1
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2024. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
3
|
Hu Z, Li Z, Shi Y, Liu S, Shen Y, Hu F, Li Q, Liu X, Gou X, Chen Z, Yang D. Advancements in investigating the role of cerebral small vein loss in Alzheimer's disease-related pathological changes. Neurol Sci 2024; 45:1875-1883. [PMID: 38133856 DOI: 10.1007/s10072-023-07208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Alzheimer's disease (AD) is the prevailing type of dementia in the elderly, yet a comprehensive comprehension of its precise underlying mechanisms remains elusive. The investigation of the involvement of cerebral small veins in the advancement of AD has yet to be sufficiently explored in previous studies, primarily due to constraints associated with pathological staining techniques. However, recent research has provided valuable insights into multiple pathophysiological occurrences concerning cerebral small veins in AD, which may manifest sequentially, concurrently, or in a self-perpetuating manner. These events are presumed to be among the initial processes in the disease's progression. The impact of cerebral small vein loss on amyloid beta (Aβ) clearance through the glial lymphatic system is noteworthy. There exists a potential interdependence between collagen deposition and Aβ deposition in cerebral small veins. The compromised functionality of cerebral small veins can result in decreased cerebral perfusion pressure, potentially leading to cerebral tissue ischemia and edema. Additionally, the reduction of cerebral small veins may facilitate the infiltration of inflammatory factors into the brain parenchyma, thereby eliciting neuroinflammatory responses. Susceptibility-weighted imaging (SWI) is a valuable modality for the efficient assessment of cerebral small veins, precisely the deep medullary vein (DMV), and holds promise for the identification of precise and reliable imaging biomarkers for AD. This review presents a comprehensive overview of the current advancements and obstacles to the impairment of cerebral small veins in AD. Additionally, we emphasize future research avenues and the importance of conducting further investigations in this domain.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Zhaoying Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yu Shi
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Shanyu Liu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yuling Shen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Fangfang Hu
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Qingqing Li
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xu Liu
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xinyu Gou
- Department of Neurology, Guang'an People's Hospital, Guang'an, 638001, China
| | - Zhenwei Chen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| |
Collapse
|
4
|
Niu C, Dong M, Niu Y. Natural polyphenol: Their pathogenesis-targeting therapeutic potential in Alzheimer's disease. Eur J Med Chem 2024; 269:116359. [PMID: 38537514 DOI: 10.1016/j.ejmech.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid β-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aβ/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
5
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Lv Y, Yan S, Deng K, Chen Z, Yang Z, Li F, Luo Q. Unlocking the Molecular Variations of a Micron-Scale Amyloid Plaque in an Early Stage Alzheimer's Disease by a Cellular-Resolution Mass Spectrometry Imaging Platform. ACS Chem Neurosci 2024; 15:337-345. [PMID: 38166448 DOI: 10.1021/acschemneuro.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Uncovering the molecular changes at the site where Aβ is deposited plays a critical role in advancing the diagnosis and treatment of Alzheimer's disease. However, there is currently a lack of a suitable label-free imaging method with a high spatial resolution for brain tissue analysis. In this study, we propose a modified desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) method, called segmented temperature-controlled DESI (STC-DESI), to achieve high-resolution and high-sensitivity spatial metabolomics observation by precisely controlling desorption and ionization temperatures. By concentrating the spray plume and accelerating solvent evaporation at different temperatures, we achieved an impressive spatial resolution of 20 μm that enables direct observation of the heterogeneity around a single cell or an individual Aβ plaque and an exciting sensitivity that allows a variety of low-abundance metabolites and less ionizable neutral lipids to be detected. We applied this STC-DESI method to analyze the brains of transgenic AD mice and identified molecular changes associated with individual Aβ aggregates. More importantly, our study provides the first evidence that carnosine is significantly depleted and 5-caffeoylquinic acid (5-CQA) levels rise sharply around Aβ deposits. These observations highlight the potential of carnosine as a sensitive molecular probe for clinical magnetic resonance imaging diagnosis and the potential of 5-CQA as an efficient therapeutic strategy for Aβ clearance in the early AD stage. Overall, our findings demonstrate the effectiveness of our STC-DESI method and shed light on the potential roles of these molecules in AD pathology, specifically in cellular endocytosis, gray matter network disruption, and paravascular Aβ clearance.
