1
|
Wang N, Cui J, Sun Z, Chen F, He X. Exploring the protective effect and molecular mechanism of betulin in Alzheimer's disease based on network pharmacology, molecular docking and experimental validation. Mol Med Rep 2024; 30:232. [PMID: 39392030 PMCID: PMC11529172 DOI: 10.3892/mmr.2024.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs learning and memory, with high rates of mortality. Birch bark has been traditionally used in the treatment of various skin ailments. Betulin (BT) is a key compound of birch bark that exhibits diverse pharmacological benefits and therapeutic potential in AD. However, the therapeutic effects and molecular mechanisms of BT in AD remain unclear. The present study aimed to predict the potential therapeutic targets of BT in the treatment of AD, and to determine the specific underlying molecular mechanisms through network pharmacology analysis and experimental validation. PharmMapper was used to predict the target genes of BT, and four disease databases were searched to screen for AD targets. The intersection targets were identified using the jveen website. Drug‑disease target protein‑protein interaction networks and hub genes were obtained and visualized using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape. The Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and AutoDock was used for molecular docking analysis of BT and hub genes. Subsequently, the network‑predicted mechanisms of BT in AD were verified in vitro. A total of 495 BT and 1,386 AD targets were identified, and 120 were identified as potential targets of BT in the treatment of AD. The results of the molecular docking analysis revealed a strong binding affinity between BT and the hub genes. In addition, enrichment analyses of GO and KEGG pathways indicated that the neuroprotective effects of BT mainly involved the 'PI3K‑Akt signaling pathway'. The results of in vitro experiments demonstrated that pretreatment with BT for 2 h may ameliorate formaldehyde (FA)‑induced cytotoxicity and morphological changes in HT22 cells, and decrease FA‑induced Tau hyperphosphorylation and reactive oxygen species levels. Furthermore, the PI3K/AKT signaling pathway was activated and the expression levels of downstream proteins, namely GSK3β, Bcl‑2 and Bax, were modified following pre‑treatment with BT. Overall, the results of network pharmacology and in vitro analyses revealed that BT may reduce FA‑induced AD‑like pathology by modulating the PI3K/AKT signaling pathway, highlighting it as a potential multi‑target drug for the treatment of AD.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Brain and Cognitive Science, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671003, P.R. China
| | - Jiali Cui
- Yunnan Institute of Materia Medica, Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, Yunnan 650111, P.R. China
| | - Ziteng Sun
- Laboratory of Brain and Cognitive Science, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671003, P.R. China
| | - Fan Chen
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu 214151, P.R. China
- Laboratory of Heart Disease Mechanism and Translational Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaping He
- Laboratory of Brain and Cognitive Science, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671003, P.R. China
| |
Collapse
|
2
|
Zhou Y, Zhou R, Wang N, Zhao T, Qiu P, Gao C, Chang M, Lin N, Zhang X, Li JZ, Wang Q. Inhibition of STRA6 suppresses NSCLC growth via blocking STAT3/SREBP-1c axis-mediated lipogenesis. Mol Cell Biochem 2024:10.1007/s11010-024-05085-y. [PMID: 39168951 DOI: 10.1007/s11010-024-05085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Stimulated by retinoic acid 6 (STRA6), a vitamin A transporter has shown to be involved in the pathogenesis of cancers. Nevertheless, the function of STRA6 in non-small cell lung cancer (NSCLC) progression remains undefined. We obtained cancer and adjacent tissues from NSCLC patients and conducted functional experiments on STRA6 on NSCLC cell lines and mice. High STRA6 expression is correlated with poor prognosis in patients with NSCLC. Results from in vitro and in vivo animal studies showed that STRA6 knockdown suppressed the proliferation, migration, and invasion of NSCLC cells in vitro and tumor growth in vivo through regulation of lipid synthesis. Mechanistically, STRA6 activated a Janus kinase 2/signal transducer and activator of transcription 3 (JAK2-STAT3) signaling cascade which inducing the expression of STAT3 target gene. By inducing the expression of the target gene of STAT3, sterol regulatory element binding protein 1 (SREBP-1), STRA6 promotes SREBP-1-mediated adipogenesis and provides energy for NSCLC cell growth. Our study uncovers a novel STRA6/STAT3/SREBP-1 regulatory axis that enhances NSCLC metastasis by reprogramming of lipid metabolism. These results demonstrate the potential use of STRA6 as a biomarker for diagnosing NSCLC, which may therefore potentially serve as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Rong Zhou
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Tingfeng Zhao
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Pan Qiu
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chenzi Gao
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Meijia Chang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Lin
- NHC Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, 210036, Jiangsu, China
| | - Xu Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Yang Y, Huang L, Gao J, Qian B. Salvianolic acid B inhibits the growth and metastasis of A549 lung cancer cells through the NDRG2/PTEN pathway by inducing oxidative stress. Med Oncol 2024; 41:170. [PMID: 38847902 DOI: 10.1007/s12032-024-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024]
Abstract
Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.
Collapse
Affiliation(s)
- Ye Yang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Lei Huang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jie Gao
- Clinical Pharmacology Laboratory, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Bingjun Qian
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Li F, Wan X, Li Z, Zhou L. High glucose inhibits autophagy and promotes the proliferation and metastasis of colorectal cancer through the PI3K/AKT/mTOR pathway. Cancer Med 2024; 13:e7382. [PMID: 38872380 PMCID: PMC11176572 DOI: 10.1002/cam4.7382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the most prevalent malignancies worldwide, characterized by its complex etiology and slow research progress. Diabetes, as an independent risk factor for CRC, has been widely certified. Consequently, this study centers on elucidating the intricacies of CRC cells initiation and progression within a high-glucose environment. METHODS A battery of assays was employed to assess the proliferation and metastasis of CRC cells cultured under varying glucose concentrations. Optimal glucose levels conducive to cells' proliferation and migration were identified. Western blot analyses were conducted to evaluate alterations in apoptosis, autophagy, and EMT-related proteins in CRC cells under high-glucose conditions. The expression of PI3K/AKT/mTOR pathway-associated proteins was assessed using western blot. The effect of high glucose on xenograft growth was investigated in vivo by MC38 cells, and changes in inflammatory factors (IL-4, IL-13, TNF-α, IL-5, and IL-12) were measured via serum ELISA. RESULTS Our experiments demonstrated that elevated glucose concentrations promoted both the proliferation and migration of CRC cells; the most favorable glucose dose is 20 mM. Western blot analyses revealed a decrease in apoptotic proteins, such as Bim, Bax, and caspase-3 with increasing glucose levels. Concurrently, the expression of EMT-related proteins, including N-cadherin, vimentin, ZEB1, and MMP9, increased. High-glucose cultured cells exhibited elevated levels of PI3K/AKT/mTOR pathway proteins. In the xenograft model, tumor cells stimulated by high glucose exhibited accelerated growth, larger tumor volumes, and heightened KI67 expression of immunohistochemistry. ELISA experiments revealed higher expression of IL-4 and IL-13 and lower expression of TNF-α and IL-5 in the serum of high-glucose-stimulated mice. CONCLUSION The most favorable dose and time for tumor cells proliferation and migration is 20 mM, 48 h. High glucose fosters CRC cell proliferation and migration while suppressing autophagy through the activation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xing Wan
