1
|
Li H, Zou L, Zheng J, Yang T. 12,13-diHOME attenuates high glucose-induced calcification of vascular smooth muscle cells through repressing CPT1A-mediated HMGB1 succinylation. Exp Cell Res 2024; 438:114031. [PMID: 38616032 DOI: 10.1016/j.yexcr.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Diabetes is closely associated with vascular calcification (VC). Exorbitant glucose concentration activates pro-calcific effects in vascular smooth muscle cells (VSMCs). This study enrolled 159 elderly patients with type 2 diabetes and divided them into three groups, T1, T2 and T3, according to brachial-ankle pulse wave velocity(BaPWV). There were statistically significant differences in the waist circumference, waist hip ratio, systolic blood pressure, 12,13-diHOME (a lipokin) concentration among T1, T2 and T3. 12,13-diHOME levels were positively correlated to high density lipoprotein cholesterol and total cholesterol, but negatively correlated to with waist circumference, waist hip ratio, systolic blood pressure and baPWV. Studies in vitro showed that 12,13-diHOME effectively inhibits calcification in VSMCs under high glucose conditions. Notably, 12,13-diHOME suppressed the up-regulation of carnitine O-palmitoyltransferase 1 (CPT1A) and CPT1A-induced succinylation of HMGB1. The succinylation of HMGB1 at the K90 promoted the protein stability and induced the enrichment of HMGB1 in cytoplasm, which induced the calcification in VSMCs. Together, 12,13-diHOME attenuates high glucose-induced calcification in VSMCs through repressing CPT1A-mediated HMGB1 succinylation.
Collapse
MESH Headings
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Carnitine O-Palmitoyltransferase/metabolism
- Carnitine O-Palmitoyltransferase/genetics
- HMGB1 Protein/metabolism
- Glucose/metabolism
- Glucose/pharmacology
- Male
- Aged
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Female
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Cells, Cultured
Collapse
Affiliation(s)
- Huahua Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Geriatric, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lingling Zou
- Department of Geriatric, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jin Zheng
- Department of Geriatric, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
3
|
Watanabe S, Souza FDC, Kusumoto I, Shen Q, Nitin N, Lein PJ, Taha AY. Intraperitoneally injected d11-11(12)-epoxyeicosatrienoic acid is rapidly incorporated and esterified within rat plasma and peripheral tissues but not the brain. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102622. [PMID: 38954932 DOI: 10.1016/j.plefa.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
Epoxyeicosatrienoic acids (EpETrEs) are bioactive lipid mediators of arachidonic acid cytochrome P450 oxidation. In vivo, the free (unbound) form of EpETrEs regulate multiple processes including blood flow, angiogenesis and inflammation resolution. Free EpETrEs are thought to rapidly degrade via soluble epoxide hydrolase (sEH); yet, in many tissues, the majority of EpETrEs are esterified to complex lipids (e.g. phospholipids) suggesting that esterification may play a major role in regulating free, bioactive EpETrE levels. This hypothesis was tested by quantifying the metabolism of intraperitoneally injected free d11-11(12)-Epoxyeicosatrienoic acid (d11-11(12)-EpETrE) in male and female rats. Plasma and tissues (liver, adipose and brain) were obtained 3 to 4 min later and assayed for d11-11(12)-EpETrE and its sEH metabolite, d11-11,12-dihydroxyeicosatrienoic acid (d11-11,12-diHETrE) in both the free and esterified lipid fractions. In both males and females, the majority of injected tracer was recovered in liver followed by plasma and adipose. No tracer was detected in the brain, indicating that brain levels are maintained by endogenous synthesis from precursor fatty acids. In plasma, liver, and adipose, the majority (>54 %) of d11-11(12)-EpETrE was found esterified to phospholipids or neutral lipids (triglycerides and cholesteryl esters). sEH-derived d11-11,12-diHETrE was not detected in plasma or tissues, suggesting negligible conversion within the 3-4 min period post tracer injection. This study shows that esterification is the main pathway regulating free 11(12)-EpETrE levels in vivo.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, 9800845, Japan
