1
|
Schuchardt JP, Beinhorn P, Hu XF, Chan HM, Roke K, Bernasconi A, Hahn A, Sala-Vila A, Stark KD, Harris WS. Omega-3 world map: 2024 update. Prog Lipid Res 2024; 95:101286. [PMID: 38879135 DOI: 10.1016/j.plipres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
In 2016, the first worldwide n3 PUFA status map was published using the Omega-3 Index (O3I) as standard biomarker. The O3I is defined as the percentage of EPA + DHA in red blood cell (RBC) membrane FAs. The purpose of the present study was to update the 2016 map with new data. In order to be included, studies had to report O3I and/or blood EPA + DHA levels in metrics convertible into an estimated O3I, in samples drawn after 1999. To convert the non-RBC-based EPA + DHA metrics into RBC we used newly developed equations. Baseline data from clinical trials and observational studies were acceptable. A literature search identified 328 studies meeting inclusion criteria encompassing 342,864 subjects from 48 countries/regions. Weighted mean country O3I levels were categorized into very low ≤4%, low >4-6%, moderate >6-8%, and desirable >8%. We found that the O3I in most countries was low to very low. Notable differences between the current and 2016 map were 1) USA, Canada, Italy, Turkey, UK, Ireland and Greece (moving from the very low to low category); 2) France, Spain and New Zealand (low to moderate); and 3) Finland and Iceland (moderate to desirable). Countries such as Iran, Egypt, and India exhibited particularly poor O3I levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany.
| | - Philine Beinhorn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kaitlin Roke
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Aldo Bernasconi
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Hospital del Mar Medical Research Institute, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| |
Collapse
|
2
|
Ross SA, Emenaker NJ, Kumar A, Riscuta G, Biswas K, Gupta S, Mohammed A, Shoemaker RH. Green Cancer Prevention and Beyond. Cancer Prev Res (Phila) 2024; 17:107-118. [PMID: 38251904 PMCID: PMC10911807 DOI: 10.1158/1940-6207.capr-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The concept of green chemoprevention was introduced in 2012 by Drs. Jed Fahey and Thomas Kensler as whole-plant foods and/or extract-based interventions demonstrating cancer prevention activity. Refining concepts and research demonstrating proof-of-principle approaches are highlighted within this review. Early approaches included extensively investigated whole foods, including broccoli sprouts and black raspberries showing dose-responsive effects across a range of activities in both animals and humans with minimal or no apparent toxicity. A recent randomized crossover trial evaluating the detoxification of tobacco carcinogens by a broccoli seed and sprout extract in the high-risk cohort of current smokers highlights the use of a dietary supplement as a potential next-generation green chemoprevention or green cancer prevention approach. Challenges are addressed, including the selection of dose, duration and mode of delivery, choice of control group, and standardization of the plant food or extract. Identification and characterization of molecular targets and careful selection of high-risk cohorts for study are additional important considerations when designing studies. Goals for precision green cancer prevention include acquiring robust evidence from carefully controlled human studies linking plant foods, extracts, and compounds to modulation of targets for cancer risk reduction in individual cancer types.
