1
|
Ferri N, Marodin G. Emerging oral therapeutic strategies for inhibiting PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:25-31. [PMID: 39802651 PMCID: PMC11722601 DOI: 10.1016/j.athplu.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
Pharmacological inhibition of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) have been firmly established to be an effective approach to reduce low-density lipoprotein (LDL) cholesterol levels and cardiovascular events. Subcutaneous administration of monoclonal antibodies (evolocumab and alirocumab) every 2 or 4 weeks determined a 60 % reduction of LDL cholesterol levels, while the GalNac-siRNA anti PCSK9 (inclisiran) provided an effective lipid lowering activity (-50 %) after an initial subcutaneous dose, repeated after 3 months and followed by a maintenance dose every 6 months. Although these two approaches have the potentiality to bring the majority of patients at high and very-high cardiovascular risk to the appropriate LDL cholesterol targets, their cost and subcutaneous administration represent a strong limitation for their large-scale use. These problems could be overcome by the development of small chemical molecules anti PCSK9 as oral therapy for controlling hypercholesterolemia. In the present review, we summarized the pharmacological properties of oral anti PCSK9 molecules that are currently under clinical development (DC371739, CVI-LM001, and AZD0780), including the mimetic peptides enlicitide decanoate (MK-0616) and NNC0385-0434.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giorgia Marodin
- Department of Pharmaceutical and Pharmacological Sciences, Padova, Italy
| |
Collapse
|
2
|
Palumbo M, Ugolotti M, Zimetti F, Adorni MP. Anti-atherosclerotic effects of natural compounds targeting lipid metabolism and inflammation: Focus on PPARs, LXRs, and PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:39-53. [PMID: 39877131 PMCID: PMC11773090 DOI: 10.1016/j.athplu.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
A large body of evidence has shown that modulation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs), the proprotein convertase subtilisin/kexin type 9 (PCSK9) and inflammatory processes by natural compounds has hypolipidemic and anti-atherosclerotic effects. These beneficial outcomes are certainly related to the crucial function of these targets in maintaining cholesterol homeostasis and regulating systemic inflammation. Currently, the therapeutic scenario for cardiovascular diseases (CVD) offers a plethora of widely validated and functional pharmacological treatments to improve the health status of patients. However, patients are increasingly sceptical of pharmacological treatments which are often associated with moderate to severe side effects. The aim of our review is to provide a collection of the most recent scientific evidence on the most common phytochemicals, used for centuries in the Mediterranean diet and traditional chinese medicine that act on these key regulators of cholesterol homeostasis and systemic inflammation, which could constitute important tools for CVD management.
Collapse
Affiliation(s)
| | | | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| |
Collapse
|
3
|
Chandran M, Rameshkumar KB, Jaleel A, Ayyappan JP. Embelin Elevates Endoplasmic Reticulum Calcium Levels and Blocks the Sterol Regulatory Element-Binding Protein 2 Mediated Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Improves the Low-Density Lipoprotein Receptor Mediated Lipid Clearance on Hepatocytes. Chem Biol Drug Des 2025; 105:e70055. [PMID: 39902651 DOI: 10.1111/cbdd.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/03/2024] [Accepted: 01/04/2025] [Indexed: 02/06/2025]
Abstract
Cardiovascular diseases (CVDs) continue to be one of the leading causes of morbidity and mortality worldwide, with a significant increase in recent years. Atherosclerosis, the pathological basis and prime reason for CVDs is primarily driven by dysregulated lipid metabolism and inflammation. Recently, proprotein convertase subtilisin kexin9 (PCSK9) has been evolved to be highly implicated in the circulatory low-density lipoprotein cholesterol levels by its modulatory effects on the low-density lipoprotein receptor (LDLR) mediated clearance. Even though not economical, the therapies targeting PCSK9 demonstrated appreciable levels of efficiency in managing hyperlipidaemic conditions. Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) is a naturally occurring para-benzoquinone isolated from dried berries of Embelia ribes, which possess several effects in maintaining the cholesterol homeostasis. In this study, we have analysed the role of embelin in sterol regulatory element-binding protein 2 (SREBP2) mediated PCSK9 expression in cultured hepatocytes. The study showed that the embelin treatment attenuates the endoplasmic reticulum (ER) stress-induced reactive oxygen species levels and ER stress markers on cultured hepatocytes. The treatment of embelin modulates the mRNA and protein level expression of SREBP2 and its downstream targets like PCSK9, LDLR, and HMG-CoA reductase (HMGCR). Interestingly the Ca2+ levels and the calcium binding protein of ER were significantly increased with embelin treatment. The work revealed a putative mechanism of embelin in lowering PCSK9 levels by boosting ER Ca2+ levels, thereby blocking SREBP2 nuclear translocation. Further, this reduces LDLR degradation and increases receptor-mediated circulatory lipid clearance. The study summarized the potential clinical applications of embelin in addressing the cardio vascular diseases.
Collapse
Affiliation(s)
- Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
- DBT-SAHAJ National Facility for Mass Spectrometry, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K B Rameshkumar
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute Palode, Thiruvananthapuram, Kerala, India
| | - Abdul Jaleel
- DBT-SAHAJ National Facility for Mass Spectrometry, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
An CY, Pel P, Bae M, Park CW, Kwon H, Lee HS, Dung LV, Kim C, Lee D, Choi YH, Chin YW. Cycloartane-type triterpenoids from Combretum quadrangulare Kurz with PCSK9 secretion inhibitory activities. PHYTOCHEMISTRY 2025; 230:114330. [PMID: 39547492 DOI: 10.1016/j.phytochem.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Nine previously undescribed (1-9) and seven known (10-16) cycloartane-type triterpenoids were isolated and characterized from Combretum quadrangulare Kurz using physicochemical and spectroscopic methods. The absolute configurations of these compounds were determined through modified Mosher's method and quantum chemical calculation of electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra. Their inhibitory activities against PCSK9 secretion were assessed, and a plausible structure-activity relationship was delineated. Compounds 2, 14, and 15 exhibited notable inhibitory effects on PCSK9 mRNA and protein levels, and significant PCSK9 mRNA inhibition was observed when co-treated with atorvastatin. Compound 15 showed the most potent activity, markedly enhancing LDL uptake compared to the negative control. In vivo pharmacokinetic studies confirmed that compound 15 exhibited higher distribution in the liver than plasma, where PCSK9 is predominantly synthesized. These findings emphasize the potential significance of the cycloartane-type triterpenoid scaffold in discovering PCSK9 inhibitors.