Collapse
Affiliation(s)
- Yueguang Lv
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shuxiong Yan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ka Deng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyu Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyi Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qian Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
8
|
Suganuma T, Hatori S, Chen CK, Hori S, Kanuka M, Liu CY, Tatsuzawa C, Yanagisawa M, Hayashi Y. Caffeoylquinic Acid Mitigates Neuronal Loss and Cognitive Decline in 5XFAD Mice Without Reducing the Amyloid-β Plaque Burden. J Alzheimers Dis 2024; 99:1285-1301. [PMID: 38788074 DOI: 10.3233/jad-240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Caffeoylquinic acid (CQA), which is abundant in coffee beans and Centella asiatica, reportedly improves cognitive function in Alzheimer's disease (AD) model mice, but its effects on neuroinflammation, neuronal loss, and the amyloid-β (Aβ) plaque burden have remained unclear. Objective To assess the effects of a 16-week treatment with CQA on recognition memory, working memory, Aβ levels, neuronal loss, neuroinflammation, and gene expression in the brains of 5XFAD mice, a commonly used mouse model of familial AD. Methods 5XFAD mice at 7 weeks of age were fed a 0.8% CQA-containing diet for 4 months and then underwent novel object recognition (NOR) and Y-maze tests. The Aβ levels and plaque burden were analyzed by enzyme-linked immunosorbent assay and immunofluorescent staining, respectively. Immunostaining of markers of mature neurons, synapses, and glial cells was analyzed. AmpliSeq transcriptome analysis and quantitative reverse-transcription-polymerase chain reaction were performed to assess the effect of CQA on gene expression levels in the cerebral cortex of the 5XFAD mice. Results CQA treatment for 4 months improved recognition memory and ameliorated the reduction of mature neurons and synaptic function-related gene mRNAs. The Aβ levels, plaque burden, and glial markers of neuroinflammation seemed unaffected. Conclusions These findings suggest that CQA treatment mitigates neuronal loss and improves cognitive function without reducing Aβ levels or neuroinflammation. Thus, CQA is a potential therapeutic compound for AD, improving cognitive function via as-yet unknown mechanisms independent of reductions in Aβ or neuroinflammation.
Collapse
Affiliation(s)
- Takaya Suganuma
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Biological Science Research Laboratories, Kao Corporation, Ichikai, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Satoshi Hori
- Biological Science Research Laboratories, Kao Corporation, Ichikai, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
10
|
Sharma A, Singh AK. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 2023; 24:679-708. [PMID: 37428308 DOI: 10.1007/s10522-023-10045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Aging-induced neurodegenerative diseases (NDs) are significantly increasing health problem worldwide. It has been well documented that oxidative stress is one of the potential causes of aging and age-related NDs. There are no drugs for the treatment of NDs, therefore there is an immediate necessity for the development of strategies/treatments either to prevent or cure age-related NDs. Caloric restriction (CR) and intermittent fasting have been considered as effective strategies in increasing the healthspan and lifespan, but it is difficult to adhere to these routines strictly, which has led to the development of calorie restriction mimetics (CRMs). CRMs are natural compounds that provide similar molecular and biochemical effects of CR, and activate autophagy process. CRMs have been reported to regulate redox signaling by enhancing the antioxidant defense systems through activation of the Nrf2 pathway, and inhibiting ROS generation through attenuation of mitochondrial dysfunction. Moreover, CRMs also regulate redox-sensitive signaling pathways such as the PI3K/Akt and MAPK pathways to promote neuronal cell survival. Here, we discuss the neuroprotective effects of various CRMs at molecular and cellular levels during aging of the brain. The CRMs are envisaged to become a cornerstone of the pharmaceutical arsenal against aging and age-related pathologies.