- Department of Pharmacology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Chen Y, Jiang Y, Li X, Huang H, Zhou Y, Zhang C, Wang S, Bohnenberger H, Gao Y. Identification of a novel prognostic signature based on vitamin metabolism clustering-related genes in lung adenocarcinoma. Transl Lung Cancer Res 2024; 13:1084-1100. [PMID: 38854940 PMCID: PMC11157371 DOI: 10.21037/tlcr-24-245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Background Vitamins, and their metabolic processes play essential regulatory roles in controlling proliferation, differentiation, and growth in carcinogenesis. However, the role of vitamin metabolism in lung adenocarcinoma (LUAD) has rarely been reported. Here, we established a novel prognostic model based on vitamin metabolism-related genes in LUAD. Methods In this research, we aimed to identify vitamin metabolism associated with differentially expressed genes (DEGs) in LUAD utilizing The Cancer Genome Atlas (TCGA)-LUAD, GSE68465 and GSE72094 data. Unsupervised clustering classified patients into distinct subgroups. By utilizing least absolute shrinkage and selection operator (LASSO)-Cox regression analysis, vitamin metabolism-related genes could be used to construct prognostic model. Then the vitamin metabolism gene-related risk score (VRS) was calculated based on best cut-off splitting. Kaplan-Meier analysis, time-dependent receiver operating characteristic (ROC) analysis, univariate and multivariate Cox analyses, chemotherapeutic drugs sensitivity analysis, immune infiltration analysis and nomogram were conducted to verify our models' accuracy. Finally, CPS1 was identified as a relevant diagnostic marker using Random Forests algorithms, single-cell RNA sequencing data was used to confirm its expression. Results We investigated the relationship between vitamin metabolism patterns, overall survival (OS), and immune infiltration levels of patients with LUAD. A prognostic signature consisting of 11 genes was developed, which was able to classify patients into high and low VRS groups. Through gene enrichment analysis, cell cycle was mainly enriched. Compared to the low VRS group, the high VRS group exhibited poorer OS, as demonstrated by the Kaplan-Meier survival analysis. Furthermore, VRS was identified as an independent predictor of poor prognosis and poor OS, as indicated by both univariate and multivariate Cox regression analyses. Additionally, a nomogram was constructed to improve the accuracy of survival predictions in LUAD patients. We also found that the two groups of patients might respond differently to immune targets and anti-tumor drugs. CPS1 was identified as a relevant diagnostic marker and the expression was also as confirmed by single-cell RNA sequencing data. Conclusions Overall, our findings suggest that vitamin metabolism can influence the prognosis of LUAD patients, and our prognostic signature represents a potentially helpful resource for predicting patient outcomes and informing clinical decision-making.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Jiang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xionghui Li
- Department of Critical Medicine, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Hong Huang
- Department of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chenzi Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shunjun Wang
- Department of Chest Surgery, Qinghai Red Cross Hospital, Xining, China
| | | | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Hao Y, Liu T, Zhou H, Xu R, Li K, Chen M, Chen Y. Oxygen-supplying ROS-responsive prodrug for synergistic chemotherapy and photodynamic therapy of colon cancer. Front Pharmacol 2024; 15:1325544. [PMID: 38420201 PMCID: PMC10900137 DOI: 10.3389/fphar.2024.1325544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: The synergistic treatment of chemotherapy and photodynamic therapy (PDT) has remarkable potential in cancer therapy. However, challenges remain, such as unstable chemotherapeutic drug release, suboptimal targeting, and reduced efficacy of PDT under hypoxic conditions commonly found in solid tumors. Methods: To address these issues, we use camptothecin (CPT) and pheophorbide a (Pa) incorporated through the functional thioketal, which serves as the reactive oxygen species (ROS)-responsive trigger, to construct a ROS-responsive prodrug (CPT-TK-Pa). Subsequently, we co-loaded it with a platinum nanozyme (PtNP) in distearylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) to obtain the ROS-responsive prodrug nanoparticle (CPT-TK-Pa/Pt NP). Results and Discussion: Specifically, the incorporated PtNP within CPT-TK-Pa/Pt NP positively catalyzes the conversion of hydrogen peroxide (H2O2) to oxygen, thereby ameliorating the hypoxic state of the tumor. This enhanced oxygen generation could replenish the oxygen that is consumed by Pa during 660 nm exposure, enabling controlled CPT release and amplifying the photodynamic response. In vitro investigations reveal the potency of CPT-TK-Pa/Pt NPs in inhibiting colon tumor cells. Given its ROS-responsive release mechanism and enhanced PDT efficacy, CPT-TK-Pa/Pt NP has the potential to be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
- West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Tailuo Liu
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zhou
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Runhao Xu
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwen Chen
- West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Yu F, Li L, Gu Y, Wang S, Zhou L, Cheng X, Jiang H, Huang Y, Zhang Y, Qian W, Li X, Liu Z. Lysine demethylase 5C inhibits transcription of prefoldin subunit 5 to activate c-Myc signal transduction and colorectal cancer progression. Mol Med 2024; 30:9. [PMID: 38216914 PMCID: PMC10785505 DOI: 10.1186/s10020-023-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism. METHODS Bioinformatics tools were employed to predict the target genes of KDM5C in CRC. The expression levels of KDM5C and prefoldin subunit 5 (PFDN5) in CRC cells were determined by RT-qPCR and western blot assays. The interaction between KDM5C, H3K4me3, and PFDN5 was validated by chromatin immunoprecipitation. Expression and prognostic values of KDM5C and PFDN5 in CRC were analyzed in a cohort of 72 patients. The function of KDM5C/PFDN5 in c-Myc signal transduction was analyzed by luciferase assay. Silencing of KDM5C and PFDN5 was induced in CRC cell lines to analyze the cell malignant phenotype in vitro and tumorigenic activity in nude mice. RESULTS KDM5C exhibited high expression, while PFDN5 displayed low expression in CRC cells and clinical CRC samples. High KDM5C levels correlated with poor survival and unfavorable clinical presentation, whereas elevated PFDN5 correlated with improved patient outcomes. KDM5C mediated demethylation of H3K4me3 on the PFDN5 promoter, suppressing its transcription and thereby enhancing the transcriptional activity of c-Myc. KDM5C knockdown in CRC cells suppressed cell proliferation, migration and invasion, epithelial-mesenchymal transition, and tumorigenic activity while increasing autophagy and apoptosis rates. However, the malignant behavior of cells was restored by the further silencing of PFDN5. CONCLUSION This study demonstrates that KDM5C inhibits PFDN5 transcription, thereby activating c-Myc signal transduction and promoting CRC progression.
Collapse
Affiliation(s)
- Fulong Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Liang Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Yimei Gu
- Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, People's Republic of China
| | - Song Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Lianbang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Xiaohu Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Heng Jiang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yang Huang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yingfeng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Wenbao Qian
- Department of Molecular Pathology, Hefei Da'an Medical Laboratory Co., Ltd., Hefei, 230012, Anhui, People's Republic of China
| | - Xianghua Li
- Department of Molecular Pathology, Hefei Da'an Medical Laboratory Co., Ltd., Hefei, 230012, Anhui, People's Republic of China.
| | - Zhining Liu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Lu YH, Huang YF, Hsieh CP, Chen JK, Chen HY, Chuang SM. Betulin Accelerated the Functional Recovery of Injured Muscle in a Mouse Model of Muscle Contusion. Int J Med Sci 2024; 21:37-44. [PMID: 38164348 PMCID: PMC10750331 DOI: 10.7150/ijms.87649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Muscle contusion is an injury to muscle fibers and connective tissues. It commonly happens in impact events, and could result in pain, swelling, and limited range of motion. Diclofenac is one of commonly used nonsteroidal anti-inflammatory drugs to alleviate pain and inflammation after injury. However, it can potentially cause some side effects including gastrointestinal complications and allergy. Betulin is a lupine-type pentacyclic triterpenoid. It is showed to have valuable pharmacological effects, but the physiological effect of betulin on muscle contusion has not been reported. This study aimed to explore the therapeutic effects of betulin on muscle contusion that produced by the drop-mass method in mice. C57BL/6 mice were randomly assigned to control (no injury), only drop-mass injury (Injury), diclofenac treatment (Injury+diclofenac), and betulin treatment (Injury+betulin) groups. Injury was executed on the gastrocnemius of the right hind limb, and then phosphate-buffered saline (PBS), diclofenac, or betulin were oral gavage administrated respectively for 7 days. Results revealed that betulin significantly restored motor functions based on locomotor activity assessments, rota-rod test, and footprints analysis. Betulin also attenuated serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels after muscle injury. Neutrophil infiltration was alleviated and desmin levels were increased after betulin treatment. Our data demonstrated that betulin attenuated muscle damage, alleviated inflammatory response, improved muscle regeneration, and restored motor functions after muscle contusion. Altogether, betulin may be a potential compound to accelerate the repair of injured muscle.
