1
|
Mondragon Portocarrero ADC, Lopez-Santamarina A, Lopez PR, Ortega ISI, Duman H, Karav S, Miranda JM. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024; 16:3108. [PMID: 39339708 PMCID: PMC11435326 DOI: 10.3390/nu16183108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In the last two decades, the consumption of plant-based dairy substitutes in place of animal-based milk has increased in different geographic regions of the world. Dairy substitutes of vegetable origin have a quantitative composition of macronutrients such as animal milk, although the composition of carbohydrates, proteins and fats, as well as bioactive components, is completely different from that of animal milk. Many milk components have been shown to have relevant effects on the intestinal microbiota. Methods: Therefore, the aim of this review is to compare the effects obtained by previous works on the composition of the gut microbiota after the ingestion of animal milk and/or vegetable beverages. Results: In general, the results obtained in the included studies were very positive for animal milk intake. Thus, we found an increase in gut microbiota richness and diversity, increase in the production of short-chain fatty acids, and beneficial microbes such as Bifidobacterium, lactobacilli, Akkermansia, Lachnospiraceae or Blautia. In other cases, we found a significant decrease in potential harmful bacteria such as Proteobacteria, Erysipelotrichaceae, Desulfovibrionaceae or Clostridium perfingens after animal-origin milk intake. Vegetable beverages have also generally produced positive results in the gut microbiota such as the increase in the relative presence of lactobacilli, Bifidobacterium or Blautia. However, we also found some potential negative results, such as increases in the presence of potential pathogens such as Enterobacteriaceae, Salmonella and Fusobacterium. Conclusions: From the perspective of their effects on the intestinal microbiota, milks of animal origin appear to be more beneficial for human health than their vegetable substitutes. These different effects on the intestinal microbiota should be considered in those cases where the replacement of animal milks by vegetable substitutes is recommended.
Collapse
Affiliation(s)
- Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Patricia Regal Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Israel Samuel Ibarra Ortega
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico;
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| |
Collapse
|
2
|
Li Q, Wang J. The Effect of Protein Nutritional Support on Inflammatory Bowel Disease and Its Potential Mechanisms. Nutrients 2024; 16:2302. [PMID: 39064745 PMCID: PMC11280054 DOI: 10.3390/nu16142302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a complex chronic inflammatory bowel disorder that includes Crohn's disease (CD) and Ulcerative Colitis (UC), has become a globally increasing health concern. Nutrition, as an important factor influencing the occurrence and development of IBD, has attracted more and more attention. As the most important nutrient, protein can not only provide energy and nutrition required by patients, but also help repair damaged intestinal tissue, enhance immunity, and thus alleviate inflammation. Numerous studies have shown that protein nutritional support plays a significant role in the treatment and remission of IBD. This article presents a comprehensive review of the pathogenesis of IBD and analyzes and summarizes the potential mechanisms of protein nutritional support in IBD. Additionally, it provides an overview of the clinical effects of protein nutritional support in IBD and its impact on clinical complications. Research findings reveal that protein nutritional support demonstrates significant benefits in improving clinical symptoms, reducing the risk of complications, and improving quality of life in IBD patients. Therefore, protein nutritional support is expected to provide a new approach for the treatment of IBD.