Collapse
Affiliation(s)
- Apoorv Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
11
|
Jovanovic Macura I, Zivanovic A, Perovic M, Ciric J, Major T, Kanazir S, Ivkovic S. The Expression of Major Facilitator Superfamily Domain-Containing Protein2a (Mfsd2a) and Aquaporin 4 Is Altered in the Retinas of a 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14092. [PMID: 37762391 PMCID: PMC10531902 DOI: 10.3390/ijms241814092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid β (Aβ) accumulation in the blood vessels and is associated with cognitive impairment in Alzheimer's disease (AD). The increased accumulation of Aβ is also present in the retinal blood vessels and a significant correlation between retinal and brain amyloid deposition was demonstrated in living patients and animal AD models. The Aβ accumulation in the retinal blood vessels can be the result of impaired transcytosis and/or the dysfunctional ocular glymphatic system in AD and during aging. We analyzed the changes in the mRNA and protein expression of major facilitator superfamily domain-containing protein2a (Mfsd2a), the major regulator of transcytosis, and of Aquaporin4 (Aqp4), the key player implicated in the functioning of the glymphatic system, in the retinas of 4- and 12-month-old WT and 5xFAD female mice. A strong decrease in the Mfsd2a mRNA and protein expression was observed in the 4 M and 12 M 5xFAD and 12 M WT retinas. The increase in the expression of srebp1-c could be at least partially responsible for the Mfsd2a decrease in the 4 M 5xFAD retinas. The decrease in the pericyte (CD13+) coverage of retinal blood vessels in the 4 M and 12 M 5xFAD retinas and in the 12 M WT retinas suggests that pericyte loss could be associated with the Mfsd2a downregulation in these experimental groups. The observed increase in Aqp4 expression in 4 M and 12 M 5xFAD and 12 M WT retinas accompanied by the decreased perivascular Aqp4 expression is indicative of the impaired glymphatic system. The findings in this study reveal the impaired Mfsd2a and Aqp4 expression and Aqp4 perivascular mislocalization in retinal blood vessels during physiological (WT) and pathological (5xFAD) aging, indicating their importance as putative targets for the development of new treatments that can improve the regulation of transcytosis or the function of the glymphatic system.
Collapse
Affiliation(s)
- Irena Jovanovic Macura
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Ana Zivanovic
- Vinca—Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
| | - Milka Perovic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Jelena Ciric
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Tamara Major
- Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Selma Kanazir
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Sanja Ivkovic
- Vinca—Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
| |
Collapse
|
12
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
13
|
Naomi R, Yazid MD, Teoh SH, Balan SS, Shariff H, Kumar J, Bahari H, Embong H. Dietary Polyphenols as a Protection against Cognitive Decline: Evidence from Animal Experiments; Mechanisms and Limitations. Antioxidants (Basel) 2023; 12:antiox12051054. [PMID: 37237920 DOI: 10.3390/antiox12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests that cognitive impairments may result from various factors, such as neuroinflammation, oxidative stress, mitochondrial damage, impaired neurogenesis, synaptic plasticity, blood-brain barrier (BBB) disruption, amyloid β protein (Aβ) deposition, and gut dysbiosis. Meanwhile, dietary polyphenol intake in a recommended dosage has been suggested to reverse cognitive dysfunction via various pathways. However, excessive intake of polyphenols could trigger unwanted adverse effects. Thus, this review aims to outline possible causes of cognitive impairments and how polyphenols alleviate memory loss via various pathways based on in vivo experimental studies. Thus, to identify potentially relevant articles, the keywords (1) nutritional polyphenol intervention NOT medicine AND neuron growth OR (2) dietary polyphenol AND neurogenesis AND memory impairment OR (3) polyphenol AND neuron regeneration AND memory deterioration (Boolean operators) were used in the Nature, PubMed, Scopus, and Wiley online libraries. Based on the inclusion and exclusion criteria, 36 research papers were selected to be further reviewed. The outcome of all the studies included supports the statement of appropriate dosage by taking into consideration gender differences, underlying conditions, lifestyle, and causative factors for cognitive decline, which will significantly boost memory power. Therefore, this review recapitulates the possible causes of cognitive decline, the mechanism of polyphenols involving various signaling pathways in modulating the memory, gut dysbiosis, endogenous antioxidants, bioavailability, dosage, and safety efficacy of polyphenols. Hence, this review is expected to provide a basic understanding of therapeutic development for cognitive impairments in the future.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Santhra Segaran Balan