Collapse
Affiliation(s)
- Chae-Yeong An
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pisey Pel
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Chan-Woong Park
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Suk Lee
- Dalat University, Center for Biodiversity and Climate Change Research, Phu Dong Thien Vuong 01, Dalat City, Lam Dong Province, Viet Nam
| | - Luong Van Dung
- Dalat University, Center for Biodiversity and Climate Change Research, Phu Dong Thien Vuong 01, Dalat City, Lam Dong Province, Viet Nam
| | - Changmu Kim
- Species Diversity Research Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Young-Won Chin
- Natural Product Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Ajoolabady A, Pratico D, Mazidi M, Davies IG, Lip GYH, Seidah N, Libby P, Kroemer G, Ren J. PCSK9 in metabolism and diseases. Metabolism 2025; 163:156064. [PMID: 39547595 DOI: 10.1016/j.metabol.2024.156064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
PCSK9 is a serine protease that regulates plasma levels of low-density lipoprotein (LDL) and cholesterol by mediating the endolysosomal degradation of LDL receptor (LDLR) in the liver. When PCSK9 functions unchecked, it leads to increased degradation of LDLR, resulting in elevated circulatory levels of LDL and cholesterol. This dysregulation contributes to lipid and cholesterol metabolism abnormalities, foam cell formation, and the development of various diseases, including cardiovascular disease (CVD), viral infections, cancer, and sepsis. Emerging clinical and experimental evidence highlights an imperative role for PCSK9 in metabolic anomalies such as hypercholesterolemia and hyperlipidemia, as well as inflammation, and disturbances in mitochondrial homeostasis. Moreover, metabolic hormones - including insulin, glucagon, adipokines, natriuretic peptides, and sex steroids - regulate the expression and circulatory levels of PCSK9, thus influencing cardiovascular and metabolic functions. In this comprehensive review, we aim to elucidate the regulatory role of PCSK9 in lipid and cholesterol metabolism, pathophysiology of diseases such as CVD, infections, cancer, and sepsis, as well as its pharmaceutical and non-pharmaceutical targeting for therapeutic management of these conditions.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; King's College London, Department of Twin Research & Genetic Epidemiology, South Wing St Thomas', London, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ian G Davies
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Copperas Hill, Liverpool L3 5AJ, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Nabil Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada.
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
6
|
Paryani M, Gupta N, Jain SK, Butani S. Lowering LDL cholesterol by PCSK9 inhibition: a new era of gene silencing, RNA, and alternative therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03826-4. [PMID: 39883121 DOI: 10.1007/s00210-025-03826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has added a new paradigm to our understanding of cholesterol homeostasis and lipid metabolism. Since its discovery, PCSK9 inhibitors have become a widely investigated therapeutic class for lipid management in cardiovascular diseases and hypercholesterolemia. Scientists have explored different approaches for PCSK9 inhibition, such as monoclonal antibodies (mAbs), gene silencing and gene editing techniques, vaccines, mimetic peptides, and small molecules. European Medicines Agency (EMA) and United States Food and Drug Administration (US FDA) have approved only three PCSK9 inhibitors, including two monoclonal antibodies and one small interfering ribonucleic acid (siRNA). Despite the efficacy of approved large molecules, high costs and the need for regular injection have limited their adherence to the patient. This review aims to provide an understanding of PCSK9's function in Low-Density Lipoprotein Cholesterol (LDL-C) management, its current treatment, recent advancements, and potential future development of small molecules in the class of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Mitali Paryani
- Institute of Pharmacy, Nirma University, Gujarat, 382481, India
| | - Nikita Gupta
- Institute of Pharmacy, Nirma University, Gujarat, 382481, India
| | | | - Shital Butani
- Institute of Pharmacy, Nirma University, Gujarat, 382481, India.
| |
Collapse
|
7
|
Nee Shelly Aggarwal SS, Kaur D, Saluja D, Srivastava K. Repurposed drugs as PCSK9-LDLR disruptors for lipid lowering and cardiovascular disease therapeutics. Mol Divers 2024:10.1007/s11030-024-11063-9. [PMID: 39645639 DOI: 10.1007/s11030-024-11063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
The PCSK9 protein binds to LDL receptors (LDLR), leading to their degradation and reduced expression on cell surfaces. This decreased the clearance of LDL cholesterol from the bloodstream, thereby increasing the risk of coronary artery diseases. Targeting the PCSK9-LDL receptor interaction is crucial for regulating LDL cholesterol levels and preventing cardiovascular disease. This study aims to screen low molecular weight inhibitors to disrupt the PCSK9-LDLR interaction. We employed a comprehensive approach combining high-throughput virtual screening of DrugBank database, followed by molecular docking studies using CDOCKER and flexible docking methods. The top four lead compounds were further validated through molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA. Finally, the in vitro assay confirmed that Benazepril and Quinapril exhibited the highest potency as PCSK9-LDLR disruptors among the top candidates. These lead compounds have the potential to be repurposed as lipid-lowering agents for the treatment of cardiovascular diseases, offering a promising therapeutic strategy.
Collapse
Affiliation(s)
| | - Divpreet Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Kamna Srivastava
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
8
|
Medoro A, Scapagnini G, Brogi S, Jafar TH, Trung TT, Saso L, Davinelli S. Carotenoid Interactions with PCSK9: Exploring Novel Cholesterol-Lowering Strategies. Pharmaceuticals (Basel) 2024; 17:1597. [PMID: 39770439 PMCID: PMC11676125 DOI: 10.3390/ph17121597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: This study investigated the potential of green algae-derived carotenoids as natural inhibitors of the proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of cholesterol metabolism. PCSK9 promotes the degradation of low-density lipoprotein receptors (LDLR), thereby increasing blood cholesterol levels and elevating the risk of cardiovascular diseases. Methods/Results: We screened the pharmacophore fit score of 27 carotenoids with PCSK9 and identified 14 that were analyzed for binding affinity and molecular interactions. Astaxanthin, siphonaxanthin, and prasinoxanthin were identified as the top candidates, demonstrating strong binding affinity (-10.5, -10.3, and -9.4 Kcal/mol, respectively) and stable interactions with several known key residues within the active site of PCSK9, including Pro-331, Arg-357, Cys-358, Val-359, Asp-360, Ile-416, Leu-436, Thr-437, Pro-438, Leu-440, Arg-458, Val-460, Trp-461, Arg-476, Cys-477, Ala-478, Ala-649, Val-650, and Asp-651. Density functional theory analysis confirmed the stability of astaxanthin and its favorable electronic properties, suggesting its potential as an effective inhibitor. Molecular dynamics simulations of the PCSK9-astaxanthin complex revealed sustained structural stability and key interactions critical for maintaining the functional integrity of the protein. Conclusions: These findings provide evidence that specific carotenoids, particularly astaxanthin, may offer a cost-effective alternative to existing PCSK9 inhibitors, providing a potential approach for managing cholesterol levels and reducing cardiovascular risk. Pre-clinical and clinical validations are required to confirm the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.); (T.H.J.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.); (T.H.J.)
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Tassadaq Hussain Jafar
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.); (T.H.J.)
| | - Truong Tan Trung
- Laboratory of Computation and Nanoscience, Dong Nai Technology University, Bien Hoa City 810000, Vietnam;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.); (T.H.J.)
| |
Collapse
|
9
|
Min-Gyung S, Pel P, An CY, Park CW, Lee SH, Yang TJ, Chin YW. Chemical constituents from the roots of Cynanchum wilfordii with PCSK9 secretion inhibitory activities. PHYTOCHEMISTRY 2024; 226:114205. [PMID: 38971497 DOI: 10.1016/j.phytochem.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
From the Cynanchum wilfordii roots, 32 compounds, including 5 previously undescribed (1, 4-6, 12) and 27 known (2, 3, 7-11, 13-32) compounds, were isolated, and their structures were elucidated using NMR spectroscopic data and MS data aided by ECD calculations or the modified Mosher's reaction. All isolates were tested for their inhibitory effects on proprotein convertase subtilisin/kexin type 9 (PCSK9) secretion. Among the isolates, compound 4, a methyl cholesterol analog, exhibited the most potent effect in reducing PCSK9 secretion, along with PCSK9 downregulation at the mRNA and protein levels via FOXO1/3 upregulation. Moreover, compound 4 attenuated statin-induced PCSK9 expression and enhanced the uptake of DiI-LDL low-density lipoprotein. Thus, compound 4 is suggested to be a potential candidate for controlling cholesterol levels.