Collapse
Affiliation(s)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| |
Collapse
|
3
|
Yu Y, Li X, Zheng M, Zhou L, Zhang J, Wang J, Sun B. The potential benefits and mechanisms of protein nutritional intervention on bone health improvement. Crit Rev Food Sci Nutr 2024; 64:6380-6394. [PMID: 36655469 DOI: 10.1080/10408398.2023.2168250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Osteoporosis commonly occurs in the older people and severe patients, with the main reason of the imbalance of bone metabolism (the rate of bone resorption exceeding the rate of bone formation), resulting in a decrease in bone mineral density and destruction of bone microstructure and further leading to the increased risk of fragility fracture. Recent studies indicate that protein nutritional support is beneficial for attenuating osteoporosis and improving bone health. This review summarized the classical mechanisms of protein intervention for alleviating osteoporosis on both suppressing bone resorption and regulating bone formation related pathways (promoting osteoblasts generation and proliferation, enhancing calcium absorption, and increasing collagen and mineral deposition), as well as the potential novel mechanisms via activating autophagy of osteoblasts, altering bone related miRNA profiles, regulating muscle-bone axis, and modulating gut microbiota abundance. Protein nutritional intervention is expected to provide novel approaches for the prevention and adjuvant therapy of osteoporosis.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Mengjun Zheng
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Duan H, Liu G, Feng D, Wang Z, Yan W. Research Progress on New Functions of Animal and Plant Proteins. Foods 2024; 13:1223. [PMID: 38672894 PMCID: PMC11048783 DOI: 10.3390/foods13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Protein is composed of peptides, essential nutrients for human survival and health, and the easy absorption of peptides further promotes human health. According to the source of the protein, it can be divided into plants, animals, and micro-organisms, which have important physiological effects on the health of the body, especially in enhancing immunity. The most widely used raw materials are animal protein and plant protein, and the protein composition formed by the two in a certain proportion is called "double protein". In recent years, China's State Administration for Market Regulation has issued an announcement on the "Implementation Rules for the Technical Evaluation of New Functions and Products of Health Foods (Trial)", which provides application conditions and listing protection for the research and development of new functions of health foods. At present, some researchers and enterprises have begun to pay attention to the potential of animal and plant proteins to be used in new functions. In this article, the research progress of animal and plant proteins in the new functions of Chinese health food is reviewed in detail, and suggestions for future research on animal and plant proteins are put forward.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Gaigai Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Zhuoye Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| |
Collapse
|
5
|
Wu K, Gong W, Lin S, Huang S, Mu H, Wang M, Sheng J, Zhao C. Regulation of Sacha Inchi protein on fecal metabolism and intestinal microorganisms in mice. Front Nutr 2024; 11:1354486. [PMID: 38524850 PMCID: PMC10959099 DOI: 10.3389/fnut.2024.1354486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.
Collapse
Affiliation(s)
- Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Shiyang Lin
- Pu'er Agricultural Science Research Institute, Pu-er, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongyu Mu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming, Yunnan, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
6
|
Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023; 15:2290643. [PMID: 38087439 PMCID: PMC10718154 DOI: 10.1080/19490976.2023.2290643] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Taruna Lamba
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Sidhanta Nanda
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Affan Khan
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| |
Collapse
|
7
|
Gangitano E, Baxter M, Voronkov M, Lenzi A, Gnessi L, Ray D. The interplay between macronutrients and sleep: focus on circadian and homeostatic processes. Front Nutr 2023; 10:1166699. [PMID: 37680898 PMCID: PMC10482045 DOI: 10.3389/fnut.2023.1166699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Sleep disturbances are an emerging risk factor for metabolic diseases, for which the burden is particularly worrying worldwide. The importance of sleep for metabolic health is being increasingly recognized, and not only the amount of sleep plays an important role, but also its quality. In this review, we studied the evidence in the literature on macronutrients and their influence on sleep, focusing on the mechanisms that may lay behind this interaction. In particular, we focused on the effects of macronutrients on circadian and homeostatic processes of sleep in preclinical models, and reviewed the evidence of clinical studies in humans. Given the importance of sleep for health, and the role of circadian biology in healthy sleep, it is important to understand how macronutrients regulate circadian clocks and sleep homeostasis.
Collapse
Affiliation(s)
- Elena Gangitano
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Matthew Baxter
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Maria Voronkov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
8
|
Belobrajdic DP, James-Martin G, Jones D, Tran CD. Soy and Gastrointestinal Health: A Review. Nutrients 2023; 15:nu15081959. [PMID: 37111176 PMCID: PMC10144768 DOI: 10.3390/nu15081959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Soybean is the most economically important legume globally, providing a major source of plant protein for millions of people; it offers a high-quality, cost-competitive and versatile base-protein ingredient for plant-based meat alternatives. The health benefits of soybean and its constituents have largely been attributed to the actions of phytoestrogens, which are present at high levels. Additionally, consumption of soy-based foods may also modulate gastrointestinal (GI) health, in particular colorectal cancer risk, via effects on the composition and metabolic activity of the GI microbiome. The aim of this narrative review was to critically evaluate the emerging evidence from clinical trials, observational studies and animal trials relating to the effects of consuming soybeans, soy-based products and the key constituents of soybeans (isoflavones, soy proteins and oligosaccharides) on measures of GI health. Our review suggests that there are consistent favourable changes in measures of GI health for some soy foods, such as fermented rather than unfermented soy milk, and for those individuals with a microbiome that can metabolise equol. However, as consumption of foods containing soy protein isolates and textured soy proteins increases, further clinical evidence is needed to understand whether these foods elicit similar or additional functional effects on GI health.