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| | - Halim Shariff
- Faculty of Health Sciences, University Technology Mara (UITM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias. Front Aging Neurosci 2023; 15:1111448. [PMID: 36861122 PMCID: PMC9969807 DOI: 10.3389/fnagi.2023.1111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The blood-brain barrier (BBB) plays important roles in the maintenance of brain homeostasis. Its main role includes three kinds of functions: (1) to protect the central nervous system from blood-borne toxins and pathogens; (2) to regulate the exchange of substances between the brain parenchyma and capillaries; and (3) to clear metabolic waste and other neurotoxic compounds from the central nervous system into meningeal lymphatics and systemic circulation. Physiologically, the BBB belongs to the glymphatic system and the intramural periarterial drainage pathway, both of which are involved in clearing interstitial solutes such as β-amyloid proteins. Thus, the BBB is believed to contribute to preventing the onset and progression for Alzheimer's disease. Measurements of BBB function are essential toward a better understanding of Alzheimer's pathophysiology to establish novel imaging biomarkers and open new avenues of interventions for Alzheimer's disease and related dementias. The visualization techniques for capillary, cerebrospinal, and interstitial fluid dynamics around the neurovascular unit in living human brains have been enthusiastically developed. The purpose of this review is to summarize recent BBB imaging developments using advanced magnetic resonance imaging technologies in relation to Alzheimer's disease and related dementias. First, we give an overview of the relationship between Alzheimer's pathophysiology and BBB dysfunction. Second, we provide a brief description about the principles of non-contrast agent-based and contrast agent-based BBB imaging methodologies. Third, we summarize previous studies that have reported the findings of each BBB imaging method in individuals with the Alzheimer's disease continuum. Fourth, we introduce a wide range of Alzheimer's pathophysiology in relation to BBB imaging technologies to advance our understanding of the fluid dynamics around the BBB in both clinical and preclinical settings. Finally, we discuss the challenges of BBB imaging techniques and suggest future directions toward clinically useful imaging biomarkers for Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Yuto Uchida
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Aichi, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Yuto Uchida, ; Noriyuki Matsukawa,
| |
Collapse
|
15
|
Lopes Boschetti JC, Soares KL, Carvalho GR, Filho ACV, Ton AMM, Pereira TDMC, Scherer R. CGAs-Rich Conilon Coffee Consumption Improves Cognition and Reduces Oxidative Stress in Elderly with Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2023; 96:1547-1554. [PMID: 37980673 DOI: 10.3233/jad-230843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND The consumption of coffee has been associated with beneficial effects when it comes to Alzheimer's disease (AD). However, to the best of our knowledge, there are no studies on Conilon coffee consumption in elderly people with AD. OBJECTIVE Evaluate the effects of Conilon coffee consumption in elderly with AD. METHODS The study was carried out with 9 participants who consumed a minimum of 2 cups (200 mL cup) of Conilon coffee per day for 90 days. Cognitive assessment was done before (T0) and after 90 days (T90). Blood analysis was conducted at T0 and T90, as well as the assessment of advanced oxidation protein products (AOPP) and thiobarbituric acid reactive species (TBARS). The levels of chlorogenic acids and caffeine in the coffee beverage were quantified by liquid chromatography. RESULTS During the treatment, the participants consumed at least 550 mg and 540 mg of CGAs and caffeine, respectively. A significant improvement in cognition between T0 and T90 was observed as per MMSE, CTP, and clock drawing tests. Furthermore, there was a significant reduction in AOPP (37%) and TBARS (60%), indicating a reduction in oxidative stress. The consumption of the coffee did not significantly alter any blood parameter, which confirms the safety of the coffee treatment during the 90 days. CONCLUSIONS Our study demonstrated for the first time that regular consumption of coffee with high amounts of CGAs and caffeine improves cognitive functions and reduces oxidative stress, without altering blood parameters that indicate possible signs of toxicity in classical target organs.
