A gradual decrease in S. mutans population was also observed with increasing of CFS of S. salivarius volumes indicative of pathogen suppression. This study demonstrates that S. salivarius can be useful in managing dental caries and ODFs of S. salivarius can be formulated easily using ink-jetting for such management.
Collapse
Affiliation(s)
- Cornelius C Dodoo
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Paul Stapleton
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
34
|
The Effect of Athletes' Probiotic Intake May Depend on Protein and Dietary Fiber Intake. Nutrients 2020; 12:nu12102947. [PMID: 32992898 PMCID: PMC7650591 DOI: 10.3390/nu12102947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Studies investigating exercise-induced gut microbiota have reported that people who exercise regularly have a healthy gut microbial environment compared with sedentary individuals. In contrast, recent studies have shown that high protein intake without dietary fiber not only offsets the positive effect of exercise on gut microbiota but also significantly lowers the relative abundance of beneficial bacteria. In this study, to resolve this conundrum and find the root cause, we decided to narrow down subjects according to diet. Almost all of the studies had subjects on an ad libitum diet, however, we wanted subjects on a simplified diet. Bodybuilders who consumed an extremely high-protein/low-carbohydrate diet were randomly assigned to a probiotics intake group (n = 8) and a placebo group (n = 7) to find the intervention effect. Probiotics, comprising Lactobacillus acidophilus, L. casei, L. helveticus, and Bifidobacterium bifidum, were consumed for 60 days. As a result, supplement intake did not lead to a positive effect on the gut microbial environment or concentration of short-chain fatty acids (SCFAs). It has been shown that probiotic intake is not as effective as ergogenic aids for athletes such as bodybuilders with extreme dietary regimens, especially protein and dietary fiber. To clarify the influence of nutrition-related factors that affect the gut microbial environment, we divided the bodybuilders (n = 28) into groups according to their protein and dietary fiber intake and compared their gut microbial environment with that of sedentary male subjects (n = 15). Based on sedentary Korean recommended dietary allowance (KRDA), the bodybuilders′ intake of protein and dietary fiber was categorized into low, proper, and excessive groups, as follows: high-protein/restricted dietary fiber (n = 12), high-protein/adequate dietary fiber (n = 10), or adequate protein/restricted dietary fiber (n = 6). We found no significant differences in gut microbial diversity or beneficial bacteria between the high-protein/restricted dietary fiber and the healthy sedentary groups. However, when either protein or dietary fiber intake met the KRDA, gut microbial diversity and the relative abundance of beneficial bacteria showed significant differences to those of healthy sedentary subjects. These results suggest that the positive effect of exercise on gut microbiota is dependent on protein and dietary fiber intake. The results also suggest that the question of adequate nutrition should be addressed before supplementation with probiotics to derive complete benefits from the intervention.
Collapse
|
35
|
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, Schutz F, Docea AO, Martins N, Calina D. Probiotics: Versatile Bioactive Components in Promoting Human Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E433. [PMID: 32867260 PMCID: PMC7560221 DOI: 10.3390/medicina56090433] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Célia F. Rodrigues
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Selvaraj Milton Prabu
- Department of Zoology, Annamalai University, Annamalai Nagar 608002, Chidambaram, India;
| | - Francine Schutz
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Natália Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
36
|
Si H, Yang Q, Hu H, Ding C, Wang H, Lin X. Colorectal cancer occurrence and treatment based on changes in intestinal flora. Semin Cancer Biol 2020; 70:3-10. [PMID: 32404293 DOI: 10.1016/j.semcancer.2020.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer in the world, and its incidence has been increasing in recent years. The occurrence of CRC is believed to be related to a variety of factors. Epidemiological data indicate that CRC is mainly affected by environmental factors, eating habits, physical activity and genetic factors. As a newly recognized functional component, the intestinal microbiota plays important roles in preventing CRC formation and maintaining intestinal immunity. In this review, we summarize the mechanisms by which the gut microbiota causes CRC through alterations to immune function, focusing on the mechanisms by which intestinal microbial dysfunction promotes CRC. Furthermore, we describe the changes in the intestinal flora observed in CRC and their potential for CRC treatment with the goal of facilitating future research on the roles of the intestinal flora.
Collapse
Affiliation(s)
- Huifang Si
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Qing Yang
- Department of Anesthesiology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Hong Hu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Chunsheng Ding
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Huichao Wang
- Department of Nephrology, First Affiliated Hospital of Henan University, 357 Ximen Street, Kaifeng 475000, Henan, China
| | - Xuhong Lin
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China.
| |
Collapse
|
37
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
38
|
Heat-Killed Bifidobacterium breve B-3 Enhances Muscle Functions: Possible Involvement of Increases in Muscle Mass and Mitochondrial Biogenesis. Nutrients 2020; 12:nu12010219. [PMID: 31952193 PMCID: PMC7019314 DOI: 10.3390/nu12010219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
A previous clinical study on pre-obesity subjects revealed that Bifidobacteriumbreve B-3 shows anti-obesity effects and possibly increases muscle mass. Here, we investigated the effects of B-3 on muscle function, such as muscle strength and metabolism, and some signaling pathways in skeletal muscle. Male rodents were orally administered live B-3 (B-3L) or heat-killed B-3 (B-3HK) for 4 weeks. We found that administration of B-3 to rats tended to increase muscle mass and affect muscle metabolism, with stronger effects in the B-3HK group than in the B-3L group. B-3HK significantly increased muscle mass and activated Akt in the rat soleus. With regard to muscle metabolism, B-3HK significantly increased phosphorylated AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and cytochrome c oxidase (CCO) gene expression in the rat soleus, suggesting an effect on the AMPK-PGC1α-mitochondrial biogenesis pathway. Furthermore, B-3HK promoted oxidative muscle fiber composition in the gastrocnemius. We also observed a significantly higher level of murine grip strength in the B-3HK group than in the control group. These findings suggest the potential of heat-killed B-3 in promoting muscle hypertrophy and modifying metabolic functions, possibly through the Akt and AMPK pathways, respectively.
Collapse
|
39
|
Hughes RL. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front Nutr 2020; 6:191. [PMID: 31998739 PMCID: PMC6966970 DOI: 10.3389/fnut.2019.00191] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome is a key factor in determining inter-individual variability in response to diet. Thus, far, research in this area has focused on metabolic health outcomes such as obesity and type 2 diabetes. However, understanding the role of the gut microbiome in determining response to diet may also lead to improved personalization of sports nutrition for athletic performance. The gut microbiome has been shown to modify the effect of both diet and exercise, making it relevant to the athlete's pursuit of optimal performance. This area of research can benefit from recent developments in the general field of personalized nutrition and has the potential to expand our knowledge of the nexus between the gut microbiome, lifestyle, and individual physiology.
Collapse
Affiliation(s)
- Riley L. Hughes
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
40
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|