Collapse
Affiliation(s)
- Yueh-Hsiu Lu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Yi-Fu Huang
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Cheng-Pu Hsieh
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, 50006, Taiwan
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, 50006, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Kinesiology, Health and Leisure Studies, Chien Kuo Technology University, Changhua, 50094, Taiwan
| | - Jr-Kai Chen
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Hsuan-Ying Chen
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Law, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
9
|
Zheng Q, Wang X, Gao T, Zhang B, Zhao N, Du R, Zhao Z. Exploring the pharmacological and molecular mechanisms of Salvia chinensis Benth in colorectal cancer: A network pharmacology and molecular docking study. Medicine (Baltimore) 2023; 102:e36602. [PMID: 38115259 PMCID: PMC10727650 DOI: 10.1097/md.0000000000036602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
While Salvia chinensis Benth (commonly known as "Shijianchuan" in Chinese, and abbreviated as SJC) is commonly used in adjuvant therapy for colorectal cancer (CRC) in traditional Chinese medicine, its mechanism of action remains unclear. In this study, Initially, we examined the impact of SJC on CRC cells in an in vitro setting. Next, we initially retrieved the primary active components and targets of SJC from databases such as TCMSP and existing literature. Subsequently, we integrated differential gene expression data from the GEO database and collected CRC-related targets from resources like DisGeNET. The matching of these datasets enabled the identification of SJC-CRC targets. We constructed a protein-protein interaction network and identified core targets through topological analysis. GO and KEGG enrichment analyses were performed using clusterProfiler. We established networks linking traditional Chinese medicine components to targets and core targets to signaling pathways. Additionally, we performed molecular docking to validate interactions between the main compounds and targets, and employed Western blot analysis to explore how the major components of SJC affect crucial signaling pathways. In this study, SJC inhibited the viability of HCT-116 and HT-29 cells. We identified a total of 11 active components in SJC along with 317 target genes. Among these, there were 8612 target genes associated with CRC, and we successfully matched 276 SJC-CRC target genes. Through topological analysis of the protein-protein interaction network, we pinpointed 20 core targets. It was revealed that SJC effects are linked to genes governing processes like cell apoptosis, proliferation, hypoxia, oxidative stress, and signaling pathways such as PI3K-Akt through GO and KEGG pathway enrichment analyses. Additionally, we applied molecular docking techniques and observed that the majority of active compounds displayed robust binding affinity with the selected targets. In vitro experiments suggested that SJC and its key component, Ursolic acid, may exert its anti-CRC effects by modulating the core PI3K/AKT signaling pathway through inhibiting the phosphorylation of the target Akt1. This discovery is consistent with the predictions derived from network pharmacology methods. This study marks the inaugural utilization of bioinformatics methods in conjunction with in vitro experiments to comprehensively investigate the pharmacological and molecular mechanisms responsible for SJC anti-CRC effects.
Collapse
Affiliation(s)
- Qian Zheng
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Wang
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tian Gao
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingzhou Zhang
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Zhao
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Runsen Du
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of CRC Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
11
|
Ding LF, Hu GX, Liu YY, Wang QH, Li ZJ, Shen MX, Zhu GF, Wu XD, Su J. Eudesmane-type sesquiterpenoids from the aerial parts of Artemisia lavandulaefolia and their anti-pancreatic cancer activities. PHYTOCHEMISTRY 2023; 216:113871. [PMID: 37777165 DOI: 10.1016/j.phytochem.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Five undescribed eudesmane sesquiterpenoids, artemilavanins A-E, and one undescribed rearranged eudesmane sesquiterpenoid, artemilavanin F, were isolated from the 95% ethanol extract of the aerial parts of Artemisia lavandulaefolia DC., along with ten known compounds. The structures and configurations of undescribed compounds were mainly elucidated by spectroscopic analyses and single-crystal X-ray diffraction analysis. Among all isolated compounds, artemilavanin F exhibited inhibitory activity on PANC-1 pancreatic cancer cells with IC50 of 9.69 ± 2.39 μM. Artemilavanin F inhibited PANC-1 cell proliferation by induction of G2/M cell cycle arrest and apoptosis mediated by downregulation of cyclin-dependent kinases and accumulation of reactive oxygen species. Moreover, artemilavanin F inhibited the colony formation, cell migration and sphere formation of PANC-1 cells, indicating the suppression of stem-cell-like phenotype of PANC-1 cells. Further results confirmed that the expression of cancer stem cell markers such as Bmi1, CD44, CD133 were inhibited by artemilavanin F. Downregulation of epithelial-mesenchymal transition (EMT) markers such as N-cadherin and Oct-4 indicated the potential of artemilavanin F in prevention of metastasis.
Collapse
Affiliation(s)
- Lin-Fen Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guo-Xian Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yu-Yao Liu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qiu-Hua Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhang-Juan Li
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Meng-Xia Shen
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Gui-Fa Zhu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China
| | - Xing-De Wu
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Jia Su
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
12
|
Song WJ, Zhang F, Wang ZY, Wang ZS, Wang BY, Jia JR. Colorectal cancer mouse metastasis model combining bioluminescent and micro-computed tomography imaging for monitoring the effects of 5-fluorouracil treatment. Transl Cancer Res 2023; 12:2572-2581. [PMID: 37969373 PMCID: PMC10643956 DOI: 10.21037/tcr-23-522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/21/2023] [Indexed: 11/17/2023]
Abstract
Background Colorectal cancer (CRC) is the fifth most fatal cancer with a low probability of surgery and limited treatment options, especially in metastatic CRC. In this study, we investigated whether a mouse model of metastatic CRC mimicked tumor progression and evaluated the effect of 5-fluorouracil (5-FU) treatment. Methods The CT26 mouse derived CRC cancer cell line was inoculated into mice, and the tumor bearing mice were divided into two groups: the experimental group and the control group. Micro-computed tomography (CT) and in vivo fluorescence were used to monitor the progression of metastatic CRC. A lung metastasis mouse model was employed to determine the effects of 5-FU on metastasis. Results Bioluminescence imaging (BLI) and computed tomography (CT), as non-invasive methods, can continuously monitor the growth of tumors in vivo. Thus, imaging techniques can be used to qualitatively and quantitatively evaluate tumor growth indicators. 5-FU injected intravenously reduced the viability of metastatic CRC cells and resulted in prolonged survival compared to the control group. Moreover, the 5-FU-treated group had significantly reduced fluorescence of the CT26 cells in the lung. The results observed by BLI and CT are consistent with the tissue morphology and structure presented in pathological examination. Conclusions In summary, a successful mouse model of CRC metastasis for clinical application has been established.
Collapse
Affiliation(s)
- Wei-Jie Song
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fan Zhang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhi-Yong Wang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhao-Song Wang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bi-Yun Wang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jun-Rong Jia
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
13
|
Yulak F, Filiz AK, Joha Z, Ergul M. Mechanism of anticancer effect of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor on HT-29 Cells. Med Oncol 2023; 40:341. [PMID: 37891359 DOI: 10.1007/s12032-023-02221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The PI3K pathway plays a crucial role in tumor cell proliferation across various cancers, including colon cancer, making it a promising treatment target. This study aims to investigate the antiproliferative activity of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor, on colon cancer and elucidate the underlying mechanisms. HT-29 colon cancer cells were treated with varying doses of ETP 45658 and its cytotoxic effect assessed using the XTT cell viability assay.ELISA was also used to measure TAS, TOS, Bax, BCL-2, cleaved caspase 3, cleaved PARP, and 8-oxo-dG levels. Flow cytometry was performed to investigate apoptosis, cell cycle, caspase 3/7 activity, and mitochondrial membrane potential. Additionally, following the administration of DAPI (4,6-diamidino-2-phenylindole) dye, the cells were visualized using an immunofluorescence microscope. It was observed that ETP-45658 exerted a dose-dependent and statistically significant antiproliferative effect on HT-29 colon cancer cells. Further investigations using the IC50 dose showed that ETP-45658 decreased TAS levels and increased TOS levels and revealed that it upregulated apoptotic proteins while downregulating anti-apoptotic proteins. Our findings also showed that it increased Annexin V binding, arrested the cell cycle at G0/G1 phase, induced caspase 3/7 activity, impaired mitochondrial membrane potential, and ultimately triggered apoptosis in HT-29 cells. ETP-45658 shows promise against colon cancer by inducing cell death, and oxidative stress, and arresting the cell cycle. Targeting the PI3K/AKT/mTOR pathway with ETP-45658 offers exciting potential for colon cancer treatment.
Collapse
Affiliation(s)
- Fatih Yulak
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Zıad Joha
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
14
|
Xu M, Yang M. DDX52 gene expression in LUAD tissues indicates potential as a prognostic biomarker and therapeutic target. Sci Rep 2023; 13:17434. [PMID: 37833424 PMCID: PMC10575940 DOI: 10.1038/s41598-023-44347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related morbidity and mortality globally. While DDX52, an ATP-dependent RNA helicase, plays a role in several biological processes, its specific involvement in LUAD is yet to be elucidated. We utilized ROC curves to determine DDX52's predictive potential for LUAD. Kaplan-Meier survival curves, along with univariate and multivariate Cox analyses, assessed the prognostic implications of DDX52 in LUAD. We constructed nomogram models to further delineate DDX52's influence on prognosis, employed GSEA for functional analysis, and used qRT-PCR to examine DDX52 expression in LUAD tissues. DDX52 expression was notably higher in LUAD tissues, suggesting its potential as a negative prognostic marker. We observed a direct relationship between DDX52 expression and advanced T and N stages, as well as higher grading and staging in LUAD patients. Cox analyses further underscored DDX52's role as an independent prognostic determinant for LUAD. GSEA insights indicated DDX52's influence on LUAD progression via multiple signaling pathways. Our nomogram, founded on DDX52 expression, effectively projected LUAD patient survival, as validated by calibration curves. Elevated DDX52 expression in LUAD tissues signals its potential as a poor prognostic marker. Our findings emphasize DDX52's role not only as an independent prognostic factor for LUAD but also as a significant influencer in its progression through diverse signaling pathways. The constructed nomogram also underscores the feasibility of predicting LUAD patient survival based on DDX52 expression.