| | - Felipe Da Costa Souza
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Ibuki Kusumoto
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, 9800845, Japan
| | - Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Nitin Nitin
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA; MIND Institute, University of California-Davis, 2825 50th Street, Sacramento, CA 95817
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
5
|
Elgendy SA, Soliman MM, Ghamry HI, Shukry M, Mohammed LA, Nasr HE, Alotaibi BS, Jafri I, Sayed S, Osman A, Elnoury HA. Exploration of Tilmicosin Cardiotoxicity in Rats and the Protecting Role of the Rhodiola rosea Extract: Potential Roles of Cytokines, Antioxidant, Apoptotic, and Anti-Fibrotic Pathways. TOXICS 2023; 11:857. [PMID: 37888707 PMCID: PMC10610616 DOI: 10.3390/toxics11100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Tilmicosin (TIL) is a common macrolide antibiotic in veterinary medicine. High doses of TIL can have adverse cardiovascular effects. This study examined the effects of Rhodiola rosea (RHO) that have anti-inflammatory, antioxidant, and anti-fibrotic effects on tilmicosin (TIL)-induced cardiac injury targeting anti-inflammatory, antioxidant, apoptotic, and anti-apoptotic signaling pathways with anti-fibrotic outcomes. Thirty-six male Wistar albino rats were randomly divided into groups of six rats each. Rats received saline as a negative control, CARV 1 mL orally (10 mg/kg BW), and RHO 1 mL orally at 400 mg/kg BW daily for 12 consecutive days. The TIL group once received a single subcutaneous injection (SC) dose of TIL (75 mg/kg BW) on the sixth day of the experiment to induce cardiac damage. The standard group (CARV + TIL) received CARV daily for 12 consecutive days with a single TIL SC injection 1 h after CARV administration only on the sixth day of study and continued for another six successive days on CARV. The protective group (RHO + TIL) received RHO daily for the same period as in CARV + TIL-treated rats and with the dosage mentioned before. Serum was extracted at the time of the rat's scarification at 13 days of study and examined for biochemical assessments in serum lactate dehydrogenase (LDH), cardiac troponin I (cTI), and creatine phosphokinase (CK-MB). Protein carbonyl (PC) contents, malondialdehyde (MDA), and total antioxidant capacity (TAC) in cardiac homogenate were used to measure these oxidative stress markers. Quantitative RT-PCR was used to express interferon-gamma (INF-γ), cyclooxygenase-2 (COX-2), OGG1, BAX, caspase-3, B-cell lymphoma-2 (Bcl-2), and superoxide dismutase (SOD) genes in cardiac tissues, which are correlated with inflammation, antioxidants, and apoptosis. Alpha-smooth muscle actin (α-SMA), calmodulin (CaMKII), and other genes associated with Ca2+ hemostasis and fibrosis were examined using IHC analysis in cardiac cells (myocardium). TIL administration significantly increased the examined cardiac markers, LDH, cTI, and CK-MB. TIL administration also increased ROS, PC, and MDA while decreasing antioxidant activities (TAC and SOD mRNA) in cardiac tissues. Serum inflammatory cytokines and genes of inflammatory markers, DNA damage (INF-γ, COX-2), and apoptotic genes (caspase-3 and BAX) were upregulated with downregulation of the anti-apoptotic gene Bcl-2 as well as the DNA repair OGG1 in cardiac tissues. Furthermore, CaMKII and α-SMA genes were upregulated at cellular levels using cardiac tissue IHC analysis. On the contrary, pretreatment with RHO and CARV alone significantly decreased the cardiac injury markers induced by TIL, inflammatory and anti-inflammatory cytokines, and tissue oxidative-antioxidant parameters. INF-γ, COX-2, OGG1, BAX, and caspase-3 mRNA were downregulated, as observed by real-time PCR, while SOD and Bcl-2 mRNA were upregulated. Furthermore, the CaMKII and α-SMA genes' immune reactivities were significantly decreased in the RHO-pretreated rats.