Collapse
Affiliation(s)
| | - Karla Lírio Soares
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, ES, Brazil
| | | | | | | | - Thiago de Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, ES, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, ES, Brazil
| |
Collapse
|
16
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
17
|
Dong X, Qu S. Erigeron breviscapus (Vant.) Hand-Mazz.: A Promising Natural Neuroprotective Agent for Alzheimer's Disease. Front Pharmacol 2022; 13:877872. [PMID: 35559239 PMCID: PMC9086453 DOI: 10.3389/fphar.2022.877872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by progressive cognitive dysfunction and memory loss in the elderly, which seriously affects the quality of their lives. Currently, the pathogenesis of AD remains unclear. Molecular biologists have proposed a variety of hypotheses, including the amyloid-β hypothesis, tau hyperphosphorylation hypothesis, cholinergic neuron injury, inflammation caused by an abnormal immune response, and gene mutation. Drugs based on these pathological studies, including cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, have achieved a certain level of efficacy but are far from meeting clinical needs. In the recent years, some important advances have been made in the traditional Chinese medicine treatment of AD. Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM) is an important medicinal plant distributed in Yunnan Province, China. Studies have shown that EBHM and its active ingredients have a variety of pharmacological effects with good therapeutic effects and wide application prospects for cognitive disability-related diseases. However, to our best knowledge, only few review articles have been published on the anti-AD effects of EBHM. Through a literature review, we identified the possible pathogenesis of AD, discussed the cultivation and phytochemistry of EBHM, and summarized the pharmacological mechanism of EBHM and its active ingredients in the treatment of AD to provide suggestions regarding anti-AD therapy as well as a broader insight into the therapeutic potential of EBHM.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Zeng L, Xiang R, Fu C, Qu Z, Liu C. The Regulatory effect of chlorogenic acid on gut-brain function and its mechanism: A systematic review. Biomed Pharmacother 2022; 149:112831. [PMID: 35303566 DOI: 10.1016/j.biopha.2022.112831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Chlorogenic acid (CGA) is a phenolic compound that is widely distributed in honeysuckle, Eucommia, fruits and vegetables. It has various biological functions, including cardiovascular, nerve, kidney, and liver protection, and it exerts a protective effect on human health, according to clinical research and basic research. The intestine and brain are two important organs that are closely related in the human body. The intestine is even called the "second brain" in humans. However, among the many reports in the literature, an article systematically reporting the regulatory effects and specific mechanisms of CGA on the intestines and brain has not been published. In this context, this review uses the regulatory role and mechanism of CGA in the intestine and brain as the starting point and comprehensively reviews CGA metabolism in the body and the regulatory role and mechanism of CGA in the intestine and brain described in recent years. Additionally, the review speculates on the potential biological actions of CGA in the gut-brain axis. This study provides a scientific theory for CGA research in the brain and intestines and promotes the transformation of basic research and the application of CGA in food nutrition and health care.
Collapse
Affiliation(s)
- Li Zeng
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rong Xiang
- The Library of Shaoyang University, Shaoyang, Hunan 422000, China
| | - Chunyan Fu
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Zhihao Qu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Changwei Liu
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
19
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
20
|
Santoscoy-Berber LS, Antunes-Ricardo M, Gallegos-Granados MZ, García-Ramos JC, Pestryakov A, Toledano-Magaña Y, Bogdanchikova N, Chavez-Santoscoy RA. Treatment with Argovit ® Silver Nanoparticles Induces Differentiated Postharvest Biosynthesis of Compounds with Pharmaceutical Interest in Carrot ( Daucus carota L.). NANOMATERIALS 2021; 11:nano11113148. [PMID: 34835912 PMCID: PMC8621433 DOI: 10.3390/nano11113148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
The global market for plant-derived bioactive compounds is growing significantly. The use of plant secondary metabolites has been reported to be used for the prevention of chronic diseases. Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots. Carrot samples were immersed in different concentrations (0, 5, 10, 20, or 40 mg/L) of each of five types of silver nanoparticles (AgNPs) for 3 min. Spectrophotometric methods measured the total phenolic compounds and the antioxidant capacity. The individual phenolic compounds were quantified by High Performance Liquid Chromatography (HPLC) and identified by –mass spectrometry (HPLC-MS). The five types of AgNPs could significantly increase the antioxidant capacity of carrots’ tissue in a dose-dependent manner. An amount of 20 mg/L of type 2 and 5 silver nanoparticle formulations increased the antioxidant capacity 3.3-fold and 4.1-fold, respectively. The phenolic compounds that significantly increased their content after the AgNP treatment were chlorogenic acid, 3-O-caffeoylquinic acid, and 5′-caffeoylquinic acid. The increment of each compound depended on the dose and the type of the used AgNPs. The exogenous application of Argovit® AgNPs works like controlled abiotic stress and produces high-value secondary bioactive compounds in carrot.
Collapse
Affiliation(s)
- Laura Sofia Santoscoy-Berber
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (L.S.S.-B.); (M.A.-R.)
| | - Marilena Antunes-Ricardo
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (L.S.S.-B.); (M.A.-R.)
| | - Melissa Zulahi Gallegos-Granados
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC)—Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, Ensenada 22890, Mexico; (J.C.G.-R.); (Y.T.-M.)