Collapse
Affiliation(s)
- Son Min-Gyung
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pisey Pel
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chae-Yeong An
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan-Woong Park
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sae Hyun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Won Chin
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
11
|
Matin A, Chaudhry GES, Azra MN, Gazali M, Yeong YS, Tengku Muhammad TS. Advancing Research on Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors: A Scientometric Analysis. Malays J Med Sci 2024; 31:14-34. [PMID: 39247108 PMCID: PMC11377008 DOI: 10.21315/mjms2024.31.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/22/2024] [Indexed: 09/10/2024] Open
Abstract
Atherosclerosis is characterised by the accumulation of fatty deposits and plaque as a result of a continuously high level of low-density lipoprotein cholesterol (LDL-C) in the blood. The primary objective of this research is to assess the current status of knowledge, research endeavours and developmental trajectories about proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors in correlation with atherosclerosis treatment. Additionally, this study aims to compile bibliometric and scientometric investigations within this domain through rigorous scientometric analysis. Analysing the bibliometric landscape and global research trends associated with PCSK9 inhibitors can contribute valuable insights into comprehending atherosclerosis. This is exemplified by examining publications within the Web of Science Core Collection (WOSCC) database from 2008 to 2022. Citespace was used for frequency, co-occurrence, co-citation, grouping and burst analysis, and Microsoft Excel was used to manage descriptive datasets. Eight hundred eighty-five publications available from WOSCC database between the years 2008 and 2022 were extracted and examined. Over the period, 3,138 collaborating institutions from 87 countries, a staggering 7,750 writers involved and 325 distinct journals published about PCSK9 inhibitors studies. Among authors, Sabatine et al. and the journal The New England Journal of Medicine has had the most significant impact. Lipid-lowering therapy and bempedoic acid are the most prominent topical clusters associated with PCSK9 inhibitors, and the most often used keywords are efficacy, safety and PCSK9 inhibitors. We believe this is the first comprehensive analysis of PCSK9 inhibitors research and publications conducted using Scientometric. These results demonstrate the nascence of PCSK9 inhibitors research. They may encourage a wide range of stakeholders, particularly early career researchers from various disciplines, to work together in the future.
Collapse
Affiliation(s)
- Abdul Matin
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
- Department of Food Processing and Engineering, Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Gul-E-Saba Chaudhry
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Mohamad Gazali
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
- Department of Marine Science, Faculty of Fisheries and Marine Science, University of Teuku Umar, West Aceh, Indonesia
| | - Yik Sung Yeong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | | |
Collapse
|
12
|
Chen T, Hou A, Guo P, Peng S, Qin G, Ding A, Hu X, Duan Y, Chen J, Gong L, Xuan L. Novel Jatrophane Diterpenoids from Euphorbia esula Promotes Lipid Clearance by Transcriptional Regulation of PCSK9. J Med Chem 2024; 67:12055-12067. [PMID: 38959380 DOI: 10.1021/acs.jmedchem.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
PCSK9 has been recognized as an efficient target for hyperlipidemia and related cardiovascular/cerebrovascular diseases. However, PCSK9 inhibitors in the clinic are all biological products, and no small molecules are available yet. In the current work, we discovered that the crude extract of Euphorbia esula (E. esula) promoted LDL uptake in vitro and then obtained 8 new and 12 known jatrophane diterpenoids by activity-guided isolation. After summarized their structure-activity relationship of PCSK9 inhibition, we selected compound 11 (C11) with potent activity and high abundance to investigate its mechanism and in vivo efficacy. Mechanistically, C11 bound with HNF1α to influence its nuclear distribution and subsequently inhibit PCSK9 transcription, thereby enhancing LDLR and promoting LDL uptake. Moreover, C11 demonstrated obvious lipid-lowering activity in HFD mouse model. In conclusion, we first revealed the novel application of E. esula in the discovery of a lipid-lowering candidate and highlighted the potential of C11 in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Tong Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Aijun Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Pengju Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Shou Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guoqing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Aoxue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xianggang Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Yelin Duan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Lijiang Xuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
13
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Liu SS, Yu T, Qiao YF, Gu SX, Chai XL. Research on Hepatocyte Regulation of PCSK9-LDLR and Its Related Drug Targets. Chin J Integr Med 2024; 30:664-672. [PMID: 36913119 DOI: 10.1007/s11655-023-3545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 03/14/2023]
Abstract
The prevalence of hyperlipidemia has increased significantly due to genetic, dietary, nutritional and pharmacological factors, and has become one of the most common pathological conditions in humans. Hyperlipidemia can lead to a range of diseases such as atherosclerosis, stroke, coronary heart disease, myocardial infarction, diabetes, and kidney failure, etc. High circulating low-density lipoprotein cholesterol (LDL-C) is one of the causes of hyperlipidemia. LDL-C in the blood binds to LDL receptor (LDLR) and regulates cholesterol homeostasis through endocytosis. In contrast, proprotein convertase subtilisin/kexin type 9 (PCSK9) mediates LDLR degradation via the intracellular and extracellular pathways, leading to hyperlipidemia. Targeting PCSK9-synthesizing transcription factors and downstream molecules are important for development of new lipid-lowering drugs. Clinical trials regarding PCSK9 inhibitors have demonstrated a reduction in atherosclerotic cardiovascular disease events. The purpose of this review was to explore the target and mechanism of intracellular and extracellular pathways in degradation of LDLR and related drugs by PCSK9 in order to open up a new pathway for the development of new lipid-lowering drugs.
Collapse
Affiliation(s)
- Su-Su Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Tong Yu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Yan-Fang Qiao
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Shu-Xiao Gu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Xin-Lou Chai
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China.
| |
Collapse
|
15
|
Han L, Wu L, Yin Q, Li L, Zheng X, Du S, Huang X, Bai L, Wang Y, Bian Y. A promising therapy for fatty liver disease: PCSK9 inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155505. [PMID: 38547616 DOI: 10.1016/j.phymed.2024.155505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.
Collapse
Affiliation(s)
- Lizhu Han
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lian Li
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Du
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xuefei Huang
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Yuan Bian
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
16
|
Lee S, Son MG, Kim YM, An CY, Kim HJ, Nhoek P, Pel P, Won H, Lee Y, Yun N, Paik JH, Bazarragchaa B, Kim HW, Choi YH, Oh WK, Lee CH, Chin YW. Dihydrostilbenes and flavonoids from whole plants of Jacobaea vulgaris. PHYTOCHEMISTRY 2024; 222:114107. [PMID: 38663823 DOI: 10.1016/j.phytochem.2024.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
The isolation of previously undescribed 12 compounds from the MeOH extract of Jacobaea vulgaris whole plants is disclosed, comprising 11 dihydrostilbenes (1-11) and one flavanone (12), and eight known compounds (six flavonoids, one dihydrostilbene, and one caffeoylquinic acid). Structural elucidation employed spectroscopic methods, including 1D and 2D NMR spectroscopy, HRESIMS, and ECD calculations. Evaluation of the compounds' effects on PCSK9 and LDLR mRNA expression revealed that compounds 1 and 3 downregulated PCSK9 mRNA while increasing LDLR mRNA expression, suggesting potential cholesterol-lowering properties.