Collapse
Affiliation(s)
- Salwa A. Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira Osman
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Heba A. Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
6
|
Tsuji T, Tseng YH. Adipose tissue-derived lipokines in metabolism. Curr Opin Genet Dev 2023; 81:102089. [PMID: 37473635 PMCID: PMC10528474 DOI: 10.1016/j.gde.2023.102089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Adipose tissue is a crucial regulator of metabolism with functions that include energy storage and dissipation as well as the secretion of bioactive molecules. As the largest endocrine organ in the body, the adipose tissue produces diverse bioactive molecules, including peptides, metabolites, and extracellular vesicles, which communicate with and modulate the function of other organs. In recent years, lipid metabolites, also known as lipokines, have emerged as key signaling molecules that actively participate in multiple metabolic processes. This review highlights the latest advances in adipose tissue-derived lipokines and their underlying cellular and molecular functions. Furthermore, we offer our perspective on the future directions for adipose-derived bioactive lipids and potential therapeutic implications for obesity and its associated complications.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Zaghlool SB, Halama A, Stephan N, Gudmundsdottir V, Gudnason V, Jennings LL, Thangam M, Ahlqvist E, Malik RA, Albagha OME, Abou-Samra AB, Suhre K. Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population. Nat Commun 2022; 13:7121. [PMID: 36402758 PMCID: PMC9675829 DOI: 10.1038/s41467-022-34754-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes (T2D) has a heterogeneous etiology influencing its progression, treatment, and complications. A data driven cluster analysis in European individuals with T2D previously identified four subtypes: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild obesity-related (MOD), and mild age-related (MARD) diabetes. Here, the clustering approach was applied to individuals with T2D from the Qatar Biobank and validated in an independent set. Cluster-specific signatures of circulating metabolites and proteins were established, revealing subtype-specific molecular mechanisms, including activation of the complement system with features of autoimmune diabetes and reduced 1,5-anhydroglucitol in SIDD, impaired insulin signaling in SIRD, and elevated leptin and fatty acid binding protein levels in MOD. The MARD cluster was the healthiest with metabolomic and proteomic profiles most similar to the controls. We have translated the T2D subtypes to an Arab population and identified distinct molecular signatures to further our understanding of the etiology of these subtypes.
Collapse
Affiliation(s)
- Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nisha Stephan
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Emma Ahlqvist
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Omar M E Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
9
|
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, Bukhman YV. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes. BMC Biol 2022; 20:245. [DOI: 10.1186/s12915-022-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
Conclusions
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
Collapse
|
10
|
Mousa A, Huynh K, Ellery SJ, Strauss BJ, Joham AE, de Courten B, Meikle PJ, Teede HJ. Novel Lipidomic Signature Associated With Metabolic Risk in Women With and Without Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2022; 107:e1987-e1999. [PMID: 34971378 DOI: 10.1210/clinem/dgab931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Dyslipidemia is a feature of polycystic ovary syndrome (PCOS) and may augment metabolic dysfunction in this population. OBJECTIVE Using comprehensive lipidomic profiling and gold-standard metabolic measures, we examined whether distinct lipid biomarkers were associated with metabolic risk in women with and without PCOS. METHODS Using preexisting data and biobanked samples from 76 women (n = 42 with PCOS), we profiled > 700 lipid species by mass spectrometry. Lipids were compared between women with and without PCOS and correlated with direct measures of adiposity (dual x-ray absorptiometry and computed tomography) and insulin sensitivity (hyperinsulinemic-euglycemic clamp), as well as fasting insulin, HbA1c, and hormonal parameters (luteinizing and follicle-stimulating hormones; total and free testosterone; sex hormone-binding globulin [SHBG]; and free androgen index [FAI]). Multivariable linear regression was used with correction for multiple testing. RESULTS Despite finding no differences by PCOS status, lysophosphatidylinositol (LPI) species esterified with an 18:0 fatty acid were the strongest lipid species associated with all the metabolic risk factors measured in women with and without PCOS. Across the cohort, higher concentrations of LPI(18:0) and lower concentrations of lipids containing docosahexaenoic acid (DHA, 22:6) n-3 polyunsaturated fatty acids were associated with higher adiposity, insulin resistance, fasting insulin, HbA1c and FAI, and lower SHBG. CONCLUSION Our data indicate that a distinct lipidomic signature comprising high LPI(18:0) and low DHA-containing lipids are associated with key metabolic risk factors that cluster in PCOS, independent of PCOS status. Prospective studies are needed to corroborate these findings in larger cohorts of women with varying PCOS phenotypes.