Collapse
Affiliation(s)
- Mingming Xu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Mingjun Yang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| |
Collapse
|
15
|
Chen YT, Chen SJ, Hu CY, Dong CD, Chen CW, Singhania RR, Hsieh SL. Exploring the Anti-Cancer Effects of Fish Bone Fermented Using Monascus purpureus: Induction of Apoptosis and Autophagy in Human Colorectal Cancer Cells. Molecules 2023; 28:5679. [PMID: 37570647 PMCID: PMC10419882 DOI: 10.3390/molecules28155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Fish bone fermented using Monascus purpureus (FBF) has total phenols and functional amino acids that contribute to its anti-oxidant and anti-inflammatory properties. Colorectal cancer, one of the most prevalent cancers and the third largest cause of death worldwide, has become a serious threat to global health. This study investigates the anti-cancer effects of FBF (1, 2.5 or 5 mg/mL) on the cell growth and molecular mechanism of HCT-116 cells. The HCT-116 cell treatment with 2.5 or 5 mg/mL of FBF for 24 h significantly decreased cell viability (p < 0.05). The S and G2/M phases significantly increased by 88-105% and 25-43%, respectively (p < 0.05). Additionally, FBF increased the mRNA expression of caspase 8 (38-77%), protein expression of caspase 3 (34-94%), poly (ADP-ribose) polymerase (PARP) (31-34%) and induced apoptosis (236-773%) of HCT-116 cells (p < 0.05). FBF also increased microtubule-associated protein 1B light chain 3 (LC3) (38-48%) and phosphoinositide 3 kinase class III (PI3K III) (32-53%) protein expression, thereby inducing autophagy (26-52%) of HCT-116 cells (p < 0.05). These results showed that FBF could inhibit HCT-116 cell growth by inducing S and G2/M phase arrest of the cell cycle, apoptosis and autophagy. Thus, FBF has the potential to treat colorectal cancer.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Shu-Jen Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan;
| | - Chun-Yi Hu
- Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan;
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (C.-D.D.); (C.-W.C.); (R.R.S.)
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (C.-D.D.); (C.-W.C.); (R.R.S.)
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (C.-D.D.); (C.-W.C.); (R.R.S.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| |
Collapse
|
16
|
Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023; 13:1105. [PMID: 37509141 PMCID: PMC10377123 DOI: 10.3390/biom13071105] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Erguang Li
- Medical School, Nanjing University, Nanjing, 22 Hankou Road, Nanjing 210093, China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
17
|
Li YJ, Tang DX, Yan HT, Yang B, Yang Z, Long FX. Network pharmacology and molecular docking-based analyses to predict the potential mechanism of Huangqin decoction in treating colorectal cancer. World J Clin Cases 2023; 11:4553-4566. [PMID: 37469733 PMCID: PMC10353508 DOI: 10.12998/wjcc.v11.i19.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND To analyze the potential action mechanism of Huangqin decoction (HQD) in colorectal cancer (CRC) treatment on the basis of network pharmacology and molecular docking.
AIM To investigate the molecular mechanisms of HQD for CRC treatment by using network pharmacology and molecular docking.
METHODS All HQD active ingredients were searched using the Systematic Pharmacology and Traditional Chinese Medicine Systems Pharmacology databases and the Bioinformatics Analysis Tool for Molecular Mechanisms in traditional Chinese medicine. Then, the targets of the active ingredients were screened. The abbreviations of protein targets were obtained from the UniProt database. A “drug–compound–target” network was constructed to screen for some main active ingredients. Some targets related to the therapeutic effect of CRC were obtained from the GeneCards, DisGeNET, Therapeutic Target Database, and Online Mendelian Inheritance in Man databases. The intersection of targets of Chinese herbs and CRC was taken. A Venn diagram was drawn to construct the intersection target interactions network by referring to the STRING database. Topological analysis of the protein interaction network was performed using Cytoscape 3.7.2 software to screen the core HQD targets for CRC. The core targets were imported into the DAVID 6.8 analysis website for gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and visualization. Finally, molecular docking was performed using AutoDockTool and PyMOL for validation.
RESULTS In total, 280 potential drug-active ingredients were present in HQD, including 1474 targets of the drug-active ingredients. The main active ingredients identified were betulin, tetrahydropalmatine, and quercetin. In total, 10249 CRC-related targets and 1014 drug-disease intersecting targets were identified, including 28 core targets of action such as Jun proto-oncogene, AP-1 transcription factor subunit, signal transducer and activator of transcription 3, tumor protein p53, vascular endothelial growth factor, and AKT serine/threonine kinase 1. The gene ontology enrichment functional analysis yielded 503 enrichment results, including 406 biological processes that were mainly related to the positive regulation of both gene expression and transcription and cellular response to hypoxia, etc. In total, 38 cellular components were primarily related to polymer complexes, transcription factor complexes, and platelet alpha granule lumen. Then, 59 molecular functions were closely related to the binding of enzymes, homologous proteins, and transcription factors. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 139 enrichment results, involving epidermal growth factor receptor tyrosine kinase inhibitor resistance and HIF-1 and mitogen-activated protein kinase signaling pathways.
CONCLUSION HQD can play a role in CRC treatment through the “multi-component-target–pathway”. The active ingredients betulin, tetrahydropalmatine, and quercetin may act on targets such as Jun proto-oncogene, AP-1 transcription factor subunit, signal transducer and activator of transcription 3, tumor protein p53, vascular endothelial growth factor, and AKT serine/threonine kinase 1, which in turn regulate HIF-1 and mitogen-activated protein kinase signaling pathways in CRC treatment. The molecular docking junction clarified that all four key target proteins could bind strongly to the main HQD active ingredients. This indicates that HQD could slow down CRC progression by modulating multiple targets and signaling pathways.
Collapse
Affiliation(s)
- Ying-Jie Li
- Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550005, Guizhou Province, China
| | - Dong-Xin Tang
- Digestive Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, China
| | - Hong-Ting Yan
- Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, China
| | - Bing Yang
- Digestive Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, China
| | - Zhu Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, China
| | - Feng-Xi Long
- Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang 550001, Guizhou Province, China
| |
Collapse
|
18
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
19
|
Cheng Y, Zhong X, Nie X, Gu H, Wu X, Li R, Wu Y, Lv K, Leung GPH, Fu C, Lee SMY, Zhang J, Li J. Glycyrrhetinic acid suppresses breast cancer metastasis by inhibiting M2-like macrophage polarization via activating JNK1/2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154757. [PMID: 37011418 DOI: 10.1016/j.phymed.2023.154757] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Breast cancer metastasis is leading cause of cancer death among women worldwide. Tumor-associated macrophages (TAMs) have been considered as potential targets for treating breast cancer metastasis because they promote tumor growth and development. Glycyrrhetinic acid (GA) is one of the most important phytochemicals of licorice which has shown promising anti-cancer efficacies in pre-clinical trials. However, the regulatory effect of GA on the polarization of TAMs remains elusive. PURPOSE To investigate the role of GA in regulating the polarization of M2 macrophages and inhibiting breast cancer metastasis, and to further explore its underlying mechanisms of action. STUDY DESIGN IL-4 / IL-13-treated RAW 264.7 and THP-1 cells were used as the M2-polarized macrophages in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were applied to study the effect of GA on breast cancer growth and metastasis in vivo. RESULTS In vitro studies showed that GA significantly inhibited IL-4 / IL 13-induced M2-like polarization in RAW 264.7 and THP-1 macrophages without affecting M1-like polarization. GA strongly decreased the expression of M2 macrophage markers CD206 and Arg-1, and reduced the levels of the pro-angiogenic molecules VEGF, MMP9, MMP2 and IL-10 in M2 macrophages. GA also increased the phosphorylation of JNK1/2 in M2 macrophages. Moreover, GA significantly suppressed M2 macrophage-induced cell proliferation and migration in 4T1 cancer cells and HUVECs. Interestingly, the inhibitory effects of GA on M2 macrophages were abolished by a JNK inhibitor. Animal studies showed that GA significantly suppressed tumor growth, angiogenesis, and lung metastasis in BALB/c mice bearing breast tumor. In tumor tissues, GA reduced the number of M2 macrophages but elevated the proportion of M1 macrophages, accompanied by activation of JNK signaling. Similar results were found in the tail vein breast cancer metastasis model. CONCLUSION This study demonstrated for the first time that GA could effectively suppress breast cancer growth and metastasis by inhibiting macrophage M2 polarization via activating JNK1/2 signaling. These findings indicate that GA could be served as the lead compound for the future development of anti-breast cancer drug.