Collapse
Affiliation(s)
- Shinae Lee
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Gyung Son
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Mi Kim
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chae-Yeong An
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Piseth Nhoek
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pisey Pel
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongic Won
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonkyung Lee
- Plant Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Narae Yun
- Department of Botany, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | | | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Won Keun Oh
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Young-Won Chin
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Giannessi L, Lupo MG, Rossi I, Martina MG, Vilella A, Bodria M, Giuliani D, Zimetti F, Zanotti I, Potì F, Bernini F, Ferri N, Radi M. Identification of 4-amino-2-Pyridones as new potent PCSK9 inhibitors: From phenotypic hit discovery to in vivo tolerability. Eur J Med Chem 2024; 265:116063. [PMID: 38160616 DOI: 10.1016/j.ejmech.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Among the strategies to overcome the underperformance of statins in cardiovascular diseases (CVDs), the development of drugs targeting the Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is considered one of the most promising. However, only anti-PCSK9 biological drugs have been approved to date, and orally available small-molecules for the treatment of hypercholesterolemic conditions are still missing on the market. In the present work, we describe the application of a phenotypic approach to the identification and optimization of 4-amino-2-pyridone derivatives as a new chemotype with anti-PCSK9 activity. Starting from an in-house collection of compounds, functional assays on HepG2 cells followed by a chemistry-driven hit optimization campaign, led to the potent anti-PCSK9 candidate 5c. This compound, at 5 μM, totally blocked PCSK9 secretion from HepG2 cells, significantly increased LDL receptor (LDLR) expression, and acted cooperatively with simvastatin by reducing its induction of PCSK9 expression. Finally, compound 5c also proved to be well tolerated in C57BL/6J mice at the tested concentration (40 mg/kg) with no sign of toxicity or behavior modifications.
Collapse
Affiliation(s)
- Lisa Giannessi
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | | | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131, Padova, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Zimetti
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, 43125, Parma, Italy
| | - Franco Bernini
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35128, Padova, Italy; Veneto Institute of Molecular Medicine, Padua, 35129, Italy.
| | - Marco Radi
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy.
| |
Collapse
|
18
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
20
|
Nhoek P, An CY, Son MG, Chae HS, Pel P, Kim YM, Khiev P, Choi WJ, Choi YH, Chin YW. Stereochemical assignment of clerodane-type diterpenes from the fruits of Casearia grewiifolia and their ability to inhibit PCSK9 expression. PHYTOCHEMISTRY 2023; 216:113864. [PMID: 37748701 DOI: 10.1016/j.phytochem.2023.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
More than 20 natural products have been reported to modulate PCSK9-mediated cholesterol regulation, and small-molecule-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors continue to be developed and identified. Here, twelve undescribed clerodane-type diterpenes (1-9 and 12-14) and two known compounds were isolated from the chloroform-soluble extract of the dried fruits of Casearia grewiifolia Vent. using a PCSK9 mRNA expression monitoring assay. Among the undescribed compounds, the stereochemistry of two diastereomeric grewiifolins A and B (1 and 2) were extensively elucidated using 2D Nuclear Overhauser Effect Spectroscopy (NOESY) experiments, excitation-sculptured indirect detection experiments (EXSIDE), interproton distance analyses, and computational calculations that included quantum chemical shift calculations combined with DP4+ analysis. All isolates were assessed for their inhibitory activity against PCSK9 and IDOL mRNA expression. Among the compounds tested, compound 3 inhibited PCSK9 and IDOL mRNA expression.
Collapse
Affiliation(s)
- Piseth Nhoek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chae-Yeong An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyung Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Piseth Khiev
- Royal University of Phnom Penh, Department of Biology, Russian Federation Boulevard, Khan Toul Kork, Phnom Penh 12156, Cambodia
| | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Iqbal M, Hasanah N, Arianto AD, Aryati WD, Puteri MU, Saputri FC. Brazilin from Caesalpinia sappan L. as a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor: Pharmacophore-Based Virtual Screening, In Silico Molecular Docking, and In Vitro Studies. Adv Pharmacol Pharm Sci 2023; 2023:5932315. [PMID: 37860715 PMCID: PMC10584496 DOI: 10.1155/2023/5932315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a crucial regulator of low-density lipoprotein cholesterol (LDL-c) levels, as it binds to and degrades the LDL receptor (LDLR) in the lysosome of hepatocytes. Elevated levels of PCSK9 have been linked to an increased LDL-c plasma levels, thereby increasing the risk of cardiovascular disease (CVD), making it an attractive target for therapeutic interventions. As a way to inhibit PCSK9 action, we searched for naturally derived small molecules which can block the binding of PCSK9 to the LDLR. Methods In this study, we carried out in silico studies which consist of virtual screening using an optimized pharmacophore model and molecular docking studies using Pyrx 0.98. Effects of the candidate compounds were evaluated using in vitro PCSK9-LDLR binding assays kit. Results Eleven natural compounds that bind to PCSK9 were virtually screened form HerbalDB database, including brazilin. Next, molecular docking studies using Pyrx 0.98 showed that brazilin had the highest binding affinity with PCSK9 at -9.0 (Kcal/mol), which was higher than that of the other ten compounds. Subsequent in vitro PCSK9-LDLR binding assays established that brazilin decreased the binding of PCSK9 to the EGF-A fragment of the LDLR in a dose-dependent manner, with an IC50 value of 2.19 μM. Conclusion We have identified brazilin, which is derived from the Caesalpinia sappan herb, which can act as a small molecule inhibitor of PCSK9. Our findings suggest that screening for small molecules that can block the interaction between PCSK9 and the LDLR in silico and in vitro may be a promising approach for developing novel lipid-lowering therapy.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Postgraduate Program, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Nur Hasanah
- Postgraduate Program, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
- Pharmacy Department, Widya Dharma Husada School of Health Science, South Tangerang, Banten 15417, Indonesia
| | - Aimee Detria Arianto
- Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Widya Dwi Aryati
- Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Meidi Utami Puteri
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Fadlina Chany Saputri
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| |
Collapse
|
22
|
Kang YM, Kim YJ, Kim K. Significance of traditional herbal medicine for dyslipidemia. Am J Transl Res 2023; 15:5373-5388. [PMID: 37692941 PMCID: PMC10492084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Dyslipidemia is a multifactorial disorder that is a causative factor and risk factor for cardiovascular disease. The incidence of dyslipidemia is expected to increase because of the presence of comorbidities. Although several lipid-lowering drugs have been developed and approved, they are not completely effective and are associated with side effects. Traditional herbal medicine (THM) represents an alternative and complementary approach for managing dyslipidemia because of its low toxicity and beneficial effects, such as anti-inflammatory and antioxidant effects. This review focuses on our current understanding of the antidyslipidemic effect of THMs and discusses the associated regulatory mechanisms. The current findings indicate that THM may lead to the development of novel therapeutic regimens for dyslipidemia.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)Daegu 41062, Republic of Korea
| | - Yeon-Ji Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)Daegu 41062, Republic of Korea
| | - Kyungho Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)Daegu 41062, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science and Technology (UST)Daejeon 34054, Republic of Korea
| |
Collapse
|
23
|
Zhu D, Qin H, Wang X, Jia Y, Wang X, Zhang L. Discovery of [5,5'-bibenzo[d][1,3]dioxol]-6-substituted amine derivatives as potent proprotein convertase subtilisin/kexin type 9 inhibitors. Chem Biol Drug Des 2023; 102:153-167. [PMID: 37170061 DOI: 10.1111/cbdd.14264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target for the treatment of hyperlipidemia. In discovery of novel small molecules that interfere PCSK9/LDLR protein-protein interaction (PPI), structural modification was performed based on our previously derived compounds. A series of [5,5'-bibenzo[d][1,3]dioxol]-6-amine analogs were designed and synthesized for the activity evaluation. In the PCSK9/LDLR PPI impairing test, molecules D28 and D29, exhibited remarkable inhibitory potency with IC50 values of 8.30 and 6.70 μM compared with SBC-115337 (17.89 μM), respectively. Molecular docking predicted the binding pattern of compounds D28 and D29 in the LDLR binding site of PCSK9. Hydrophobic interactions play an important role in the binding of aromatic molecular fragments to the pockets in the PCSK9/LDLR binding interface. Further LDLR expression and LDL uptake studies revealed that both D28 and D29 restored LDLR expression on the surface of hepatic HepG2 cells and improved extracellular LDL uptake in the presence of PCSK9. It is significant that molecules D28 and D29 exhibited potential for the treatment of hyperlipidemia in current in vitro investigations. Generally, lead compounds with novel structures were developed in the present study for further design of lipid-lowering molecules by targeting PCSK9/LDLR PPI.