Collapse
Affiliation(s)
- Sharon A. Ross
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Nancy J. Emenaker
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Amit Kumar
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Gabriela Riscuta
- Division of Cancer Prevention, Nutritional Sciences Research Group, National Cancer Institute, Rockville, Maryland
| | - Kajal Biswas
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Shanker Gupta
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Altaf Mohammed
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| | - Robert H. Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
3
|
Roussel C, Sola M, Lessard-Lord J, Nallabelli N, Généreux P, Cavestri C, Azeggouar Wallen O, Villano R, Raymond F, Flamand N, Silvestri C, Di Marzo V. Human gut microbiota and their production of endocannabinoid-like mediators are directly affected by a dietary oil. Gut Microbes 2024; 16:2335879. [PMID: 38695302 PMCID: PMC11067990 DOI: 10.1080/19490976.2024.2335879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Mathilde Sola
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
| | - Nayudu Nallabelli
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Camille Cavestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Oumaima Azeggouar Wallen
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Rosaria Villano
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (Napoli), Italy
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Nicolas Flamand
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
4
|
Witard OC, Banic M, Rodriguez-Sanchez N, van Dijk M, Galloway SDR. Long-chain n-3 PUFA ingestion for the stimulation of muscle protein synthesis in healthy older adults. Proc Nutr Soc 2023:1-11. [PMID: 37987178 DOI: 10.1017/s0029665123004834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This review aims to critically evaluate the efficacy of long-chain ո-3 PUFA ingestion in modulating muscle protein synthesis (MPS), with application to maintaining skeletal muscle mass, strength and function into later life. Ageing is associated with a gradual decline in muscle mass, specifically atrophy of type II fibres, that is exacerbated by periods of (in)voluntary muscle disuse. At the metabolic level, in otherwise healthy older adults, muscle atrophy is underpinned by anabolic resistance which describes the impaired MPS response to non-pharmacological anabolic stimuli, namely, physical activity/exercise and amino acid provision. Accumulating evidence implicates a mechanistic role for n-3 PUFA in upregulating MPS under stimulated conditions (post-prandial state or following exercise) via incorporation of EPA and DHA into the skeletal muscle phospholipid membrane. In some instances, these changes in MPS with chronic ո-3 PUFA ingestion have translated into clinically relevant improvements in muscle mass, strength and function; an observation evidently more prevalent in healthy older women than men. This apparent sexual dimorphism in the adaptive response of skeletal muscle metabolism to EPA and DHA ingestion may be related to a greater propensity for females to incorporate ո-3 PUFA into human tissue and/or the larger dose of ingested ո-3 PUFA when expressed relative to body mass or lean body mass. Future experimental studies are warranted to characterise the optimal dosing and duration of ո-3 PUFA ingestion to prescribe tailored recommendations regarding n-3 PUFA nutrition for healthy musculoskeletal ageing into later life.
Collapse
Affiliation(s)
- Oliver C Witard
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Milena Banic
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| | - Nidia Rodriguez-Sanchez
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| | | | - Stuart D R Galloway
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
5
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
6
|
Koeder C, Perez-Cueto FJA. Vegan nutrition: a preliminary guide for health professionals. Crit Rev Food Sci Nutr 2022; 64:670-707. [PMID: 35959711 DOI: 10.1080/10408398.2022.2107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Since the beginning of the 21st century, interest in vegan diets has been rapidly increasing in most countries. Misconceptions about vegan diets are widespread among the general population and health professionals. Vegan diets can be health-promoting and may offer certain important advantages compared to typical Western (and other mainstream) eating patterns. However, adequate dietary sources/supplements of nutrients of focus specific to vegan diets should be identified and communicated. Without supplements/fortified foods, severe vitamin B12 deficiency may occur. Other potential nutrients of focus are calcium, vitamin D, iodine, omega-3 fatty acids, iron, zinc, selenium, vitamin A, and protein. Ensuring adequate nutrient status is particularly important during pregnancy, lactation, infancy, and childhood. Health professionals are often expected to be able to provide advice on the topic of vegan nutrition, but a precise and practical vegan nutrition guide for health professionals is lacking. Consequently, it is important and urgent to provide such a set of dietary recommendations. It is the aim of this article to provide vegan nutrition guidelines, based on current evidence, which can easily be communicated to vegan patients/clients, with the goal of ensuring adequate nutrient status in vegans.