Collapse
Affiliation(s)
- Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Ying P, Xu Y, Jiang X, Wang K, Xue Y, Wang Q, Ding W, Dai X. Analysis of the regulatory role of miR-34a-5p/PLCD3 in the progression of osteoarthritis. Funct Integr Genomics 2023; 23:131. [PMID: 37079115 DOI: 10.1007/s10142-023-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Osteoarthritis is a heterogeneous disease with a complex etiology. However, there is no effective treatment strategy at present. The purpose of this study was to explore the miRNA‒mRNA regulatory network and molecular mechanism that regulate the progression of osteoarthritis. In this article, we downloaded datasets (GSE55457, GSE82107, GSE143514 and GSE55235) from Gene Expression Omnibus (GEO) to screen differentially expressed mRNAs in osteoarthritis. Then, through weighted gene coexpression network (WGCNA), functional enrichment, protein‒protein interaction (PPI) network, miRNA‒mRNA coexpression network, ROC curve, and immune infiltration analyses and qPCR, the mRNA PLCD3, which was highly expressed in osteoarthritis and had clinical predictive value, was screened. We found that PLCD3 directly targets miR-34a-5p through DIANA and dual-luciferase experiments. The expression levels of PLCD3 and miR-34a-5p were negatively correlated. In addition, CCK-8 and wound healing assays showed that the miR-34a-5p mimic inhibited hFLS-OA cell proliferation and promoted hFLS-OA cell migration. PLCD3 overexpression showed the opposite trend. Western blotting further found that overexpression of miR-34a-5p reduced the protein expression levels of p-PI3K and p-AKT, while overexpression of PLCD3 showed the opposite trend. In addition, combined with the effect of the PI3K/AKT pathway inhibitor BIO (IC50 = 5.95 μM), the results showed that overexpression of miR-34a-5p increased the inhibitory effects of BIO on p-PI3K and p-AKT protein expression, while overexpression of PLCD3 significantly reversed these inhibitory effects. Overall, the miR-34a-5p/PLCD3 axis may mediate the PI3K/AKT pathway in regulating cartilage homeostasis in synovial osteoarthritis. These data indicate that miR-34a-5p/PLCD3 may be a new prognostic factor in the pathology of synovial osteoarthritis.
Collapse
Affiliation(s)
- Pu Ying
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Kejie Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Xue
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Wenge Ding
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyu Dai
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
21
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Betulin Acid Ester Derivatives Inhibit Cancer Cell Growth by Inducing Apoptosis through Caspase Cascade Activation: A Comprehensive In Vitro and In Silico Study. Int J Mol Sci 2022; 24:ijms24010196. [PMID: 36613643 PMCID: PMC9820118 DOI: 10.3390/ijms24010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Betulin, or naturally occurring triterpene, possesses promising antiproliferative activity. To further explore this potential, thirty-eight betulin acid ester derivatives modified at the C-28 position were tested for antitumor activities. Four human cancer cell lines, MV4-11 (leukemia), A549 (lung), PC-3 (prostate), MCF-7 (breast) as well as the normal BALB/3T3 (mouse fibroblasts) cell line were examined using MTT and SRB assays. A few derivatives exhibited strong antiproliferative activity with IC50 values between 2 and 5 µM. Subsequent mechanistic studies revealed that some derivatives induced apoptosis by inducing caspase-3/7 activity. A strong structure-activity correlation of tested compounds has been proposed along with experimental and in silico pharmacokinetic properties.
Collapse
|
23
|
Chae HS, Hong ST. Overview of Cancer Metabolism and Signaling Transduction. Int J Mol Sci 2022; 24:12. [PMID: 36613455 PMCID: PMC9819818 DOI: 10.3390/ijms24010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the remarkable progress in cancer treatment up to now, we are still far from conquering the disease. The most substantial change after the malignant transformation of normal cells into cancer cells is the alteration in their metabolism. Cancer cells reprogram their metabolism to support the elevated energy demand as well as the acquisition and maintenance of their malignancy, even in nutrient-poor environments. The metabolic alterations, even under aerobic conditions, such as the upregulation of the glucose uptake and glycolysis (the Warburg effect), increase the ROS (reactive oxygen species) and glutamine dependence, which are the prominent features of cancer metabolism. Among these metabolic alterations, high glutamine dependency has attracted serious attention in the cancer research community. In addition, the oncogenic signaling pathways of the well-known important genetic mutations play important regulatory roles, either directly or indirectly, in the central carbon metabolism. The identification of the convergent metabolic phenotypes is crucial to the targeting of cancer cells. In this review, we investigate the relationship between cancer metabolism and the signal transduction pathways, and we highlight the recent developments in anti-cancer therapy that target metabolism.
Collapse
Affiliation(s)
- Hee-Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 561-712, Jeonnbuk, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeonju 561-712, Jeonnbuk, Republic of Korea
| |
Collapse
|
24
|
Zhang X, Huang H, Sun S, Li D, Sun L, Li Q, Chen R, Lai X, Zhang Z, Zheng X, Wong WL, Wen S. Induction of Apoptosis via Inactivating PI3K/AKT Pathway in Colorectal Cancer Cells Using Aged Chinese Hakka Stir-Fried Green Tea Extract. Molecules 2022; 27:molecules27238272. [PMID: 36500365 PMCID: PMC9737789 DOI: 10.3390/molecules27238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiying Huang
- Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China
| | - Shili Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (W.-L.W.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (W.-L.W.); (S.W.)
| |
Collapse
|
25
|
Rzepka Z, Bębenek E, Chrobak E, Wrześniok D. Synthesis and Anticancer Activity of Indole-Functionalized Derivatives of Betulin. Pharmaceutics 2022; 14:2372. [PMID: 36365190 PMCID: PMC9694481 DOI: 10.3390/pharmaceutics14112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Pentacyclic triterpenes, including betulin, are widespread natural products with various pharmacological effects. These compounds are the starting material for the synthesis of substances with promising anticancer activity. The chemical modification of the betulin scaffold that was carried out as part of the research consisted of introducing the indole moiety at the C-28 position. The synthesized new 28-indole-betulin derivatives were evaluated for anticancer activity against seven human cancer lines (A549, MDA-MB-231, MCF-7, DLD-1, HT-29, A375, and C32). It was observed that MCF-7 breast cancer cells were most sensitive to the action of the 28-indole-betulin derivatives. The study shows that the lup-20(29)-ene-3-ol-28-yl 2-(1H-indol-3-yl)acetate caused the MCF-7 cells to arrest in the G1 phase, preventing the cells from entering the S phase. The performed cytometric analysis of DNA fragmentation indicates that the mechanism of EB355A action on the MCF-7 cell line is related to the induction of apoptosis. An in silico ADMET profile analysis of EB355A and EB365 showed that both compounds are bioactive molecules characterized by good intestinal absorption. In addition, the in silico studies indicate that the 28-indole-betulin derivatives are substances of relatively low toxicity.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
26
|
HDAC8 Promotes Liver Metastasis of Colorectal Cancer via Inhibition of IRF1 and Upregulation of SUCNR1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2815187. [PMID: 36035205 PMCID: PMC9400431 DOI: 10.1155/2022/2815187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Histone deacetylases (HDACs) are well-characterized for their involvement in tumor progression. Herein, the current study set out to unravel the association of HDAC8 with colorectal cancer (CRC). Bioinformatics analyses were carried out to retrieve the expression patterns of HDAC8 in CRC and the underlying mechanism. Following expression determination, the specific roles of HDAC8, IRF1, and SUCNR1 in CRC cell functions were analyzed following different interventions. Additionally, tumor formation and liver metastasis in nude mice were operated to verify the fore experiment. Bioinformatics analyses predicted the involvement of the HDAC8/IRF1/SUCNR1 axis in CRC. In vitro cell experiments showed that HDAC8 induced the CRC cell growth by reducing IRF1 expression. Meanwhile, IRF1 limited SUCNR1 expression by binding to its promoter. SUCNR1 triggered the growth and metastasis of CRC by inhibiting cell autophagy. HDAC8 blocked IRF1-mediated SUCNR1 inhibition and thereby inhibited autophagy, accelerating CRC cell growth. Lastly, HDAC8 facilitated the development of CRC and liver metastasis by regulating the IRF1/SUCNR1 axis in vivo. Taken together, our findings highlighted the critical role for the HDAC8/IRF1/SUCNR1 axis in the regulation of autophagy and the resultant liver metastasis in CRC.