Collapse
Affiliation(s)
- Dongqi Zhu
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaojing Wang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xuejian Wang
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Hernandez AV, Hwang J, Nasreen I, Sicignano D, Pasupuleti V, Snow-Caroti K, White CM. Impact of Berberine or Berberine Combination Products on Lipoprotein, Triglyceride and Biological Safety Marker Concentrations in Patients with Hyperlipidemia: A Systematic Review and Meta-Analysis. J Diet Suppl 2023; 21:242-259. [PMID: 37183391 DOI: 10.1080/19390211.2023.2212762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Monoclonal antibody Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) inhibitors reduce total cholesterol (TC), low density lipoproteins (LDL), high density lipoproteins (HDL), and triglycerides (TG). We assessed the ability of berberine, a natural PCSK9 inhibitor, to reduce lipid concentrations either alone or combined with other nutraceuticals. We searched PubMed, Scopus and EMBASE from inception to September 30th, 2022 for randomized controlled trials (RCTs) assessing 8-18 wk of berberine therapy on. A total of 41 RCTs with 4,838 patients met our inclusion criteria. Berberine containing products significantly reduced TC (MD -17.42 mg/dL [95%CI: -22.91 to -11.93]), LDL (MD -14.98 mg/dL [95%CI: -20.67 to -9.28]), and TG (MD -18.67 mg/dL [95%CI: -25.82 to -11.51]) while raising HDL (MD 1.97 mg/dL [95%CI: 1.16 to 2.78]) versus control (I2 > 72% for all analyses). Products with berberine alone had less robust effects on TC (MD -12.08 mg/dL [95%CI: -21.79 to -2.37]), LDL (MD -9.26 mg/dL [95%CI: -20.31 to 1.78]), and HDL (MD 1.38 mg/dL [95%CI: -1.27 to 4.03]) but TG effects were similar (MD -17.40 mg/dL [95%CI: -32.57 to -2.23]). Berberine along with red yeast rice reduced TC (MD -19.62 mg/dL [95%CI: -28.56 to -10.68]) and LDL (MD -18.79 mg/dL [95%CI: -28.03 to -9.54]) as did combination therapy with Silybum maranium for TC (MD -31.81 mg/dL [95%CI: -59.88 to -3.73]) and LDL (MD -30.82 mg/dL [95%CI: -56.48 to -5.16]). Berberine, alone or with other nutraceuticals, can provide a modest positive impact on lipid concentrations.
Collapse
Affiliation(s)
- Adrian V Hernandez
- University of Connecticut School of Pharmacy, Storrs, CT, USA
- Unidad de Revisiones Sistemáticas y Meta-análisis (URSIGET), Vicerrectorado de Investigación, Universidad San Ignacio de Loyola (USIL), Lima, Peru
| | - Jennifer Hwang
- University of Connecticut School of Pharmacy, Storrs, CT, USA
| | - Iram Nasreen
- University of Connecticut School of Pharmacy, Storrs, CT, USA
| | | | | | - Kimberly Snow-Caroti
- University of Connecticut School of Pharmacy, Storrs, CT, USA
- Department of Research Administration, Hartford Hospital, Hartford, CT, USA
| | - C Michael White
- University of Connecticut School of Pharmacy, Storrs, CT, USA
- Department of Research Administration, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
25
|
Zivkovic S, Maric G, Cvetinovic N, Lepojevic-Stefanovic D, Bozic Cvijan B. Anti-Inflammatory Effects of Lipid-Lowering Drugs and Supplements-A Narrative Review. Nutrients 2023; 15:nu15061517. [PMID: 36986246 PMCID: PMC10053759 DOI: 10.3390/nu15061517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. Since the establishment of the "lipid hypothesis", according to which, cholesterol level is directly correlated to the risk of CVD, many different lipid-lowering agents have been introduced in clinical practice. A majority of these drugs, in addition to their lipid-lowering properties, may also exhibit some anti-inflammatory and immunomodulatory activities. This hypothesis was based on the observation that a decrease in lipid levels occurs along with a decrease in inflammation. Insufficient reduction in the inflammation during treatment with lipid-lowering drugs could be one of the explanations for treatment failure and recurrent CVD events. Thus, the aim of this narrative review was to evaluate the anti-inflammatory properties of currently available lipid-lowering medications including statins, ezetimibe, bile acid sequestrants (BAS), proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, fibrates, omega-3 fatty acids, and niacin, as well as dietary supplements and novel drugs used in modern times.
Collapse
Affiliation(s)
- Stefan Zivkovic
- Department of Cardiovascular Disease, Zvezdara University Medical Center, 11000 Belgrade, Serbia
| | - Gorica Maric
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia
| | - Natasa Cvetinovic
- Department of Cardiovascular Disease, University Medical Center "Dr Dragisa Misovic-Dedinje", 11000 Belgrade, Serbia
| | | | - Bojana Bozic Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Zrnić-Ćirić M, Kotur-Stevuljević J, Stanković I, Đordjević B, Baralić I, Ostojić M. Association of octacosanol supplementation with redox status in patients on chronic statin therapy. J Med Biochem 2023; 42:47-57. [PMID: 36819142 PMCID: PMC9921089 DOI: 10.5937/jomb0-38224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022] Open
Abstract
Background The uneven lipid-lowering statin effects and statin intolerance raise interest regarding the involvement of coadministration of statins and dietary supplements. This study aimed to evaluate the effects of octacosanol supplementation on markers of redox status in cardiovascular patients on chronic atorvastatin therapy. Methods A double-blind, randomized, placebo-controlled, single-centre study was conducted. Redox status homeostasis parameters [i.e., advanced oxidation protein products (AOPP), pro-oxidant-antioxidant balance (PAB), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase activity (SOD), total protein sulfhydryl (SHgroups), and paraoxonase 1 (PO N 1) activity] were assessed in 81 patients. According to favorable changes in lipid profile, patients were classified into two groups: responders (n = 35) and non-responders (n = 46), and followed for 13 weeks. A principal component analysis (PCA) was applied to explore the effect of octacosanol supplementation and the relationship between investigated parameters as predictors of responders' and non-responders' status. Results Significant decrease in Oxy-score value was found at the endpoint compared to baseline in responders' group (21.0 (13.4-25.5) versus 15.1 (12.4-18.0); P < 0.01). PCA analysis extracted 4 significant factors in the both groups, whereas extracted factors containing "octacosanol status" variable explained 14.7% and 11.5% of the variance in responders' and non-responders' subgroups, respectively. Conclusions Octacosanol supplementation leads to an improvement of lipid profile and markers of redox status in responders' group. New studies are needed to validate our results in order to find the best approach for personalized supplementation as a useful adjunct to standard statin therapy.