Collapse
Affiliation(s)
- Christian Koeder
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, Hanover, Germany
- Department of Nutrition, University of Applied Sciences Münster, Münster, Germany
| | | |
Collapse
|
7
|
Chileh Chelh T, Lyashenko S, Lahlou A, Belarbi EH, Ángel Rincón-Cervera M, Rodríguez-García I, Urrestarazu-Gavilán M, López Ruiz R, Luis Guil-Guerrero J. Buglossoides spp. seeds, a land source of health-promoting n-3 PUFA and phenolic compounds. Food Res Int 2022; 157:111421. [DOI: 10.1016/j.foodres.2022.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
8
|
Schuchardt JP, Cerrato M, Ceseri M, DeFina LF, Delgado GE, Gellert S, Hahn A, Howard BV, Kadota A, Kleber ME, Latini R, Maerz W, Manson JE, Mora S, Park Y, Sala-Vila A, von Schacky C, Sekikawa A, Tintle N, Tucker KL, Vasan RS, Harris WS. Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 index. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102418. [PMID: 35366625 PMCID: PMC10440636 DOI: 10.1016/j.plefa.2022.102418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Red blood cell (RBC) fatty acid (FA) patterns are becoming recognized as long-term biomarkers of tissue FA composition, but different analytical methods have complicated inter-study and international comparisons. Here we report RBC FA data, with a focus on the Omega-3 Index (EPA + DHA in% of total FAs in RBC), from samples of seven countries (USA, Canada, Italy, Spain, Germany, South Korea, and Japan) including 167,347 individuals (93% of all samples were from the US). FA data were generated by a uniform methodology from a variety of interventional and observational studies and from clinical laboratories. The cohorts differed in size, demographics, health status, and year of collection. Only the Canadian cohort was a formal, representative population-based survey. The mean Omega-3 Index of each country was categorized as desirable (>8%), moderate (>6% to 8%), low (>4% to 6%), or very low (≤4%). Only cohorts from Alaska (treated separately from the US), South Korea and Japan showed a desirable Omega-3 Index. The Spanish cohort had a moderate Omega-3 Index, while cohorts from the US, Canada, Italy, and Germany were all classified as low. This study is limited by the use of cohorts of convenience and small sample sizes in some countries. Countries undertaking national health status studies should utilize a uniform method to measure Omega-3 FA levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany; The Fatty Acid Research Institute, Sioux Falls, SD, USA.
| | - Marianna Cerrato
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Martina Ceseri
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra Gellert
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | | | - Aya Kadota
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria; Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB Academy, Mannheim, Germany
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Samia Mora
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongsoon Park
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Cardiovascular risk and nutrition group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Katherine L Tucker
- Department of Biomedical Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
| | - Ramachandran S Vasan
- Department of Medicine, Preventive Medicine & Epidemiology, School of Medicine, Boston University, Boston, MA, USA
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
9
|
Zhang Y, Guo X, Gao J, Wei C, Zhao S, Liu Z, Sun H, Wang J, Liu L, Li Y, Han T, Sun C. The associations of circulating common and uncommon polyunsaturated fatty acids and modification effects on dietary quality with all-cause and disease-specific mortality in NHANES 2003-2004 and 2011-2012. Ann Med 2021; 53:1744-1757. [PMID: 34672217 PMCID: PMC8547849 DOI: 10.1080/07853890.2021.1937693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Associations of dietary or supplementary intake of several unsaturated fatty acids and mortality have been widely studied but the results were still hitherto inconsistent or limited. It is still need to explore the effects of these fatty acids by using the objective biomarkers. OBJECTIVE We aimed to investigate the relevancy of several serum n-3 and n-6 fatty acids with all-cause and disease-specific mortality to confirm their health effects and effects on the associations between