Collapse
Affiliation(s)
| | | | - Darren Jones
- Human Health, Health and Biosecurity, CSIRO, Adelaide, SA 5000, Australia
| | - Cuong D Tran
- Human Health, Health and Biosecurity, CSIRO, Adelaide, SA 5000, Australia
| |
Collapse
|
9
|
Zhao J, Lu W, Huang S, Le Maho Y, Habold C, Zhang Z. Impacts of Dietary Protein and Niacin Deficiency on Reproduction Performance, Body Growth, and Gut Microbiota of Female Hamsters (Tscherskia triton) and Their Offspring. Microbiol Spectr 2022; 10:e0015722. [PMID: 36318010 PMCID: PMC9784777 DOI: 10.1128/spectrum.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Food resources are vital for animals to survive, and gut microbiota play an essential role in transferring nutritional materials into functional metabolites for hosts. Although the fact that diet affects host microbiota is well known, its impacts on offspring remain unclear. In this study, we assessed the effects of low-protein and niacin-deficient diets on reproduction performance, body growth, and gut microbiota of greater long-tailed hamsters (Tscherskia triton) under laboratory conditions. We found that maternal low-protein diet (not niacin deficiency) had a significant negative effect on reproduction performance of female hamsters (longer mating latency with males and smaller litter size) and body growth (lower body weight) of both female hamsters and their offspring. Both protein- and niacin-deficient diets showed significant maternal effects on the microbial community in the offspring. A maternal low-protein diet (not niacin deficiency) significantly reduced the abundance of major bacterial taxa producing short-chain fatty acids, increased the abundance of probiotic taxa, and altered microbial function in the offspring. The negative effects of maternal nutritional deficiency on gut microbiota are more pronounced in the protein group than the niacin group and in offspring more than in female hamsters. Our results suggest that a low-protein diet could alter gut microbiota in animals, which may result in negative impacts on their fitness. It is necessary to conduct further analysis to reveal the roles of nutrition, as well as its interaction with gut microbes, in affecting fitness of greater long-tailed hamsters under field conditions. IMPORTANCE Gut microbes are known to be essential for hosts to digest food and absorb nutrients. Currently, it is still unclear how maternal nutrient deficiency affects the fitness of animals by its effect on gut microbes. Here, we evaluated the effects of protein- and niacin-deficient diets on mating behavior, reproduction, body growth, and gut microbiota of both mothers and offspring of the greater long-tailed hamster (Tscherskia triton) under laboratory conditions. We found that a low-protein diet significantly reduced maternal reproduction performance and body growth of both mothers and their offspring. Both protein and niacin deficiencies showed significant maternal effects on the microbial community of the offspring. Our results hint that nutritional deficiency may be a potential factor in causing the observed sustained population decline of the greater long-tailed hamsters due to intensified monoculture in the North China Plain, and this needs further field investigation.