Collapse
Affiliation(s)
- Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Boyd J Strauss
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton VIC, Australia
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK, Australia
| | - Anju E Joham
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton VIC, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Macêdo APA, Muñoz VR, Cintra DE, Pauli JR. 12,13-diHOME as a new therapeutic target for metabolic diseases. Life Sci 2021; 290:120229. [PMID: 34914931 DOI: 10.1016/j.lfs.2021.120229] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/23/2023]
Abstract
Lipokines are bioactive compounds, derived from adipose tissue depots, that control several molecular signaling pathways. Recently, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxylipin, has gained prominence in the scientific literature. An increase in circulating 12,13-diHOME has been associated with improved metabolic health, and the action of this molecule appears to be mediated by brown adipose tissue (BAT). Scientific evidence indicates that the increase in serum levels of 12,13-diHOME caused by stimuli such as physical exercise and exposure to cold may favor the absorption of fatty acids by brown adipose tissue and stimulate the browning process in white adipose tissue (WAT). Thus, strategies capable of increasing 12,13-diHOME levels may be promising for the prevention and treatment of obesity and metabolic diseases. This review explores the relationship of 12,13-diHOME with brown adipose tissue and its role in the metabolic health context, as well as the signaling pathways involved between 12,13-diHOME and BAT.
Collapse
Affiliation(s)
- Ana Paula Azevêdo Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
12
|
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int J Mol Sci 2021; 22:ijms222111453. [PMID: 34768884 PMCID: PMC8584056 DOI: 10.3390/ijms222111453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease can progress to end-stage chronic renal disease (ESRD), which requires the use of replacement therapy (dialysis or kidney transplant) in life-threatening conditions. In ESRD, irreversible changes in the kidneys are associated with systemic changes of proinflammatory nature and dysfunctions of internal organs, skeletal muscles, and integumentary tissues. The common components of ESRD pathogenesis, regardless of the initial nosology, are (1) local (in the kidneys) and systemic chronic low-grade inflammation (ChLGI) as a risk factor for diabetic kidney disease and its progression to ESRD, (2) inflammation of the classical type characteristic of primary and secondary autoimmune glomerulonephritis and infectious recurrent pyelonephritis, as well as immune reactions in kidney allograft rejection, and (3) chronic systemic inflammation (ChSI), pathogenetically characterized by latent microcirculatory disorders and manifestations of paracoagulation. The development of ChSI is closely associated with programmed hemodialysis in ESRD, as well as with the systemic autoimmune process. Consideration of ESRD pathogenesis from the standpoint of the theory of general pathological processes opens up the scope not only for particular but also for universal approaches to conducting pathogenetic therapies and diagnosing and predicting systemic complications in severe nephropathies.