dietary quality and all-cause mortality. METHODS A total of 4132 people from NHANES 2003-2004 and 2011-2012 and the mortality information was confirmed from the NDI. CPH models adjusted for known risk factors were conducted to explore the associations between circulating n-3 and n-6 fatty acids and all-cause or CVD or cancer mortality under complex sampling. We further evaluated their effects on association between dietary quality and all-cause mortality. RESULTS A total of 437 deaths occurred during the mean follow-up of 83.34 months, including 157 CVD death and 100 cancer death. Serum LA, ALA, EPA and DHA were associated with all-cause mortality (HR in quintile5: LA:0.584, 95%CI: 0.387-0.882, Ptrend = 0.011; ALA:0.626, 95%CI: 0.432-0.907, Ptrend = 0.008; EPA:0.535, 95%CI: 0.375-0.764, Ptrend = 0.001; DHA:0.669, 95%CI: 0.468-0.955, Ptrend = 0.031). Additionally, serum EPA and ALA were respectively related to CVD and cancer mortality (Q5 HR: EPA:0.450, 95%CI: 0.23-0.854, Ptrend = 0.009; ALA:0.387, 95%CI: 0.167-0.900, Ptrend = 0.022). Serum AA, GLA, DGLA and SDA were not associated with any risk of mortality. The effect on all-cause mortality of the lower AHEI scores can be improved by adherence to a higher serum LA, EPA and DHA (in the lowest AHEI strata, LA in tertile3 compared to tertile1 HR:0.596, 95%CI: 0.366-0.970; EPA:0.660, 95%CI: 0.454-0.959; DHA:0.666, 95%CI; 0.444-1.000). CONCLUSIONS Our results support the recent dietary recommendations to increase the intake of plant-derived and marine-derived n-6 and n-3 to improve the ability of primary and secondary prevention.
Collapse
Affiliation(s)
- Yuntao Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jian Gao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Chunbo Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Shengnan Zhao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Zhipeng Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Hu Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jiemei Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Lin Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
10
|
Carlini GCG, Roschel GG, Ferrari RA, Alencar SM, Ota HC, da Silveira TFF, Castro IA. Chemical characterization of Echium plantagineum seed oil obtained by three methods of extraction. J Food Sci 2021; 86:5307-5317. [PMID: 34841517 DOI: 10.1111/1750-3841.15972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Echium seed oil has been considered an important alternative source of omega 3 fatty acids (n-3 FA) for human consumption. Considering the oxidative instability of n-3 FA richer oils, the objective of this study was to determine the chemical and sensory parameters of the oil obtained from Echium plantagineum seeds obtained by three extraction methods (hydraulic press: HYD; continuous screw press: PRESS; and solvent technique: SOLV). Stearidonic acid (C18:4, n3), the most important n-3 FA present in the oil, changed from 12.5% to 12.7%. Regarding the minor compounds, PRESS sample showed the highest concentration of gamma-tocopherol (782.24 mg/kg oil), while SOLV samples presented the highest amount of β-sitosterol (73.46 mg/100 g) with no difference of campesterol concentration (159.56 mg/100 g) among the samples. Higher values of total phenolics (19.65 mg GAE/kg oil) and β-carotene (34.83 mg/kg oil) were also found in the SOLV samples, suggesting the influence of hexane in the extraction of these bioactive compounds. High resolution mass spectrometry identified caffeic acid and its derivatives as the main phenolic compounds present in the echium oil. PRESS sample showed the best oxidative stability as measured by PV (0.61 mmol/kg oil) and malondialdehyde (173.13 µmol), probably due to faster time of processing compared to HYD and SOLV samples. Our data showed that the extraction method changed the chemical composition of the minor compounds in the echium oil, but these alterations did not reduce its nutritional quality or sensory acceptability. PRACTICAL APPLICATION: Echium oil represents a great potential source of omega 3 fatty acids, but there is not enough information about its oxidative stability and chemical composition, especially toward minor compounds. Our study characterizes echium oil composition obtained from three extraction methods, contributing to amplify the technical information about this important alternative oil for human consumption.