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, Ensenada 22890, Mexico; (J.C.G.-R.); (Y.T.-M.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Carretera Tijuana-Ensenada Km 107, Ensenada 22860, Mexico;
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (L.S.S.-B.); (M.A.-R.)
- Correspondence: or
| |
Collapse
|
21
|
Unusual Bioactive Compounds with Antioxidant Properties in Adjuvant Therapy Supporting Cognition Impairment in Age-Related Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms221910707. [PMID: 34639048 PMCID: PMC8509433 DOI: 10.3390/ijms221910707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Cognitive function decline is strictly related to age, resulting in the loss of the ability to perform daily behaviors and is a fundamental clinical neurodegeneration symptom. It has been proven that an adequate diet, comprehensive nutrition, and a healthy lifestyle may significantly inhibit neurodegenerative processes, improving cognitive functions. Therefore, intensive research has been conducted on cognitive-enhancing treatment for many years, especially with substances of natural origin. There are several intervention programs aimed at improving cognitive functions in elderly adults. Cognitive functions depend on body weight, food consumed daily, the quality of the intestinal microflora, and the supplements used. The effectiveness in the prevention of dementia is particularly high before the onset of the first symptoms. The impact of diet and nutrition on age-associated cognitive decline is becoming a growing field as a vital factor that may be easily modified, and the effects may be observed on an ongoing basis. The paper presents a review of the latest preclinical and clinical studies on the influence of natural antioxidants on cognitive functions, with particular emphasis on neurodegenerative diseases. Nevertheless, despite the promising research results in animal models, the clinical application of natural compounds will only be possible after solving a few challenges.
Collapse
|
22
|
Zhang Z, Wang M, Yuan S, Cai H, Zhu SG, Liu X. Genetically Predicted Coffee Consumption and Risk of Alzheimer's Disease and Stroke. J Alzheimers Dis 2021; 83:1815-1823. [PMID: 34459406 DOI: 10.3233/jad-210678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Observational studies have reported that coffee consumption was associated with Alzheimer's disease (AD) and stroke risk. However, the results are inconclusive. OBJECTIVE We aimed to evaluate whether genetically predicted coffee consumption is associated with AD and stroke using Mendelian randomization (MR) design. METHODS Summary-level data for AD (n = 54,162), ischemic stroke (n = 440,328), and intracerebral hemorrhage (ICH, n = 3,026) were adopted from publicly available databases. Summary-level data for coffee consumption were obtained from two genome-wide association studies, comprising up to 375,833 subjects. RESULTS Genetically predicted coffee consumption (cups/day) was associated with an increased risk of AD (OR = 1.26, 95%CI = 1.05-1.51). Moreover, genetically predicted 50%increase of coffee consumption was associated with an increased risk of ICH (OR: 2.27, 95%CI: 1.08-4.78) but a decreased risk of small vessel stroke (OR: 0.71, 95%CI: 0.51-0.996). Estimate for AD and ICH in FinnGen consortium is directionally consistent. Combined analysis of different databases further confirmed that genetically predicted coffee consumption was associated with an increased risk of AD and ICH. In the multivariable MR analysis, genetically predicted coffee consumption retained a stable effect with AD and ICH when adjusting for smoking (p < 0.05), while the association with AD attenuated when adjusting for alcohol use. CONCLUSION Our results indicate that genetically predicted coffee consumption may be associated with an increased risk of AD and ICH. The underlying biological mechanisms warrant further study.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China
| | - Mengmeng Wang
- Department of Neurology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Huan Cai
- Department of Neurology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Shuang-Gen Zhu
- Department of Neurology, People's Hospital of Longhua, Shenzhen, China.,Department of Neurology, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Zhanjiang, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China
| |
Collapse
|
23
|
Stromsnes K, Lagzdina R, Olaso-Gonzalez G, Gimeno-Mallench L, Gambini J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021; 9:1074. [PMID: 34440278 PMCID: PMC8392236 DOI: 10.3390/biomedicines9081074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Drugs are bioactive compounds originally discovered from chemical structures present in both the plant and animal kingdoms. These have the ability to interact with molecules found in our body, blocking them, activating them, or increasing or decreasing their levels. Their actions have allowed us to cure diseases and improve our state of health, which has led us to increase the longevity of our species. Among the molecules with pharmacological activity produced by plants are the polyphenols. These, due to their molecular structure, as drugs, also have the ability to interact with molecules in our body, presenting various pharmacological properties. In addition, these compounds are found in multiple foods in our diet. In this review, we focused on discussing the bioavailability of these compounds when we ingested them through diet and the specific mechanisms of action of polyphenols, focusing on studies carried out in vitro, in animals and in humans over the last five years. Knowing which foods have these pharmacological activities could allow us to prevent and aid as concomitant treatment against various pathologies.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Rudite Lagzdina