Collapse
|
27
|
Wang X, Qu T, Sun C, Wang M. Bisdemethoxycurcumin inhibits VEGF-induced HUVECs proliferation, migration and invasion through AMPK/mTOR pathway-dependent autophagy activation and cell cycle arrest. Biol Pharm Bull 2022; 45:1276-1282. [PMID: 35732438 DOI: 10.1248/bpb.b22-00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis, which plays a key role in the proliferation, migration and invasion of endothelial cell. Bisdemethoxycurcumin (BDMC) is a natural demethoxy curcumin derivative. In this study, we explored the mechanisms whereby BDMC is able to influence the proliferative, migratory and invasive activity of human umbilical vein endothelial cells (HUVECs) in response to VEGF treatment. These experiments revealed that BDMC at 10 and 20μM suppressed HUVECs proliferation in response to VEGF (10 ng/mL) without impacting the proliferation in absence of VEGF. BDMC treatment also signifantly suppressed VEGF-induced migratory and invasive activity in HUVECs. However, the selective AMPK inhibitor compound C (3 μM) treatment signifantly reversed all of these effects. Flow cytometric assay showed BDMC treatment was found to induce G0/G1 phase cell cycle arrest. Western blotting further indicated that BDMC treatment increased the ratios of p-AMPK/AMPK and LC3B/LC3A, up-regulated the expression of Beclin-1, decreased the ratio of p-mTOR/mTOR, down-regulated the expression of cyclin D1 and CDK4. Overall, these data suggested that BDMC may exert benefical effect on HUVECs activation by activating autophagy and inducing cell cycle arrest through regulation of the AMPK/mTOR pathway, which could provide a potential compound candidate for the treatment of diseases related to VEGF overproduction.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Tiantian Qu
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chuanfen Sun
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Mingyu Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
28
|
Hu K, Hu X, Duan Y, Li W, Qian J, Chen J. A Novel Overall Survival Prediction Signature Based on Comprehensive Research in Prostate Cancer Bone Metastases. Front Med (Lausanne) 2022; 9:815541. [PMID: 35783639 PMCID: PMC9243502 DOI: 10.3389/fmed.2022.815541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prostate adenocarcinoma (PRAD)-related bone metastases are a leading source of morbidity and mortality; however, good diagnostic biomarkers are not known yet. The aim of this study was to identify biomarkers and prognostic indicators for the diagnosis and treatment of PRAD-associated bone metastases. METHODS By combining the data from The Cancer Genome Atlas(TCGA) and PRAD SU2C 2019, We performed a comprehensive analysis of the expression differences, biological functions, and interactions of genes associated with PRAD bone metastasis. Annotation, visualization, and integrated discovery were accomplished through the use of gene ontology enrichment and gene set enrichment analysis. The protein-protein interaction network was constructed using the STRING database, and the diagnostic value of prognostic genes was validated using receiver-operating-characteristic and Kaplan-Meier curves. RESULTS Six genes (DDX47, PRL17, AS3MT, KLRK1, ISLR, and S100A8) associated with PRAD bone metastases were identified; these had prognostic value as well. Among them, enrichment was observed for the biological processes extracellular matrix tissue, extracellular structural tissue, steroid hormone response, and cell oxidative detoxification. KEGG analysis revealed enrichment in interactions with extracellular matrix receptors, diseases including Parkinson's disease and dilated cardiomyopathy, and estrogen signaling pathways. The area under the curve values of 0.8938, 0.9885, and 0.979, obtained from time-dependent receiver-operating-characteristic curve analysis for 1, 3, and 5-year overall survival confirmed the good performance of the model under consideration. S100A8 expression was not detected in the normal prostate tissue but was detected in PRAD. CONCLUSIONS We identified ISLR as a potential biomarker for PRAD bone metastasis. Moreover, the genes identified to have prognostic value may act as therapeutic targets for PRAD bone metastasis.
Collapse
Affiliation(s)
- Konghe Hu
- Department of Spine Surgery, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, China
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People's Hospital, Kunming Medical University, Kunming, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqiang Li
- Department of Spine Surgery, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, China
| | - Jing Qian
- Department of Clinical Laboratory, Kunming First People's Hospital, Kunming Medical University, Kunming, China
| | - Junjie Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Li Z, Si W, Jin W, Yuan Z, Chen Y, Fu L. Targeting autophagy in colorectal cancer: An update on pharmacological small-molecule compounds. Drug Discov Today 2022; 27:2373-2385. [PMID: 35589015 DOI: 10.1016/j.drudis.2022.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023]
Abstract
Autophagy, an evolutionarily highly conserved cellular degradation process, plays the Janus role (either cytoprotective or death-promoting) in colorectal cancer, so the targeting of several key autophagic pathways with small-molecule compounds may be a new therapeutic strategy. In this review, we discuss autophagy-associated cell death pathways and key cytoprotective autophagy pathways in colorectal cancer. Moreover, we summarize a series of small-molecule compounds that have the potential to modulate autophagy-associated cell death or cytoprotective autophagy for therapeutic purposes. Taken together, these findings demonstrate the Janus role of autophagy in colorectal cancer, and shed new light on the exploitation of a growing number of small-molecule compounds to target autophagy in future cancer drug discovery.
Collapse
Affiliation(s)
- Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Si
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong Special Administrative Region; Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhaoxin Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
30
|
Aljohani AI, Toss MS, El-Sharawy KA, Mirza S, Ball GR, Green AR, Rakha EA. Upregulation of Cyclin B2 ( CCNB2) in breast cancer contributes to the development of lymphovascular invasion. Am J Cancer Res 2022; 12:469-489. [PMID: 35261781 PMCID: PMC8899993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023] Open
Abstract
Lymphovascular invasion (LVI) is a key step in breast cancer (BC) metastasis. Targeting the molecular drivers of LVI can improve BC patients' management. However, the underlying molecular mechanisms of LVI are complex and interconnected with various carcinogenesis pathways. This study aimed to identify the key regulatory gene associated with LVI and to investigate its mechanisms of action and prognostic significance. Artificial neural network (ANN) was applied to two large transcriptomic datasets of BC with well-characterised LVI status. Cyclin B2 (CCNB2) was identified in the top genes associated with LVI positivity. In vitro functional assays were carried out to assess the role of CCNB2 in tumour cell behaviour and their interactions with endothelial cells using a panel of BC cell lines. Large annotated BC cohorts were used to assess the clinical and prognostic role of CCNB2 at the transcriptomic and protein levels. Knockdown (KD) of CCNB2 mRNA reduced BC cell migration, inhibited proliferation, blocked the G2/M transition during the cell cycle and increased the number of apoptotic cells. Importantly, KD of CCNB2 reduced BC cell lines adherence and transmigration across endothelial cell lines. High CCNB2 protein expression was independently associated with LVI positivity in addition to other features of aggressive behaviour, including larger tumour size, higher histological grade, hormonal receptor-negativity, and HER2-positivity, and with shorter survival. We conclude that CCNB2 plays a crucial role in LVI development in BC, implying that CCNB2 could confer a promising therapeutic target to inhibit LVI and reduce metastatic events.
Collapse
Affiliation(s)
- Abrar I Aljohani
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University ParkNottingham, UK
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif UniversityTaif, Saudi Arabia
| | - Michael S Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University ParkNottingham, UK
| | | | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmaha, USA
| | - Graham R Ball
- The John Van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent UniversityClifton Lane, Nottingham, UK
| | - Andrew R Green
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University ParkNottingham, UK
| | - Emad A Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, Nottingham Breast Cancer Research Centre, University of Nottingham Biodiscovery Institute, University ParkNottingham, UK
- Histopathology Department, Faculty of Medicine, Menoufia UniversityShibïn al-Kawm, Egypt
- Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital CampusHucknall Road, Nottingham, UK
| |
Collapse
|
31
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
32
|
Li Z, Liu C, Li C, Wang F, Liu J, Zheng Z, Wu J, Zhang B. Irinotecan/scFv co-loaded liposomes coaction on tumor cells and CAFs for enhanced colorectal cancer therapy. J Nanobiotechnology 2021; 19:421. [PMID: 34906155 PMCID: PMC8670172 DOI: 10.1186/s12951-021-01172-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.