Collapse
Affiliation(s)
- Milica Zrnić-Ćirić
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, Belgrade
| | | | - Ivan Stanković
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, Belgrade
| | - Brižita Đordjević
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, Belgrade
| | | | | |
Collapse
|
27
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
28
|
Ahamad S, Bhat SA. Recent Update on the Development of PCSK9 Inhibitors for Hypercholesterolemia Treatment. J Med Chem 2022; 65:15513-15539. [PMID: 36446632 DOI: 10.1021/acs.jmedchem.2c01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The proprotein convertase subtilisin/kexin-type 9 (PCSK9) binds to low-density lipoprotein receptors (LDLR), thereby trafficking them to lysosomes upon endocytosis and enhancing intracellular degradation to prevent their recycling. As a result, the levels of circulating LDL cholesterol (LDL-C) increase, which is a prominent risk factor for developing atherosclerotic cardiovascular diseases (ASCVD). Thus, PCSK9 has become a promising therapeutic target that offers a fertile testing ground for new drug modalities to regulate plasma LDL-C levels to prevent ASCVD. In this review, we have discussed the role of PCSK9 in lipid metabolism and briefly summarized the current clinical status of modalities targeting PCSK9. In particular, a detailed overview of peptide-based PCSK9 inhibitors is presented, which emphasizes their structural features and design, therapeutic effects on patients, and preclinical cardiovascular disease (CVD) models, along with PCSK9 modulation mechanisms. As a promising alternative to monoclonal antibodies (mAbs) for managing LDL-C, anti-PCSK9 peptides are emerging as a prospective next generation therapy.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
29
|
Begum SN, Ray AS, Rahaman CH. A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154456. [PMID: 36152592 DOI: 10.1016/j.phymed.2022.154456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Eugenol (1-allyl-4-hydroxy-3-methoxybenzene) is an important simple phenolic compound mainly derived from Syzygium aromaticum and many other plants. It is traditionally used in ayurveda and aromatherapy for the healing of many health problems. It also has significant applications in dentistry, agriculture, and flavour industry. This simple phenol has an eclectic range of pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. It is regarded as safe by the Food and Agricultural Organization of the United Nations due to its non-carcinogenic and non-mutagenic properties. PURPOSE The aim of this comprehensive review is to present a critical and systematic assessment of the antitumor ability of eugenol and its associated molecular targets in various cancers. METHODS It was carried out following the preferred reporting items for systematic reviews and meta-analysis guidelines. Risk of bias assessment was performed using the SYstematic review centre for laboratory animal experimentation guidelines. The literature search was performed in standard databases such as Science Direct, PubMed, Google Scholar, Scopus, and Web of Science using the keywords 'eugenol' or 'eugenol essential oil' and 'anti-cancer properties of eugenol'. RESULTS The scientific information from fifty-three studies was encompassed in the present review work. Eugenol exhibits significant anticancer effects in a variety of biological pathways, namely apoptosis, autophagy, cell cycle progression, inflammation, invasion, and metastasis. Eugenol-induced apoptosis has been noticed in osteosarcoma, skin tumors, melanoma, leukemia, gastric and mast cells. It decreases the expression of cyclin D1, cyclin B, proliferating cell nuclear antigen, nuclear factor-ƙB, inhibitor of nuclear factor ƙB, and B-cell lymphoma-2. Eugenol increases the expression of B-cell lymphoma-2 (BCL-2) associated X, BH3-interacting domain death agonist, BCL-2 associated agonist of cell death, apoptotic protease activating factor 1, cytochrome c, p21, and p53. CONCLUSION The anticancer potential exhibited by eugenol is mainly attributed to its anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic, and autophagic effects. Hence, the use of eugenol alone or along with other chemotherapeutic anticancer agents is found to be very effective in cancer therapy.
Collapse
Affiliation(s)
- Syeda Nurunnesa Begum
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Anindya Sundar Ray
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, West Bengal 731235, India; Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713340, India
| | - Chowdhury Habibur Rahaman
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, West Bengal 731235, India.
| |
Collapse
|
30
|
Allicin and Capsaicin Ameliorated Hypercholesterolemia by Upregulating LDLR and Downregulating PCSK9 Expression in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232214299. [PMID: 36430776 PMCID: PMC9695077 DOI: 10.3390/ijms232214299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Hypercholesterolemia is a common cause of cardiovascular diseases (CVDs). Although allicin and capsaicin possess hypolipidemic effects through several molecular mechanisms, their effects on LDLR and PCSK9 expression are still unknown. This study aimed to investigate the effects of allicin and capsaicin on LDLR and PCSK9 expression in HepG2 cells. The effects of allicin and capsaicin on cell viability were evaluated by MTT assay and trypan blue exclusion assay. Low-density lipoprotein receptor (LDLR) levels and LDL uptake were determined by flow cytometry and confocal laser scanning microscopy (CLSM), respectively. RT-qPCR and Western blot analyses were performed to evaluate the expression of PCSK9, LDLR, SREBP-2, and HNF1α. ELISA was used to measure PCSK9 levels in culture media. Allicin and capsaicin increased the protein expression levels of LDLR via activation of the transcription factor SREBP2. However, allicin and capsaicin decreased the expression of PCSK9 protein and the secretion of PCSK9 in culture media via the suppression of HNF1α. Moreover, allicin and capsaicin increased LDL uptake into HepG2 cells. The efficacies of the hypolipidemic effects of allicin (200 µM) and capsaicin (200 µM) were comparable to that of atorvastatin (10 µM) in this study. In conclusion, allicin and capsaicin possessed hypolipidemic effects via the upregulation of LDLR and downregulation of PCSK9 expression, thereby enhancing LDL uptake into HepG2 cells. This indicates that allicin and capsaicin should be used as potent supplements to ameliorate hypercholesterolemia.
Collapse
|
31
|
Zulkapli R, Yusof MYPM, Abd Muid S, Wang SM, Firus Khan AY, Nawawi H. A Systematic Review on Attenuation of PCSK9 in Relation to Atherogenesis Biomarkers Associated with Natural Products or Plant Bioactive Compounds in In Vitro Studies: A Critique on the Quality and Imprecision of Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12878. [PMID: 36232177 PMCID: PMC9566180 DOI: 10.3390/ijerph191912878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
A systematic review was performed to identify all the related publications describing PCSK9 and atherogenesis biomarkers attenuation associated with a natural product and plant bioactive compounds in in vitro studies. This review emphasized the imprecision and quality of the included research rather than the detailed reporting of the results. Literature searches were conducted in Scopus, PubMed, and Science Direct from 2003 until 2021, following the Cochrane handbook. The screening of titles, abstracts, and full papers was performed by two independent reviewers, followed by data extraction and validity. Study quality and validity were assessed using the Imprecision Tool, Model, and Marker Validity Assessment that has been developed for basic science studies. A total of 403 articles were identified and 31 of those that met the inclusion criteria were selected. 13 different atherogenesis biomarkers in relation to PCSK9 were found, and the most studied biomarkers are LDLR, SREBP, and HNF1α. In terms of quality, our review suggests that the basic science study in investigating atherogenesis biomarkers is deficient in terms of imprecision and validity.