- Faculty of Medicine, Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Lucia Gimeno-Mallench
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| |
Collapse
|
24
|
Fernandes MYD, Dobrachinski F, Silva HB, Lopes JP, Gonçalves FQ, Soares FAA, Porciúncula LO, Andrade GM, Cunha RA, Tomé AR. Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices. Sci Rep 2021; 11:10488. [PMID: 34006978 PMCID: PMC8131611 DOI: 10.1038/s41598-021-89964-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chlorogenic acids, also attenuate brain dysfunction, although it is unknown if they control synaptic function. We now used electrophysiological recordings in mouse hippocampal slices to test if realistic concentrations of chlorogenic acids directly affect synaptic transmission and plasticity. 3-(3,4-dihydroxycinnamoyl)quinic acid (CA, 1-10 μM) and 5-O-(trans-3,4-dihydroxycinnamoyl)-D-quinic acid (NCA, 1-10 μM) were devoid of effect on synaptic transmission, paired-pulse facilitation or long-term potentiation (LTP) and long-term depression (LTD) in Schaffer collaterals-CA1 pyramidal synapses. However, CA and NCA increased the recovery of synaptic transmission upon re-oxygenation following 7 min of oxygen/glucose deprivation, an in vitro ischemia model. Also, CA and NCA attenuated the shift of LTD into LTP observed in hippocampal slices from animals with hippocampal-dependent memory deterioration after exposure to β-amyloid 1-42 (2 nmol, icv), in the context of Alzheimer's disease. These findings show that chlorogenic acids do not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of chlorogenic acids will allow the design of hitherto unrecognized novel neuroprotective strategies.
Collapse
Affiliation(s)
- Mara Yone D Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Fernando Dobrachinski
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centro de Ciências Naturais E Exatas, Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Felix A A Soares
- Centro de Ciências Naturais E Exatas, Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Geanne M Andrade
- Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Kolb H, Martin S, Kempf K. Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients 2021; 13:nu13041144. [PMID: 33807132 PMCID: PMC8066601 DOI: 10.3390/nu13041144] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Prospective epidemiological studies concur in an association between habitual coffee consumption and a lower risk of type 2 diabetes. Several aspects of these studies support a cause–effect relationship. There is a dependency on daily coffee dose. Study outcomes are similar in different regions of the world, show no differences between sexes, between obese versus lean, young versus old, smokers versus nonsmokers, regardless of the number of confounders adjusted for. Randomized controlled intervention trials did not find a consistent impact of drinking coffee on acute metabolic control, except for effects of caffeine. Therefore, lowering of diabetes risk by coffee consumption does not involve an acute effect on the post-meal course of blood glucose, insulin or insulin resistance. Several studies in animals and humans find that the ingestion of coffee phytochemicals induces an adaptive cellular response characterized by upregulation and de novo synthesis of enzymes involved in cell defense and repair. A key regulator is the nuclear factor erythroid 2-related factor 2 (Nrf2) in association with the aryl hydrocarbon receptor, AMP-activated kinase and sirtuins. One major site of coffee actions appears to be the liver, causing improved fat oxidation and lower risk of steatosis. Another major effect of coffee intake is preservation of functional beta cell mass via enhanced mitochondrial function, lower endoplasmic reticulum stress and prevention or clearance of aggregates of misfolded proinsulin or amylin. Long-term preservation of proper liver and beta cell function may account for the association of habitual coffee drinking with a lower risk of type 2 diabetes, rather than acute improvement of metabolic control.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-566036016
| |
Collapse
|
26
|
Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer's disease. Neurol Res Pract 2021; 3:5. [PMID: 33499944 PMCID: PMC7816372 DOI: 10.1186/s42466-021-00102-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lacking conventional lymphatic system, the central nervous system requires alternative clearance systems, such as the glymphatic system, which promotes clearance of interstitial solutes. Aquaporin-4 water channels (AQP4) are an integral part of this system and related to neuropathologies, such as Alzheimer's disease (AD). The clearance of Alzheimer's associated proteins amyloid β and tau is diminished by glymphatic system impairment, due to lack of AQP4. Even though AQP4 mislocalisation (which affects its activity) is a phenotype of AD, it remains a controversial topic, as it is still unclear if it is a phenotype-promoting factor or a consequence of this pathology. This review provides important and updated knowledge about glymphatic system, AQP4 itself, and their link with Alzheimer's disease. Finally, AQP4 as a therapeutic target is proposed to ameliorate Alzheimer's Disease and other neuropathologies AQP4-related.