Collapse
Affiliation(s)
- Zhaohuan Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, People's Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jianhao Liu
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Zengjuan Zheng
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China.
| |
Collapse
|
33
|
Wang K, Li B, Fan P, Ren X, Jiang H. Downregulation of DEAD-box helicase 21 (DDX21) inhibits proliferation, cell cycle, and tumor growth in colorectal cancer via targeting cell division cycle 5-like (CDC5L). Bioengineered 2021; 12:12647-12658. [PMID: 34903139 PMCID: PMC8810101 DOI: 10.1080/21655979.2021.2011636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/30/2022] Open
Abstract
Identification of novel anti-tumor target is crucial for cancer diagnosis, prognosis, and therapeutic strategy. The study aimed to explore the roles and interaction of DEAD-box helicase 21 (DDX21) and cell division cycle 5-like (CDC5L) in colorectal cancer (CRC) progression. Levels of DDX21 and CDC5L were detected in colorectal cancer cell lines by RT-qPCR and Western blot assay. The role of DDX21 and CDC5L on the cell proliferation, cell cycle and tumor growth were evaluated both in vitro and in vivo. The interaction of DDX21 and CDC5L was predicted by The STRING publicly available data and verified by immunoprecipitation. The results showed that DDX21 was dramatically upregulated in colorectal cancer cells. In vivo and in vitro experiments revealed that downregulation of DDX21 suppressed colorectal cancer cell proliferation, colony formation, cell cycle development, and tumor growth, while overexpression of CDC5L reversed the suppressive effects of DDX21 silencing. Furthermore, DDX21 interacted with CDC5L to exert the tumor-promoting effects in CRC. In summary, the data indicate a novel role for DDX21/CDC5L in the development of CRC, which enrich the therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Baosong Li
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Peng Fan
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Xiang Ren
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Hong Jiang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
34
|
Ma JT, Li DW, Liu JK, He J. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:573-609. [PMID: 34595735 PMCID: PMC8599787 DOI: 10.1007/s13659-021-00319-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 05/03/2023]
Abstract
Kiwi, a fruit from plants of the genus Actinidia, is one of the famous fruits with thousand years of edible history. In the past twenty years, a great deal of research has been done on the chemical constituents of the Actinidia species. A large number of secondary metabolites including triterpenoids, flavonoids, phenols, etc. have been identified from differents parts of Actinidia plants, which exhibited significant in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, neuroprotective, anti-oxidative, anti-bacterial, and anti-diabetic activities. In order to fully understand the chemical components and biological activities of Actinidia plants, and to improve their further research, development and utilization, this review summarizes the compounds extracted from different parts of Actinidia plants since 1959 to 2020, classifies the types of constituents, reports on the pharmacological activities of relative compounds and medicinal potentials.
Collapse
Affiliation(s)
- Jin-Tao Ma
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Da-Wei Li
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
35
|
Zakrzewski M, Wilkins SJ, Helman SL, Brilli E, Tarantino G, Anderson GJ, Frazer DM. Supplementation with Sucrosomial® iron leads to favourable changes in the intestinal microbiome when compared to ferrous sulfate in mice. Biometals 2021; 35:27-38. [PMID: 34697758 PMCID: PMC8803775 DOI: 10.1007/s10534-021-00348-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Iron deficiency is one of the most common nutritional deficiencies worldwide and is often treated with oral iron supplements. However, commonly used supplements, including those based on ferrous iron salts, are associated with gastrointestinal side effects and unfavorable changes in the intestinal microbiome. Sucrosomial® iron is a novel iron formulation that is effective at treating iron deficiency, and with fewer gastrointestinal side effects, yet its effect on the gut microbiome has not been examined previously. Thus, we treated mice for two weeks with diets containing either Sucrosomial® iron or ferrous sulfate as the sole iron source and examined bacterial communities in the intestine using 16S Microbial Profiling of DNA extracted from feces collected both prior to and following dietary treatment. Mice treated with Sucrosomial® iron showed an increase in Shannon diversity over the course of the study. This was associated with a decrease in the abundance of the phylum Proteobacteria, which contains many pathogenic species, and an increase in short chain fatty acid producing bacteria such as Lachnospiraceae, Oscillibacter and Faecalibaculum. None of these changes were observed in mice treated with ferrous sulfate. These results suggest that Sucrosomial® iron may have a beneficial effect on the intestinal microbiome when compared to ferrous sulfate and that this form of iron is a promising alternative to ferrous iron salts for the treatment of iron deficiency.
Collapse
Affiliation(s)
- Martha Zakrzewski
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sarah J Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Herston, QLD, 4029, Australia.,Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | | | | | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Herston, QLD, 4029, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, Australia. .,School of Biomedical Sciences, The Queensland University of Technology, Gardens Point, Brisbane, Australia.
| |
Collapse
|
36
|
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, Jinga M. Growth Factors, PI3K/AKT/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? Int J Mol Sci 2021; 22:ijms221910260. [PMID: 34638601 PMCID: PMC8508474 DOI: 10.3390/ijms221910260] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant malignancy worldwide, being the fourth most common cause of mortality and morbidity. The CRC incidence in adolescents, young adults, and adult populations is increasing every year. In the pathogenesis of CRC, various factors are involved including diet, sedentary life, smoking, excessive alcohol consumption, obesity, gut microbiota, diabetes, and genetic mutations. The CRC tumor microenvironment (TME) involves the complex cooperation between tumoral cells with stroma, immune, and endothelial cells. Cytokines and several growth factors (GFs) will sustain CRC cell proliferation, survival, motility, and invasion. Epidermal growth factor receptor (EGFR), Insulin-like growth factor -1 receptor (IGF-1R), and Vascular Endothelial Growth Factor -A (VEGF-A) are overexpressed in various human cancers including CRC. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and all the three major subfamilies of the mitogen-activated protein kinase (MAPK) signaling pathways may be activated by GFs and will further play key roles in CRC development. The main aim of this review is to present the CRC incidence, risk factors, pathogenesis, and the impact of GFs during its development. Moreover, the article describes the relationship between EGF, IGF, VEGF, GFs inhibitors, PI3K/AKT/mTOR-MAPK signaling pathways, and CRC.
Collapse
Affiliation(s)
- Constantin Stefani
- Department of Family Medicine and Clinical Base, ‘‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
- Correspondence: (D.M.); (M.G.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Remus Iulian Nica
- Surgery 2, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
- Correspondence: (D.M.); (M.G.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (I.-I.S.-S.); (A.R.T.)
| | - Mariana Jinga
- Department of Gastroenterology, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 051075 Bucharest, Romania;
| |
Collapse
|
37
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
38
|
Li LY, Yang Q, Jiang YY, Yang W, Jiang Y, Li X, Hazawa M, Zhou B, Huang GW, Xu XE, Gery S, Zhang Y, Ding LW, Ho AS, Zumsteg ZS, Wang MR, Fullwood MJ, Freedland SJ, Meltzer SJ, Xu LY, Li EM, Koeffler HP, Lin DC. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer. Nat Commun 2021; 12:4362. [PMID: 34272396 PMCID: PMC8285542 DOI: 10.1038/s41467-021-24656-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squamous cell carcinomas (SCCs) comprise one of the most common histologic types of human cancer. Transcriptional dysregulation of SCC cells is orchestrated by tumor protein p63 (TP63), a master transcription factor (TF) and a well-researched SCC-specific oncogene. In the present study, both Gene Set Enrichment Analysis (GSEA) of SCC patient samples and in vitro loss-of-function assays establish fatty-acid metabolism as a key pathway downstream of TP63. Further studies identify sterol regulatory element binding transcription factor 1 (SREBF1) as a central mediator linking TP63 with fatty-acid metabolism, which regulates the biosynthesis of fatty-acids, sphingolipids (SL), and glycerophospholipids (GPL), as revealed by liquid chromatography tandem mass spectrometry (LC-MS/MS)-based lipidomics. Moreover, a feedback co-regulatory loop consisting of SREBF1/TP63/Kruppel like factor 5 (KLF5) is identified, which promotes overexpression of all three TFs in SCCs. Downstream of SREBF1, a non-canonical, SCC-specific function is elucidated: SREBF1 cooperates with TP63/KLF5 to regulate hundreds of cis-regulatory elements across the SCC epigenome, which converge on activating cancer-promoting pathways. Indeed, SREBF1 is essential for SCC viability and migration, and its overexpression is associated with poor survival in SCC patients. Taken together, these data shed light on mechanisms of transcriptional dysregulation in cancer, identify specific epigenetic regulators of lipid metabolism, and uncover SREBF1 as a potential therapeutic target and prognostic marker in SCC.