Collapse
|
13
|
Pergande MR, Amoroso VG, Nguyen TTA, Li W, Vice E, Park TJ, Cologna SM. PPARα and PPARγ Signaling Is Enhanced in the Brain of the Naked Mole-Rat, a Mammal that Shows Intrinsic Neuroprotection from Oxygen Deprivation. J Proteome Res 2021; 20:4258-4271. [PMID: 34351155 DOI: 10.1021/acs.jproteome.1c00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Naked mole-rats (NMRs) are a long-lived animal that do not develop age-related diseases including neurodegeneration and cancer. Additionally, NMRs have a profound ability to consume reactive oxygen species (ROS) and survive long periods of oxygen deprivation. Here, we evaluated the unique proteome across selected brain regions of NMRs at different ages. Compared to mice, we observed numerous differentially expressed proteins related to altered mitochondrial function in all brain regions, suggesting that the mitochondria in NMRs may have adapted to compensate for energy demands associated with living in a harsh, underground environment. Keeping in mind that ROS can induce polyunsaturated fatty acid peroxidation under periods of neuronal stress, we investigated docosahexaenoic acid (DHA) and arachidonic acid (AA) peroxidation under oxygen-deprived conditions and observed that NMRs undergo DHA and AA peroxidation to a far less extent compared to mice. Further, our proteomic analysis also suggested enhanced peroxisome proliferator-activated receptor (PPAR)-retinoid X receptor (RXR) activation in NMRs via the PPARα-RXR and PPARγ-RXR complexes. Correspondingly, we present several lines of evidence supporting PPAR activation, including increased eicosapetenoic and omega-3 docosapentaenoic acid, as well as an upregulation of fatty acid-binding protein 3 and 4, known transporters of omega-3 fatty acids and PPAR activators. These results suggest enhanced PPARα and PPARγ signaling as a potential, innate neuroprotective mechanism in NMRs.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vince G Amoroso
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wenping Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Emily Vice
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
14
|
Dilworth L, Facey A, Omoruyi F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int J Mol Sci 2021; 22:ijms22147644. [PMID: 34299261 PMCID: PMC8305176 DOI: 10.3390/ijms22147644] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many approaches have been used in the effective management of type 2 diabetes mellitus. A recent paradigm shift has focused on the role of adipose tissues in the development and treatment of the disease. Brown adipose tissues (BAT) and white adipose tissues (WAT) are the two main types of adipose tissues with beige subsets more recently identified. They play key roles in communication and insulin sensitivity. However, WAT has been shown to contribute significantly to endocrine function. WAT produces hormones and cytokines, collectively called adipocytokines, such as leptin and adiponectin. These adipocytokines have been proven to vary in conditions, such as metabolic dysfunction, type 2 diabetes, or inflammation. The regulation of fat storage, energy metabolism, satiety, and insulin release are all features of adipose tissues. As such, they are indicators that may provide insights on the development of metabolic dysfunction or type 2 diabetes and can be considered routes for therapeutic considerations. The essential roles of adipocytokines vis-a-vis satiety, appetite, regulation of fat storage and energy, glucose tolerance, and insulin release, solidifies adipose tissue role in the development and pathogenesis of diabetes mellitus and the complications associated with the disease.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Aldeam Facey
- Mona Academy of Sport, Mona Campus, University of the West Indies, Kingston 7, Jamaica;
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Correspondence:
| |
Collapse
|
15
|
Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines 2021; 9:biomedicines9060643. [PMID: 34200091 PMCID: PMC8226770 DOI: 10.3390/biomedicines9060643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with the development of microcephaly, intrauterine growth restriction, and ocular damage in the fetus. ZIKV infection of the placenta plays a crucial role in the vertical transmission from the maternal circulation to the fetus. Our previous study suggested that ZIKV induces endoplasmic reticulum (ER) stress and apoptosis of placental trophoblasts. Here, we showed that palmitoleate, an omega-7 monounsaturated fatty acid, prevents ZIKV-induced ER stress and apoptosis in placental trophoblasts. Human trophoblast cell lines (JEG-3 and JAR) and normal immortalized trophoblasts (HTR-8) were used. We observed that ZIKV infection of the trophoblasts resulted in apoptosis and treatment of palmitoleate to ZIKV-infected cells significantly prevented apoptosis. However, palmitate (saturated fatty acid) did not offer protection from ZIKV-induced ER stress and apoptosis. We also observed that the Zika viral RNA copies were decreased, and the cell viability improved in ZIKV-infected cells treated with palmitoleate as compared to the infected cells without palmitoleate treatment. Further, palmitoleate was shown to protect against ZIKV-induced upregulation of ER stress markers, C/EBP homologous protein and X-box binding protein-1 splicing in placental trophoblasts. In conclusion, our studies suggest that palmitoleate protects placental trophoblasts against ZIKV-induced ER stress and apoptosis.