Collapse
Affiliation(s)
- Rahayu Zulkapli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Mohd Yusmiaidil Putera Mohd Yusof
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Suhaila Abd Muid
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Seok Mui Wang
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Al’Aina Yuhainis Firus Khan
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
32
|
Posadas-Sánchez R, Vargas-Alarcón G, Pérez-Méndez Ó, Pérez-Hernández N, Rodríguez-Pérez JM. Increased Carotid Intima-Media Thickness in Asymptomatic Individuals Is Associated with the PCSK9 (rs2149041) Gene Polymorphism in the Mexican Mestizo Population: Results of the GEA Cohort. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101531. [PMID: 36294964 PMCID: PMC9604912 DOI: 10.3390/life12101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
The increase in carotid intima-media thickness (CIMT) and coronary artery calcification (CAC) are features of subclinical atherosclerosis that might be determined by the genetic background of patients. Among the multiple risk factors, the proprotein convertase subtilisin kexin type 9 (PCSK9) has a great impact on atheroma development. Then, we focused on the potential association of the PCSK9 gene polymorphism (rs2149041) with the risk of an increased CIMT. We included 881 unrelated, asymptomatic individuals (732 normal CIMT and 149 increased CIMT) who lacked coronary calcification (CAC score = 0). Under the recessive inheritance model and adjusted by several cardiovascular risk factors, the rs2149041 polymorphism, determined by TaqMan genotyping assay, was associated with a high risk of increased CIMT (OR = 2.10, 95% IC = 1.26–3.47, P recessive = 0.004). Our results suggest that the rs2149041 polymorphism could be a risk marker for increased CIMT in asymptomatic individuals without coronary artery disease determined by the absence of a CAC score.
Collapse
Affiliation(s)
- Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Óscar Pérez-Méndez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Correspondence: (N.P.-H.); (J.M.R.-P.); Tel.: +52-55-55732911 (ext. 26301) (N.P.-H. & J.M.R.-P.)
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
- Correspondence: (N.P.-H.); (J.M.R.-P.); Tel.: +52-55-55732911 (ext. 26301) (N.P.-H. & J.M.R.-P.)
| |
Collapse
|
33
|
Lupo MG, Brilli E, De Vito V, Tarantino G, Sut S, Ferrarese I, Panighel G, Gabbia D, De Martin S, Dall’Acqua S, Ferri N. In Vitro and In Vivo Sucrosomial® Berberine Activity on Insulin Resistance. Nutrients 2022; 14:nu14173595. [PMID: 36079851 PMCID: PMC9459874 DOI: 10.3390/nu14173595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Berberine is a natural alkaloid with hypoglycemic properties. However, its therapeutic use is limited by a very low oral bioavailability. Here we developed a new oral formulation of berberine based on Sucrosomial® technology and tested its effect on insulin resistance. Methods: Sucrosomial® berberine was first tested in vitro in the hepatoma cell line Huh7 to assess its effect on proteins involved in glucose homeostasis and insulin resistance. The pharmacokinetics and efficacy on insulin resistance were then studied in C57BL/6 mice fed with standard (SD) and high-fat diet (HFD) for 16 weeks and treated daily during the last 8 weeks with oral gavage of Sucrosomial® berberine or berberine. Results: Sucrosomial® berberine did not affect Huh7 cell viability at concentrations up to 40 µM. Incubation of Huh7 with 20 µM of Sucrosomial® and control berberine induced glucokinase (GK) and the phosphorylation of 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK), both known targets for the control of insulin resistance. In vivo, we observed an 8-fold higher plasma concentration after 3 weeks of oral administration of 50 mg/kg/day of Sucrosomial® formulation compared to berberine. HFD, compared to SD, induced insulin resistance in mice as determined by oral glucose tolerance test (OGTT). The treatment with a 6.25 mg/kg/daily dose of Sucrosomial® berberine significantly reduced the area under the curve (AUC) of OGTT (73,103 ± 8645 vs. 58,830 ± 5597 mg/dL × min), while control berberine produced the same effects at 50 mg/Kg/day (51518 ± 1984 mg/dL × min). Under these conditions, the two formulations resulted in similar berberine plasma concentration in mice. Nevertheless, a different tissue distribution of metabolites was observed with a significant accumulation of reduced, demethylated and glucuronide berberine in the brain after the oral administration of the Sucrosomial® form. Glucuronide berberine plasma concentration was higher with Sucrosomial® berberine compared to normal berberine. Finally, we observed similar increases of AMPK phosphorylation in the liver in response to the treatment with Sucrosomial® berberine and berberine. Conclusions: The Sucrosomial® formulation is an innovative and effective technology to improve berberine gastrointestinal (GI) absorption with proven in vitro and in vivo activity on insulin resistance.
Collapse
Affiliation(s)
| | - Elisa Brilli
- R&D Department, PharmaNutra S.p.A., 56122 Pisa, Italy
| | | | | | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giovanni Panighel
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8275080
| |
Collapse
|
34
|
Edible insect Locusta migratoria shows intestinal protein digestibility and improves plasma and hepatic lipid metabolism in male rats. Food Chem 2022; 396:133701. [PMID: 35882087 DOI: 10.1016/j.foodchem.2022.133701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Although edible insect migratory locusts are considered sustainable food resources with proteins and n-3 lipids, their physiological effects on lipid metabolism are not clarified. Here, we clarified the amino acid (AA) value of the edible migratory locust powder (MLP), protein digestibility, and dietary effects of MLP on growth and lipid metabolism in rats. The AA score was 63, which was low score due to the limiting AA (Trp). MLP protein digestibility was resistant to gut pepsin but digestible to intestinal trypsin and chymotrypsin. Dietary MLP represented favorable growth and enhanced intestinal condition and lipid metabolism in rats, particularly, low-density lipoprotein metabolism and arteriosclerosis-related fatty acid profiles. Liver triglyceride accumulation and fatty acid desaturation indices were increased by activating lipids uptake into the liver, while lipogenic protein expression and enzyme activities and liver function indices were reduced by MLP. Conclusively, intestinal digestible MLP is a nutraceutical for the prevention of dyslipidemia.
Collapse
|
35
|
Liang J, Li W, Liu H, Li X, Yuan C, Zou W, Qu L. Di’ao Xinxuekang Capsule Improves the Anti-Atherosclerotic Effect of Atorvastatin by Downregulating the SREBP2/PCSK9 Signalling Pathway. Front Pharmacol 2022; 13:857092. [PMID: 35571088 PMCID: PMC9096164 DOI: 10.3389/fphar.2022.857092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Statins are the first choice for lowering low-density lipoprotein cholesterol (LDL-C) and preventing atherosclerotic cardiovascular disease (ASCVD). However, statins can also upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which in turn might limits the cholesterol-lowering effect of statins through the degradation of LDL receptors (LDLR). Di’ao Xinxuekang (DXXK) capsule, as a well-known traditional Chinese herbal medicine for the prevention and treatment of coronary heart disease, can alleviate lipid disorders and ameliorate atherosclerosis in atherosclerosis model mice and downregulate the expression of PCSK9. In this study, we further explored whether DXXK has a synergistic effect with atorvastatin (ATO) and its underlying molecular mechanism. The results showed that both ATO monotherapy (1.3 mg/kg) and ATO combined with DXXK therapy significantly lowered serum lipid levels and reduced the formation of atherosclerotic plaques and the liver lipid accumulation. Moreover, compared with ATO monotherapy, the addition of DXXK (160 mg/kg) to the combination therapy further lowered LDL-C by 15.55% and further reduced the atherosclerotic plaque area by 25.98%. In addition, the expression of SREBP2, PCSK9 and IDOL showed a significant increase in the model group, and the expression of LDLR was significantly reduced; however, there were no significant differences between the ATO (1.3 mg/kg) and the model groups. When ATO was combined with DXXK, the expression of LDLR was significantly increased and was higher than that of the model group and the expression of SREBP2 and PCSK9 in the liver was also significantly inhibited. Moreover, it can be seen that the expression of SREBP2 and PCSK9 in the combination treatment group was significantly lower than that in the ATO monotherapy group (1.3 mg/kg). Besides, the expression of IDOL mRNA in each treatment group was not significantly different from that of the model group. Our study suggests that DXXK might have a synergistic effect on the LDL-C lowering and antiatherosclerosis effects of ATO through the SREBP2/PCSK9 pathway. This indicates that a combination of DXXK and ATO may be a new treatment for atherosclerosis.