Collapse
Affiliation(s)
- Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Qian Yang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan-Yi Jiang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuan Jiang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiang Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guo-Wei Huang
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Sigal Gery
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Allen S Ho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Melissa J Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Stephen J Freedland
- Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, USA and the Durham VA Medical Center, Durham, NC, USA
| | - Stephen J Meltzer
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Mun JG, Han YH, Jeon HD, Yoon DH, Lee YG, Hong SH, Kee JY. Inhibitory Effect of Gallotannin on Lung Metastasis of Metastatic Colorectal Cancer Cells by Inducing Apoptosis, Cell Cycle Arrest and Autophagy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1535-1555. [PMID: 34247563 DOI: 10.1142/s0192415x21500725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer death in the world, and metastatic CRC is a major cause of cancer death. Gallotannin (GT), a polyphenolic compound, has shown various biological effects such as anti-oxidant, anti-inflammatory, antimicrobial, and antitumor effects. However, the effects of GT on metastatic CRC cells are not completely understood. This study aimed to investigate the anti-metastatic effect of GT and the underlying mechanisms on metastatic CRC cells. Oral administration of GT suppressed the lung metastasis of metastatic CRC cells in the experimental mouse model. GT decreased the viability of metastatic CRC cell lines, including CT26, HCT116, and SW620, by inducing apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest through inactivation of CDK2/cyclin A complex, and autophagic cell death through up-regulation of LC3B and p62 levels. GT regulated PI3K/AKT/mTOR and AMPK signaling pathways, which are critical for the development and maintenance of cancer. Additionally, non-cytotoxic concentrations of GT can suppress migration and invasion of CRC cells by inhibiting the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and epithelial-mesenchymal transition by downregulating the expression of mesenchymal markers including snail, twist, and vimentin. In conclusion, GT prevented colorectal lung metastasis by reducing survival and inhibiting the metastatic phenotypes of CRC cells.
Collapse
Affiliation(s)
- Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yo-Han Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hee-Dong Jeon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae Hwan Yoon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yeong Gyeong Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
40
|
Man S, Wu Z, Sun R, Guan Q, Li Z, Zuo D, Zhang W, Wu Y. W436, a novel SMART derivative, exhibits anti-hepatocarcinoma activity by inducing apoptosis and G2/M cell cycle arrest in vitro and in vivo and induces protective autophagy. J Biochem Mol Toxicol 2021; 35:e22831. [PMID: 34155709 DOI: 10.1002/jbt.22831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is considered one of the most common primary liver cancers and the second leading cause of cancer-associated mortality around the world annually. Therefore, it is urgent to develop novel drugs for HCC therapy. We synthesized a novel 4-substituted-methoxybenzoyl-aryl-thiazole (SMART) analog, (5-(4-aminopiperidin-1-yl)-2-phenyl-2H-1,2,3-triazol-4-yl) (3,4,5-trimethoxyphenyl) methanone (W436), with higher solubility, stability, and antitumor activity than SMART against HCC cells in vivo. The purpose of this study was to investigate the mechanisms by which W436 inhibited cell growth in HCC cells. We observed that W436 inhibited the proliferation of HepG2 and Hep3B cells in a dose-dependent manner. Importantly, the anticancer activity of W436 against HCC cells was even higher than that of SMART in vivo. In addition, the antiproliferative effects of W436 on HCC cells were associated with G2/M cell cycle arrest and apoptosis via the activation of reactive oxygen species-mediated mitochondrial apoptotic pathway. W436 also induced protective autophagy by inhibiting the protein kinase B/mammalian target of rapamycin pathway. At the same time, W436 treatment inhibited the cell adhesion and invasion as well as the process of epithelial-to-mesenchymal transition Taken together, our results showed that W436 had the promising potential for the therapeutic treatment of HCC with improved solubility, stability, and bioavailability.
Collapse
Affiliation(s)
- Shuai Man
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhuzhu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Rui Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
John R, Dalal B, Shankarkumar A, Devarajan PV. Innovative Betulin Nanosuspension exhibits enhanced anticancer activity in a Triple Negative Breast Cancer Cell line and Zebrafish angiogenesis model. Int J Pharm 2021; 600:120511. [PMID: 33766639 DOI: 10.1016/j.ijpharm.2021.120511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
We present a nanosuspension of betulin, a BCS class II anticancer drug, particularly effective against resistant breast cancer. As anticancer efficacy of betulin is hampered by poor aqueous solubility, a nanosuspension with surface area was considered to enhance efficacy. An innovative approach wherein the betulin nanosuspension is generated instantaneously in situ, by adding a betulin preconcentrate (BeTPC) comprising drug and excipients, to aqueous medium, is successfully demonstrated. The optimal BeTPC when added to isotonic dextrose solution instantaneously generated an in situ nanosuspension (BeTNS-15) with high precipitation efficiency (92.7 ± 1.21%), average particle size (383.74 ± 7.24 nm) and good stability as per ICH guidelines. TEM revealed elongated particles while DSC and XRD indicated partial amorphization. Significantly higher cytotoxicity of BeTNS-15 (IC50 38.44 µg/ml) compared to betulin (BetS) (IC50 69.54 µg/ml) in the resistant triple negative human breast cancer cell line MDA-MB-231, was attributed to high intracellular uptake confirmed by HPLC and Imaging Flow cytometry (IFC). IFC confirmed superior anti-cancer efficacy of BeTNS-15 mediated by mitochondrial membrane disruption and inhibition of the G0/G1 phase. BeTNS-15 also exhibited significantly greater anti-angiogenic efficacy (p < 0.05) in the zebrafish model confirming superior efficacy. Simplicity of the innovative in situ approach coupled with superior efficacy proposes BeTNS as an innovative and highly promising anticancer formulation.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga East, Mumbai, Maharashtra 400019, India
| | - Bhavik Dalal
- Transfusion Transmitted Diseases Department, ICMR-National Institute of Immunohaematology, KEM Hospital Campus, Parel, Mumbai, Maharashtra 400012, India
| | - Aruna Shankarkumar
- Transfusion Transmitted Diseases Department, ICMR-National Institute of Immunohaematology, KEM Hospital Campus, Parel, Mumbai, Maharashtra 400012, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga East, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
42
|
Yamansarov EY, Lopatukhina EV, Evteev SA, Skvortsov DA, Lopukhov AV, Kovalev SV, Vaneev AN, Shkil' DO, Akasov RA, Lobov AN, Naumenko VA, Pavlova EN, Ryabaya OO, Burenina OY, Ivanenkov YA, Klyachko NL, Erofeev AS, Gorelkin PV, Beloglazkina EK, Majouga AG. Discovery of Bivalent GalNAc-Conjugated Betulin as a Potent ASGPR-Directed Agent against Hepatocellular Carcinoma. Bioconjug Chem 2021; 32:763-781. [PMID: 33691403 DOI: 10.1021/acs.bioconjchem.1c00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we describe the design, synthesis, and biological evaluation of novel betulin and N-acetyl-d-galactosamine (GalNAc) glycoconjugates and suggest them as targeted agents against hepatocellular carcinoma. We prepared six conjugates derived via the C-3 and C-28 positions of betulin with one or two saccharide ligands. These molecules demonstrate high affinity to the asialoglycoprotein receptor (ASGPR) of hepatocytes assessed by in silico modeling and surface plasmon resonance tests. Cytotoxicity studies in vitro revealed a bivalent conjugate with moderate activity, selectivity of action, and cytostatic properties against hepatocellular carcinoma cells HepG2. An additional investigation confirmed the specific engagement with HepG2 cells by the enhanced generation of reactive oxygen species. Stability tests demonstrated its lability to acidic media and to intracellular enzymes. Therefore, the selected bivalent conjugate represents a new potential agent targeted against hepatocellular carcinoma. Further extensive studies of the cellular uptake in vitro and the real-time microdistribution in the murine liver in vivo for fluorescent dye-labeled analogue showed its selective internalization into hepatocytes due to the presence of GalNAc ligand in comparison with reference compounds. The betulin and GalNAc glycoconjugates can therefore be considered as a new strategy for developing therapeutic agents based on natural triterpenoids.
Collapse
Affiliation(s)
- Emil Yu Yamansarov
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow 119049, Russian Federation.,Bashkir State University, Ufa 450076, Russian Federation
| | | | - Sergei A Evteev
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | - Anton V Lopukhov
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Sergey V Kovalev
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander N Vaneev
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow 119049, Russian Federation
| | - Dmitry O Shkil'
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Roman A Akasov
- National University of Science and Technology MISiS, Moscow 119049, Russian Federation
| | - Alexander N Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russian Federation
| | - Victor A Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russian Federation
| | | | - Oxana O Ryabaya
- Department of Experimental Diagnostic and Tumor Therapy, N. N. Blokhin National Medical Research Center for Oncology, Moscow 115478, Russian Federation
| | - Olga Yu Burenina
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russian Federation
| | - Yan A Ivanenkov
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russian Federation.,Institute of Biochemistry and Genetics, Russian Academy of Science (IBG RAS) of the Ufa Federal Research Centre, Ufa 450054, Russian Federation
| | - Natalia L Klyachko
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russian Federation
| | - Alexander S Erofeev
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow 119049, Russian Federation
| | - Petr V Gorelkin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow 119049, Russian Federation
| | | | - Alexander G Majouga
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, Moscow 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| |
Collapse
|