Collapse
|
16
|
Astudillo AM, Meana C, Bermúdez MA, Pérez-Encabo A, Balboa MA, Balsinde J. Release of Anti-Inflammatory Palmitoleic Acid and Its Positional Isomers by Mouse Peritoneal Macrophages. Biomedicines 2020; 8:biomedicines8110480. [PMID: 33172033 PMCID: PMC7694668 DOI: 10.3390/biomedicines8110480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Positional isomers of hexadecenoic acid are considered as fatty acids with anti-inflammatory properties. The best known of them, palmitoleic acid (cis-9-hexadecenoic acid, 16:1n-7), has been identified as a lipokine with important beneficial actions in metabolic diseases. Hypogeic acid (cis-7-hexadecenoic acid, 16:1n-9) has been regarded as a possible biomarker of foamy cell formation during atherosclerosis. Notwithstanding the importance of these isomers as possible regulators of inflammatory responses, very little is known about the regulation of their levels and distribution and mobilization among the different lipid pools within the cell. In this work, we describe that the bulk of hexadecenoic fatty acids found in mouse peritoneal macrophages is esterified in a unique phosphatidylcholine species, which contains palmitic acid at the sn-1 position, and hexadecenoic acid at the sn-2 position. This species markedly decreases when the macrophages are activated with inflammatory stimuli, in parallel with net mobilization of free hexadecenoic acid. Using pharmacological inhibitors and specific gene-silencing approaches, we demonstrate that hexadecenoic acids are selectively released by calcium-independent group VIA phospholipase A2 under activation conditions. While most of the released hexadecenoic acid accumulates in free fatty acid form, a significant part is also transferred to other phospholipids to form hexadecenoate-containing inositol phospholipids, which are known to possess growth-factor-like-properties, and are also used to form fatty acid esters of hydroxy fatty acids, compounds with known anti-diabetic and anti-inflammatory properties. Collectively, these data unveil new pathways and mechanisms for the utilization of palmitoleic acid and its isomers during inflammatory conditions, and raise the intriguing possibility that part of the anti-inflammatory activity of these fatty acids may be due to conversion to other lipid mediators.
Collapse
Affiliation(s)
- Alma M. Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (A.M.A.); (C.M.); (M.A.B.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (A.M.A.); (C.M.); (M.A.B.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Miguel A. Bermúdez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (A.M.A.); (C.M.); (M.A.B.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alfonso Pérez-Encabo
- Instituto CINQUIMA, Departamento de Química Orgánica, Universidad de Valladolid, 47011 Valladolid, Spain;
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (A.M.A.); (C.M.); (M.A.B.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (A.M.A.); (C.M.); (M.A.B.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
17
|
Xu Q, Qi W, Zhang Y, Wang Q, Ding S, Han X, Zhao Y, Song X, Zhao T, Zhou L, Ye L. DNA methylation of JAK3/STAT5/PPARγ regulated the changes of lipid levels induced by di (2-ethylhexyl) phthalate and high-fat diet in adolescent rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30232-30242. [PMID: 32451896 DOI: 10.1007/s11356-020-08976-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) and high-fat diet (HFD) could induce lipid metabolic disorder. This study was undertaken to identify the effect of DNA methylation of JAK3/STAT5/PPARγ on lipid metabolic disorder induced by DEHP and HFD. Wistar rats were divided into a normal diet (ND) group and HFD group. Each diet group treated with DEHP (0, 5, 50, 500 mg/kg/d) for 8 weeks' gavage. The DNA-methylated levels of PPARγ, JAK3, STAT5a, and STAT5b in rats' livers and adipose were analyzed with MethylTarget. The lipid levels of rats' livers and adipose were detected with ELISA. Results showed in ND group that the DNA methylation levels of PPARγ, JAK3 in livers, and STAT5b in adipose were lower in 500 mg/kg/d group than the control. And the level of total cholesterol (TC) in adipose was higher in 500 mg/kg/d group than the control. In HFD group, the DNA methylation level of JAK3 was the lowest in livers and the highest in adipose in 50 mg/kg/d group. And the level of TC in livers was the lowest in 50 mg/kg/d group. In the 500 mg/kg/d group, the DNA methylation level of STAT5b was lower in livers and higher in adipose in HFD group than that in ND group. And the levels of TC in livers were lower in HFD group than those in ND group. Therefore, DNA methylation of JAK3/STAT5/PPARγ regulated the changes in lipid levels induced by DEHP and HFD in adolescent rats.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