Collapse
Affiliation(s)
- Inês Silva
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jéssica Silva
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal.
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
27
|
Fukutomi R, Ohishi T, Koyama Y, Pervin M, Nakamura Y, Isemura M. Beneficial Effects of Epigallocatechin-3- O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules 2021; 26:E415. [PMID: 33466849 PMCID: PMC7829779 DOI: 10.3390/molecules26020415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer's and Parkinson's diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.
Collapse
Affiliation(s)
- Ryuuta Fukutomi
- Quality Management Division, Higuchi Inc. Minato-ku, Tokyo 108-0075, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan;
| | - Yu Koyama
- Shizuoka Eiwa Gakuin University Junior College, Suruga-ku, Shizuoka 422-8545, Japan;
| | - Monira Pervin
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Yoriyuki Nakamura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Mamoru Isemura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| |
Collapse
|
28
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Yoo S, Yang HC, Lee S, Shin J, Min S, Lee E, Song M, Lee D. A Deep Learning-Based Approach for Identifying the Medicinal Uses of Plant-Derived Natural Compounds. Front Pharmacol 2020; 11:584875. [PMID: 33519445 PMCID: PMC7845697 DOI: 10.3389/fphar.2020.584875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
Medicinal plants and their extracts have been used as important sources for drug discovery. In particular, plant-derived natural compounds, including phytochemicals, antioxidants, vitamins, and minerals, are gaining attention as they promote health and prevent disease. Although several in vitro methods have been developed to confirm the biological activities of natural compounds, there is still considerable room to reduce time and cost. To overcome these limitations, several in silico methods have been proposed for conducting large-scale analysis, but they are still limited in terms of dealing with incomplete and heterogeneous natural compound data. Here, we propose a deep learning-based approach to identify the medicinal uses of natural compounds by exploiting massive and heterogeneous drug and natural compound data. The rationale behind this approach is that deep learning can effectively utilize heterogeneous features to alleviate incomplete information. Based on latent knowledge, molecular interactions, and chemical property features, we generated 686 dimensional features for 4,507 natural compounds and 2,882 approved and investigational drugs. The deep learning model was trained using the generated features and verified drug indication information. When the features of natural compounds were applied as input to the trained model, potential efficacies were successfully predicted with high accuracy, sensitivity, and specificity.
Collapse
Affiliation(s)
- Sunyong Yoo
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Hyung Chae Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, South Korea
| | - Seongyeong Lee
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Jaewook Shin
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Seyoung Min
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju, South Korea
| | - Eunjoo Lee
- Big Data Steering Department, National Health Insurance Service, Wonju, South Korea
| | - Minkeun Song
- Department of Physical and Rehabilitation Medicine, Research Institute of Medical Science, Cardiovascular Research Institute, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Doheon Lee
- Bio-Synergy Research Center, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
30
|
Xu Y, Hu R, He D, Zhou G, Wu H, Xu C, He B, Wu L, Wang Y, Chang Y, Ma R, Xie M, Xiao Z. Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up-regulating SIRT1. Brain Behav 2020; 10:e01655. [PMID: 32441492 PMCID: PMC7375129 DOI: 10.1002/brb3.1655] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models. METHODS In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aβ deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice. RESULTS In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aβ deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed. CONCLUSION Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress.
Collapse
Affiliation(s)
- Yan Xu
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Rong Hu
- Xiangdong Hospital Hunan Normal University, Zhuzhou, China
| | - Duanqun He
- Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Guijuan Zhou
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Heng Wu
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Chenlin Xu
- Xiangxi Autonomous Prefecture People's Hospital, Jishou, China
| | - Bing He
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Lin Wu
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yilin Wang
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yunqian Chang
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Rundong Ma
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ming Xie
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zijian Xiao
- The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|