Collapse
Affiliation(s)
- Giovanna Calixto Garcia Carlini
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Grassmann Roschel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Severino Mathias Alencar
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Helton Cherubim Ota
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Roschel GG, da Silveira TFF, Cajaíba LM, Ferrari RA, Castro IA. Combination of natural strategies to improve the oxidative stability of echium seed oil. J Food Sci 2021; 86:411-419. [PMID: 33448021 DOI: 10.1111/1750-3841.15590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Abstract
Echium seed oil is an alternative source of omega 3 fatty acids but it is highly susceptible to oxidation. A combination of three natural strategies was proposed in this study aiming to improve the oxidative stability of echium oil obtained by pressing (PO) or solvent extraction (PSO), kept in the storage condition for 180 days or during the consumption for 30 days. Our results showed that the reduction of temperature was sufficient to keep the oil stable during storage for both samples. During the consumption time, the best stability was achieved by adding a mixture of antioxidants, composed of sinapic (500 ppm), ascorbic (250 ppm), and citric (150 ppm) acids, and/or 20% of high oleic sunflower oil. The combined strategies promoted a 34 to 80% reduction of peroxide value and 0 to 85% reduction of malondialdehyde concentrations in the samples, showing to be a feasible and natural alternative to improve the oxidative stability of echium oil. PRACTICAL APPLICATION: Our study successfully applied an optimized combination of simple and low-cost strategies to enhance the chemical stability of echium seed oil. As the use of echium oil expands around the world, the oil industry and final consumers may benefit from our results to increase the oil shelf-life.
Collapse
Affiliation(s)
- Gabriela Grassmann Roschel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| | - Tayse Ferreira Ferreira da Silveira
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| | - Letícia Maeda Cajaíba
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| | - Roseli Aparecida Ferrari
- Food Science and Quality Center, Institute of Food Technology (ITAL), Av. Brazil 2880, Campinas, Sao Paulo, 13070-178, Brazil
| | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Av. Lineu Prestes, 580, B14, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
12
|
Guil‐Guerrero JL, González‐Fernández MJ, Lyashenko S, Fabrikov D, Rincón‐Cervera MÁ, Urrestarazu M, Gómez‐Mercado F. γ‐Linolenic and Stearidonic Acids from Boraginaceae of Diverse Mediterranean Origin. Chem Biodivers 2020; 17:e2000627. [DOI: 10.1002/cbdv.202000627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Dmitri Fabrikov
- Animal Production Division University of Almería 04120 Almería Spain
| | | | | | | |
Collapse
|
13
|
Intake of Calanus finmarchicus oil for 12 weeks improves omega-3 index in healthy older subjects engaging in an exercise programme. Br J Nutr 2020; 125:432-439. [PMID: 32698912 PMCID: PMC7844606 DOI: 10.1017/s0007114520002809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The n-3 PUFA, EPA and DHA, play an important role in human health. As the intake of EPA and DHA from the diet is often inadequate, supplementation of those fatty acids is recommended. A novel source of n-3 PUFA is Calanus finmarchicus oil (CO) which contains fatty acids mainly bound in wax esters. To date, no data are available on the effects of long-term intake of this marine oil on n-3 PUFA blood levels. Therefore, the aim of this study was to evaluate the effect of CO on the n-3 PUFA blood levels using the omega-3 index (O3I). The data originate from a larger randomised controlled trial. For this analysis, samples from seventy-two participants (59·2 (sd 6·2) years, BMI 27·7 (sd 5·28) kg/m2) were analysed. Of those, thirty-six performed 2×/week exercise and received 2 g of CO, which provided 124 mg stearidonic acid (SDA), 109 mg EPA and 87 mg DHA daily (EXCO group), while the other group performed exercise only (EX group) and served as a control for this analysis. The O3I increased from 6·07 (sd 1·29) % at baseline to 7·37 (sd 1·10) % after 12 weeks within the EXCO group (P < 0·001), while there were no significant changes in the EX group (6·01 (sd 1·26)–6·15 (sd 1·32) %, P = 0·238). These data provide first evidence that wax ester-bound n-3 PUFA from CO can significantly increase the O3I despite relatively low EPA + DHA amounts. Further, the effects of exercise could be excluded.
Collapse
|