18
|
Dugail I, Amri EZ, Vitale N. High prevalence for obesity in severe COVID-19: Possible links and perspectives towards patient stratification. Biochimie 2020; 179:257-265. [PMID: 32649962 PMCID: PMC7340594 DOI: 10.1016/j.biochi.2020.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
It is becoming obvious that in addition to aging and various hearth pathologies, excess of body weight, especially obesity is a major risk factor for severity of COVID-19 infection. Intriguingly the receptor for SARS-CoV-2 is ACE2, a member of the angiotensin receptor family that has a relatively large tissue distribution. This observation likely explains the multitude of symptoms that have been described from human patients. The adipose tissue also expresses ACE2, suggesting that adipocytes are potentially infected by SARS-CoV-2. Here we discuss some of the potential contribution of the adipose tissue to the severity of the infection and propose some aspects of obese patients metabolic phenotyping to help stratification of individuals with high risk of severe disease.
Collapse
Affiliation(s)
- Isabelle Dugail
- UMRS 1269 INSERM/Sorbonne University, Nutriomics, Faculté de médecine Pitié-Salpêtrière, F-75013, Paris, France; Member of the scientific council of the Groupe d'Etude et de Recherche en Lipidomique (GERLI), France
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France; Member of the scientific council of the Groupe d'Etude et de Recherche en Lipidomique (GERLI), France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France; Member of the scientific council of the Groupe d'Etude et de Recherche en Lipidomique (GERLI), France.
| |
Collapse
|
19
|
Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. Neurotoxicology 2020; 80:76-86. [PMID: 32585290 DOI: 10.1016/j.neuro.2020.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Indiscriminate overuse or occupational exposure to agricultural chemicals can lead to neurotoxicity. Many pesticides act to impair mitochondrial function which can lead to exacerbation of neurodegeneration. Triazole fungicides are applied to grain, fruit, and vegetable crops to combat mold and fungi and their use is increasing worldwide. Here, we assessed the in vitro toxicity of two widely used triazole fungicides, propiconazole and tebuconazole, to mitochondria using differentiated SH-SY5Y neuroblastoma cells as an in vitro cell model used in Parkinson's disease research. Cell viability (based on ATP levels), mitochondrial membrane potential, oxidative respiration, and reactive oxygen species (ROS) were measured following fungicide treatments. Cell viability was decreased with 100 μM propiconazole after 24 and 48 h, while tebuconazole required higher doses to affect viability (-200 μM at 24 h). Mitochondrial membrane potential (MMP) was reduced with 50 μM propiconazole after 24 h while 200 μM tebuconazole reduced MMP. Oxidative respiration of SH-SY5Y cells was then measured using a XFe24 Flux analyzer and 100 μM propiconazole reduced basal respiration, oligomycin-induced ATP production, and FCCP-induced maximum respiration by -40-50%, while tebuconazole did not affect mitochondrial bioenergetics at the concentrations tested. Acute exposure to 100 μM propiconazole over 4 h did not immediately affect oxidative respiration in SH-SY5Y cells. ROS were not induced by propiconazole and tebuconazole up to 100 and 300 μM respectively. Based on these results, we focused our lipidomics investigations on SH-SY5Y exposed only to propiconazole, as lipid dysregulation is associated with mitochondrial dysfunction. Both 50 and 100 μM propiconazole altered the abundance of some ceramides, specifically reducing glucosylceramide non-hydroxyfatty acid-sphingosine (HexCer-NS) and increasing N-stearoyl-phytosphingosine (CerNP). Moreover, a recently discovered bioactive lipid called fatty acid ester of hydroxy fatty acid (FAHFA) was increased 5-fold, hypothesized to be a neuroprotective mechanism that has been demonstrated in other studies of human diseases. Additional lipids reduced in abundance included oxidized phosphatidylcholine (OxPC) and oxidized phosphatidylethanolamine (OxPE). There were no changes in cellular triacylglycerols nor total lipids with exposure to propiconazole. Taken together, this study provides insight into the toxicity of triazole fungicides in neuronal cells, which has implications for neurodegenerative diseases that involve the mitochondria such as Parkinson's disease.