Collapse
Affiliation(s)
- Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, People’s Republic of China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
- Scientific Centre of Monaco, Monaco Principality, Monaco
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
11
|
Yao N, Yang Y, Li X, Wang Y, Guo R, Wang X, Li J, Xie Z, Li B, Cui W. Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Front Nutr 2022; 9:906511. [PMID: 35782947 PMCID: PMC9247350 DOI: 10.3389/fnut.2022.906511] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver disease with a global prevalence of over 25% and is expected to increase. Recently, experts have reached a consensus that “fatty liver disease associated with metabolic dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD. Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical manifestations, pathological changes and natural outcomes. We found that there is a delicate dynamic balance among intestinal microflora, metabolites and host immune system to maintain a healthy intestinal environment and host health. On the contrary, this imbalance is related to diseases such as MAFLD. However, there are no clear studies on how dietary nutrients affect the intestinal environment and participate in the pathogenesis of MAFLD. This review summarizes the interactions among dietary nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for the use of dietary supplements to regulate liver function in patients with MAFLD. These dietary nutrients influence the development and progression of MAFLD mainly through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile, the nutrients have the ability to combat MAFLD in terms of enriching abundance of intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet could be considered.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xuhan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zechun Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Weiwei Cui
| |
Collapse
|
12
|
Wei Z, Zhou N, Zou L, Shi Z, Dun B, Ren G, Yao Y. Soy Protein Alleviates Malnutrition in Weaning Rats by Regulating Gut Microbiota Composition and Serum Metabolites. Front Nutr 2021; 8:774203. [PMID: 34926551 PMCID: PMC8678609 DOI: 10.3389/fnut.2021.774203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Dietary intervention with plant protein is one of the main methods that is used to lessen the symptoms of malnutrition. Supplementary soy protein to undernourished weaning rats for 6 weeks significantly increased their body weight gain. After the intervention, the level of total short-chain fatty acids (SCFAs) was restored to 1,512.7 μg/g, while the level was only 637.1 μg/g in the 7% protein group. The amino acids (valine, isoleucine, phenylalanine, and tryptophan) increased in the colon, and vitamin B6 metabolism was significantly influenced in undernourished rats. The tryptophan and glycine-serine-threonine pathways were elevated, leading to an increase in the level of tryptophan and 5-hydroxytryptophan (5-HTP) in the serum. In addition, the relative abundance of Lachnospiraceae_NK4A136_group and Lactobacillus increased, while Enterococcus and Streptococcus decreased compared to undernourished rats. Overall, soy protein improved the growth of rats with malnutrition in early life by regulating gut microbiota and metabolites in the colon and serum.
Collapse
Affiliation(s)
- Zuchen Wei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Life Science and Engineering, The Chongqing Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Nong Zhou
- Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Life Science and Engineering, The Chongqing Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Zhenxing Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Baoqing Dun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
13
|
Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021; 13:nu13113846. [PMID: 34836101 PMCID: PMC8622682 DOI: 10.3390/nu13113846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/17/2023] Open
Abstract
We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.
Collapse
|
14
|
Kadotani H, Asai K, Miyamoto A, Iwasaki K, Kawai T, Nishimura M, Tohda M, Okamoto A, Sato K, Yamada K, Ijiri N, Watanabe T, Kawaguchi T. The Fermented Soy Product ImmuBalance TM Suppresses Airway Inflammation in a Murine Model of Asthma. Nutrients 2021; 13:3380. [PMID: 34684380 PMCID: PMC8537480 DOI: 10.3390/nu13103380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
The fermented soy product ImmuBalance contains many active ingredients and its beneficial effects on some allergic diseases have been reported. We hypothesized that ImmuBalance could have potential effects on airway inflammation in a murine model of asthma. Mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for inflammatory cell counts and levels of cytokines. Lung tissues were examined for cell infiltration and mucus hypersecretion. Oral administration of ImmuBalance significantly inhibited ovalbumin-induced eosinophilic inflammation and decreased Th2 cytokine levels in bronchoalveolar lavage fluid (p < 0.05). In addition, lung histological analysis showed that ImmuBalance inhibited inflammatory cell infiltration and airway mucus production. Our findings suggest that supplementation with ImmuBalance may provide a novel strategy for the prevention or treatment of allergic airway inflammation.
Collapse
Affiliation(s)
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (H.K.); (A.M.); (K.I.); (T.K.); (M.N.); (M.T.); (A.O.); (K.S.); (K.Y.); (N.I.); (T.W.); (T.K.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Qian Y, Gao Z, Wang C, Ma J, Li G, Fu F, Guo J, Shan Y. Effects of Different Treatment Methods of Dried Citrus Peel ( Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Front Nutr 2021; 8:702559. [PMID: 34434953 PMCID: PMC8381872 DOI: 10.3389/fnut.2021.702559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Chenpi is a kind of dried citrus peel from Citrus reticulata, and it is often used as traditional Chinese medicine to treat dyspepsia and respiratory tract inflammation. In this study, to determine which way of chenpi treatment plays a better effect on the prevention of obesity in healthy mice, we conducted 16S ribosomal RNA (rRNA) gene sequencing for intestinal microbiota and gas chromatography-mass spectrometry detector (GC/MSD) analysis for short-chain fatty acids (SCFAs) of female rats fed with either chenpi decoction or chenpi powder-based diet (n = 10 per group) for 3 weeks. Chenpi powder (CP) group significantly reduced abdominal adipose tissues, subcutaneous adipose tissue, and the serum level of total triacylglycerol (TG). At a deeper level, chenpi powder has a better tendency to increase the ratio of Bacteroidetes to Firmicutes. It alters the Muribaculaceae and Muribaculum in intestinal microbiota, though it is not significant. The concentrations of acetic acid, valeric acid, and butyric acid increased slightly but not significantly in the CP group. Chenpi decoction just reduced perirenal adipose tissues, but it shows better antioxidant activity. It has little effect on intestinal microbiota. No differences were found for SCFAs in the chenpi decoction (CD) group. The results indicated that chenpi powder has a better effect in preventing obesity in mice. It can provide a basis for the development of functional products related to chenpi powder.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
16
|
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021; 13:nu13062045. [PMID: 34203776 PMCID: PMC8232643 DOI: 10.3390/nu13062045] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, 1020 Vienna, Austria
- Correspondence:
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology–BIPS, 28359 Bremen, Germany;
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Andrea Ticinesi
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
17
|
Wen X, Wang HG, Zhang MN, Zhang MH, Wang H, Yang XZ. Fecal microbiota transplantation ameliorates experimental colitis via gut microbiota and T-cell modulation. World J Gastroenterol 2021; 27:2834-2849. [PMID: 34135557 PMCID: PMC8173381 DOI: 10.3748/wjg.v27.i21.2834] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence has demonstrated that fecal microbiota transplantation (FMT) has a promising therapeutic effect on mice with experimental colitis and patients with ulcerative colitis (UC), although the mechanism of FMT is unclear.
AIM To evaluate the protective effect of FMT on UC and clarify its potential dependence on the gut microbiota, through association analysis of gut microbiota with colon transcriptome in mice.
METHODS Dextran sodium sulfate (DSS)-induced experimental colitis was established and fecal microbiota was transplanted by gavage. Severity of colon inflammation was measured by body weight, disease activity index, colon length and histological score. Gut microbiota alteration was analyzed through 16S ribosomal ribonucleic acid sequencing. The differentially expressed genes (DEGs) in the colon were obtained by transcriptome sequencing. The activation status of colonic T lymphocytes in the lamina propria was evaluated by flow cytometry.
RESULTS Compared with the DSS group, the weight loss, colon length shortening and inflammation were significantly alleviated in the FMT group. The scores of disease activity index and colon histology decreased obviously after FMT. FMT restored the balance of gut microbiota, especially by upregulating the relative abundance of Lactobacillus and downregulating the relative abundance of Clostridium_sensu_stricto_1 and Turicibacter. In the transcriptomic analysis, 128 DEGs intersected after DSS treatment and FMT. Functional annotation analysis suggested that these DEGs were mainly involved in T-lymphocyte activation. In the DSS group, there was an increase in colonic T helper CD4+ and T cytotoxic CD8+ cells by flow cytometry. FMT selectively downregulated the ratio of colonic CD4+ and CD8+ T cells to maintain intestinal homeostasis. Furthermore, Clostri dium_sensu_stricto_1 was significantly related to inflammation-related genes including REG3G, CCL8 and IDO1.
CONCLUSION FMT ameliorated DSS-induced colitis in mice via regulating the gut microbiota and T-cell modulation.
Collapse
Affiliation(s)
- Xin Wen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Hong-Gang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Min-Na Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Meng-Hui Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Han Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| |
Collapse
|
18
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
19
|
Konishi T, Takahashi Y, Shiina Y, Oike H, Oishi K. Time-of-day effects of consumption of fish oil-enriched sausages on serum lipid parameters and fatty acid composition in normolipidemic adults: A randomized, double-blind, placebo-controlled, and parallel-group pilot study. Nutrition 2021; 90:111247. [PMID: 33962365 DOI: 10.1016/j.nut.2021.111247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The body clock controls diurnal rhythms of nutrient digestion, absorption, and metabolism. Fish oil (FO) contains abundant ω-3 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), that are thought to lower triglyceride (TG) levels. This randomized, placebo-controlled, double-blind, parallel-group trial aimed to confirm the effects of the time of FO intake on TG in healthy Japanese adults. METHODS Twenty healthy Japanese adults (age, 20-60 y) were assigned to either a group that consumed sausages enriched with FO (DHA 1010 mg; EPA 240 mg) in the morning and a placebo (DHA 40 mg; EPA 15 mg) in the evening (BF-FO) or another group that consumed FO-enriched sausages in the evening and the placebo in the morning (DN-FO). Serum lipid parameters, fatty acid (FA) composition, and messenger RNA expression of lipogenic genes in circulating blood cells were evaluated in fasting blood samples before, as well as after 4 and 8 wk of FO intake. RESULTS Serum concentrations of TG and total saturated FA were significantly decreased in the BF-FO group, whereas those of ω-3 PUFA were significantly and identically increased in both groups. Serum concentrations of ω-6 PUFA were significantly decreased in the BF-FO but not the DN-FO group. Messenger RNA expression of the lipogenic genes ACLY, SCD, and FASN were similarly reduced in both groups. CONCLUSIONS These findings suggested that the timing of FO intake affects both serum FA concentrations and TG metabolism in normolipidemic humans. The mechanisms of these effects of FO on lipid metabolism require further investigation.