Collapse
|
20
|
Adipose tissue depot differences in adipokines and effects on skeletal and cardiac muscle. Curr Opin Pharmacol 2020; 52:1-8. [PMID: 32387807 DOI: 10.1016/j.coph.2020.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
White (WAT) and brown (BAT) adipose tissue communicate with skeletal muscle and heart through the secretion of adipokines (adiponectin, leptin, omentin, osteopontin or cardiotrophin-1) and batokines (BMP8b, FGF-21, endothelin-1 or IL-6), respectively. Furthermore, several bioactive lipids termed lipokines [palmitoleate (C16:1n7) or 12,13-diHOME] and microRNAs capsuled in exosomes (miR-27a, miR122, miR-130b, miR-155, miR-200a or miR-320d) secreted from white and brown adipocytes also influence the skeletal and cardiac muscle function. The review focuses on the depot-related differences in adipose tissue-derived signals (adipokines, batokines, lipokines and exosomal miRNAs) and their impact on skeletal muscle under physiological conditions as well as in obesity. The relevance of regular physical activity and exercise on fat depot-specific adaptations to improve metabolic health will also be addressed.
Collapse
|
21
|
Ding J, Kind T, Zhu QF, Wang Y, Yan JW, Fiehn O, Feng YQ. In-Silico-Generated Library for Sensitive Detection of 2-Dimethylaminoethylamine Derivatized FAHFA Lipids Using High-Resolution Tandem Mass Spectrometry. Anal Chem 2020; 92:5960-5968. [PMID: 32202765 PMCID: PMC8168918 DOI: 10.1021/acs.analchem.0c00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are a family of recently discovered lipids with important physiological functions in mammals and plants. However, low detection sensitivity in negative ionization mode mass spectrometry makes low-abundance FAHFA challenging to analyze. A 2-dimethylaminoethylamine (DMED) based chemical derivatization strategy was recently reported to improve the MS sensitivity of FAHFAs by labeling FAHFAs with a positively ionizable tertiary amine group. To facilitate reliable, high-throughput, and automatic annotation of these compounds, a DMED-FAHFA in silico library containing 4290 high-resolution tandem mass spectra covering 264 different FAHFA classes was developed. The construction of the library was based on the heuristic information from MS/MS fragmentation patterns of DMED-FAHFA authentic standards, and then, the patterns were applied to computer-generated DMED-FAHFAs. The developed DMED-FAHFA in silico library was demonstrated to be compatible with library search software NIST MS Search and the LC-MS/MS data processing tool MS-DIAL to guarantee high-throughput and automatic annotations. Applying the in silico library in Arabidopsis thaliana samples for profiling FAHFAs by high-resolution LC-MS/MS enabled the annotation of 19 DMED-FAHFAs from 16 families, including 3 novel compounds. Using the in silico library largely decreased the false-positive annotation rate in comparison to low-resolution LC-MS/MS. The developed library, MS/MS spectra, and development templates are freely available for commercial and noncommercial use at https://zenodo.org/record/3606905.
Collapse
Affiliation(s)
- Jun Ding
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Tobias Kind
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| | - Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jing-Wen Yan
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|