Collapse
Affiliation(s)
| | | | | | - Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Precision nutrition and personalized diets are gaining popularity in nutritional science and medicine. To fully appreciate their potential benefits, a deep understanding of both macronutrients and nutrient-microbe interactions is required. RECENT FINDINGS Microbiome science has reaffirmed the importance of dietary fiber in microbial and host health. Additional macronutrients, digestible carbohydrate, protein and fat also influence the composition and diversity of the microbiome and, therefore, microbial response to dietary intervention. Attention to macronutrient source, dose, microbial effect and metabolite production allows the development of more established links between diet and health. SUMMARY The degree to which human diets need to be personalized for optimal health is still uncertain but a one-size-fits-all diet seems unlikely. However, for personal or precision nutrition to fulfill its promise, greater attention to the details of nutrient-microbe interactions will be required.
Collapse
Affiliation(s)
- John O'Grady
- APC Microbiome Ireland and Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
21
|
The Combined Effects of Magnesium Oxide and Inulin on Intestinal Microbiota and Cecal Short-Chain Fatty Acids. Nutrients 2021; 13:nu13010152. [PMID: 33466274 PMCID: PMC7824761 DOI: 10.3390/nu13010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.
Collapse
|
22
|
Ali AM, Kunugi H. Intermittent Fasting, Dietary Modifications, and Exercise for the Control of Gestational Diabetes and Maternal Mood Dysregulation: A Review and a Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9379. [PMID: 33333828 PMCID: PMC7765295 DOI: 10.3390/ijerph17249379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy-related condition afflicting 5-36% of pregnancies. It is associated with many morbid maternal and fetal outcomes. Mood dysregulations (MDs, e.g., depression, distress, and anxiety) are common among women with GDM, and they exacerbate its prognosis and hinder its treatment. Hence, in addition to early detection and proper management of GDM, treating the associated MDs is crucial. Maternal hyperglycemia and MDs result from a complex network of genetic, behavioral, and environmental factors. This review briefly explores mechanisms that underlie GDM and prenatal MDs. It also describes the effect of exercise, dietary modification, and intermittent fasting (IF) on metabolic and affective dysfunctions exemplified by a case report. In this patient, interventions such as IF considerably reduced maternal body weight, plasma glucose, and psychological distress without any adverse effects. Thus, IF is one measure that can control GDM and maternal MDs; however, more investigations are warranted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
23
|
Ji Y, Ma N, Zhang J, Wang H, Tao T, Pei F, Hu Q. Dietary intake of mixture coarse cereals prevents obesity by altering the gut microbiota in high-fat diet fed mice. Food Chem Toxicol 2020; 147:111901. [PMID: 33279676 DOI: 10.1016/j.fct.2020.111901] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Functional components including β-glucan, dietary fiber, resistant starch and polyphenols extracted from various coarse cereals have been reported to prevent high-fat diet (HFD) induced obesity via modulating gut microbiota. In this study, millet, maize, oat, soybean, and purple potato were ultrafine comminuted, mixed, and then extruded for the preparation of puffed mixture coarse cereals. HFD was used to investigate the effects of mixture coarse cereals on obesity and gut microbiota in mice. The results showed that dietary intake of mixture coarse cereals could decrease body weight gain and fat accumulation, improve the blood glucose tolerance and serum lipids levels, reduce the systemic inflammation, and down-regulate the expression of hepatic lipogenic genes. In addition, the levels of SCFAs and the composition of gut microbiota were investigated. The results indicated that mixture coarse cereals could promote the release of SCFAs, enhance the diversity of gut microbiota, and increase the relative abundance of Lactobacillus and Bifidobacterium, which might contribute to the anti-obesity activity. Present work suggested that the mixture coarse cereals could be developed as a nutraceutical for the prevention of HFD-induced obesity.
Collapse
Affiliation(s)
- Yang Ji
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China
| | - Junmiao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China
| | - Hetong Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China
| | - Tianyi Tao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China
| | - Fei Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, PR China.
| |
Collapse
|
24
|
He J, Sun R, Hao X, Battulga A, Juramt N, Yi L, Ming L, Rimutu J. The gut microbiota and its metabolites in mice are affected by high heat treatment of Bactrian camel milk. J Dairy Sci 2020; 103:11178-11189. [PMID: 33041026 DOI: 10.3168/jds.2020-18657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
Heat treatment is the most common method used to make milk safe; however, it leads to changes in the organoleptic and nutritional properties of milk. This study aimed to investigate the effects of different heat treatments on nutrients and microbiota of camel milk. The results showed that the nutrient composition of camel milk could be influenced by heat treatment. Ultra-high-temperature treatment of samples significantly reduced levels of camel milk proteins, vitamin C, and lactose, but did not significantly alter the amino acids content. Analysis of 16S rRNA amplicon sequences demonstrated that the composition of the intestinal microbiota of mice fed different heat-treated camel milks changed, as did the production of short-chain fatty acids as determined by gas chromatography-mass spectrometry. High temperature/short time treatment had similar effects to UHT treatment on microbial diversity of camel milk; however, the low temperature/long time treatment had different effects. In addition, higher-temperature treatments changed the abundance of key bacteria at the genus level. These results demonstrated that different heat treatments not only resulted in some nutrient loss, but also changed the proliferation of some probiotic genera. Our results could provide the basis for the potential industrial application of camel milk processing technologies.
Collapse
Affiliation(s)
- Jing He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China
| | - Ruxin Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China
| | - Xiaoli Hao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China
| | - Altantsatsral Battulga
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China
| | - Namuunaa Juramt
- School of Life Sciences, Peking University, Beijing, 100871 China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China
| | - Liang Ming
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China
| | - Ji Rimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010010 China; Camel Research Institute of Inner Mongolia, Alashan, Inner Mongolia, 750330 China.
| |
Collapse
|
25
|
Sanchez-Morate E, Gimeno-Mallench L, Stromsnes K, Sanz-Ros J, Román-Domínguez A, Parejo-Pedrajas S, Inglés M, Olaso G, Gambini J, Mas-Bargues C. Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines 2020; 8:E287. [PMID: 32823858 PMCID: PMC7460310 DOI: 10.3390/biomedicines8080287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Due to medical advances and lifestyle changes, population life expectancy has increased. For this reason, it is important to achieve healthy aging by reducing the risk factors causing damage and pathologies associated with age. Through nutrition, one of the pillars of health, we are able to modify these factors through modulation of the intestinal microbiota. The Mediterranean and Oriental diets are proof of this, as well as the components present in them, such as fiber and polyphenols. These generate beneficial effects on the body thanks, in part, to their interaction with intestinal bacteria. Likewise, the low consumption of products with high fat content favors the state of the microbiota, contributing to the maintenance of good health.
Collapse
Affiliation(s)
- Elisa Sanchez-Morate
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain
| | - Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Sergi Parejo-Pedrajas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain;
| | - Gloria Olaso
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| |
Collapse
|
26
|
Plaza-Diaz J. Nutrition, Microbiota and Noncommunicable Diseases. Nutrients 2020; 12:1971. [PMID: 32630712 PMCID: PMC7399920 DOI: 10.3390/nu12071971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
The advent of new sequencing technologies has inspired the foundation of novel research to ascertain the connections between the microbial communities that reside in our gut and some physiological and pathological conditions [...].
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18,071 Granada, Spain; ; Tel.: +34-958-241-599
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18,014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
27
|
Comparison of bioactive constituents and effects on gut microbiota by in vitro fermentation between Ophicordyceps sinensis and Cordyceps militaris. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|