Collapse
Affiliation(s)
- Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| |
Collapse
|
36
|
Novel Pharmaceutical and Nutraceutical-Based Approaches for Cardiovascular Diseases Prevention Targeting Atherogenic Small Dense LDL. Pharmaceutics 2022; 14:pharmaceutics14040825. [PMID: 35456658 PMCID: PMC9027611 DOI: 10.3390/pharmaceutics14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Compelling evidence supports the causative link between increased levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic cardiovascular disease (CVD) development. For that reason, the principal aim of primary and secondary cardiovascular prevention is to reach and sustain recommended LDL-C goals. Although there is a considerable body of evidence that shows that lowering LDL-C levels is directly associated with CVD risk reduction, recent data shows that the majority of patients across Europe cannot achieve their LDL-C targets. In attempting to address this matter, a new overarching concept of a lipid-lowering approach, comprising of even more intensive, much earlier and longer intervention to reduce LDL-C level, was recently proposed for high-risk patients. Another important concern is the residual risk for recurrent cardiovascular events despite optimal LDL-C reduction, suggesting that novel lipid biomarkers should also be considered as potential therapeutic targets. Among them, small dense LDL particles (sdLDL) seem to have the most significant potential for therapeutic modulation. This paper discusses the potential of traditional and emerging lipid-lowering approaches for cardiovascular prevention by targeting sdLDL particles.
Collapse
|
37
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
38
|
Kamaruddin NN, Mohd Din LH, Jack A, Abdul Manan AF, Mohamad H, Tengku Muhammad TS. Acanthaster planci Inhibits PCSK9 Gene Expression via Peroxisome Proliferator Response Element (PPRE) and Activation of MEK and PKC Signaling Pathways in Human Liver Cells. Pharmaceuticals (Basel) 2022; 15:ph15030269. [PMID: 35337067 PMCID: PMC8955981 DOI: 10.3390/ph15030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
A constantly elevated level of low-density lipoprotein cholesterol (LDL-C) is mainly associated with the development of atherosclerosis. The use of statins as a treatment for reducing plasma LDL-C levels has led, in some cases, to adverse side effects, including a decrease in hepatic LDL receptor (LDLR), the receptor responsible for the uptake of circulating LDL-C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme responsible for directing the LDLR–LDL-C complex to lysosomal degradation upon transport into cells, preventing the recycling of LDLR to the cell surface. Therefore, PCSK9 may offer a new target for reducing the levels of plasma LDL-C. In this study, we investigated the mechanisms of action of a selected fraction of A. planci on PCSK9 gene expression, as well as the effect of the fraction on the level of LDLR protein and the uptake of LDL-C. Using real-time PCR, it was shown that the selected A. planci fraction reduced the gene expression of PCSK9 in human liver HepG2 cells. Immunocytochemistry analysis demonstrated that the selected A. planci fraction increased the LDLR protein level and LDL-C uptake in HepG2 cells. Promoter mutational and gene expression analyses revealed that PPRE, a binding site for peroxisome proliferator–activated receptor (PPAR), was responsible for mediating the inhibitory effect of the selected fraction on PCSK9 mRNA. In addition, MAP kinase and PKC components of the signal transduction pathway were activated, inducing the action of the selected A. planci fraction in decreasing PCSK9 gene expression. These findings suggest that the selected fraction shows good potential for reducing circulating LDL-C and, thus, may be a good therapeutic intervention to prevent the progression of atherosclerosis.
Collapse
Affiliation(s)
- Nurjannatul Naim Kamaruddin
- Immune and Molecular Therapeutics Program, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (N.N.K.); (L.H.M.D.); (A.J.)
| | - Lukman Hakim Mohd Din
- Immune and Molecular Therapeutics Program, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (N.N.K.); (L.H.M.D.); (A.J.)
| | - Allicia Jack
- Immune and Molecular Therapeutics Program, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (N.N.K.); (L.H.M.D.); (A.J.)
- Nutrition & Food Safety Program, Food Science & Technology Research Centre, Malaysian Agricultural Research & Development Institute (MARDI) Headquarters, Serdang 43400, Selangor, Malaysia
| | - Aina Farahiyah Abdul Manan
- Natural and Product Synthetics Program, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (A.F.A.M.); (H.M.)
| | - Habsah Mohamad
- Natural and Product Synthetics Program, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (A.F.A.M.); (H.M.)
| | - Tengku Sifzizul Tengku Muhammad
- Immune and Molecular Therapeutics Program, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia; (N.N.K.); (L.H.M.D.); (A.J.)
- Correspondence:
| |
Collapse
|
39
|
Akinnusi PA, Olubode SO, Alade AA, Ahmed SA, Ayekolu SF, Ogunlade TM, Gbore DJ, Rotimi OD, Ayodele AO. A molecular modeling approach for structure-based virtual screening and identification of novel anti-hypercholesterolemic agents from Grape. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Impact of Soy β-Conglycinin Peptides on PCSK9 Protein Expression in HepG2 Cells. Nutrients 2021; 14:nu14010193. [PMID: 35011066 PMCID: PMC8747205 DOI: 10.3390/nu14010193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Dyslipidaemias, particularly elevated plasma low-density lipoprotein cholesterol (LDL-C) levels, are major risk factors for cardiovascular disease (CVD). Besides pharmacological approaches, a nutritional strategy for CVD prevention has gained increasing attention. Among functional foods, the hypocholesterolemic properties of soy are driven by a stimulation of LDL-receptor (LDL-R) activity. Aim: To characterize the effect of two soy peptides, namely, β-conglycinin-derived YVVNPDNDEN and YVVNPDNNEN on the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key-regulators of the LDL-R. Methods: PCSK9 promoter activity (luciferase assay), PCSK9 protein expression (WB) and secretion (ELISA), PCSK9 interaction with LDL-R (binding assay) and human HepG2 cells were the objects of this investigation. Results: Treatment with YVVNPDNNEN peptide has led to a rise in PCSK9 gene expression (90.8%) and transcriptional activity (86.4%), and to a decrement in PCSK9 intracellular and secreted protein (−42.9%) levels. YVVNPDNNEN peptide reduced the protein expression of transcriptional factor HNF1α. Most changes driven by YVVNPDNDEN peptide were not statistically significant. Neither peptide inhibited the PCSK9–LDLR interaction. Conclusions: Although sharing a common effect on LDL-R levels through the inhibition of 3-hydroxy-3-methylglutaryl CoA reductase activity, only the YVVNPDNNEN peptide has an additional mechanism via the downregulation of PCSK9 protein levels.
Collapse
|
41
|
Artichoke and Bergamot Phytosome Alliance: A Randomized Double Blind Clinical Trial in Mild Hypercholesterolemia. Nutrients 2021; 14:nu14010108. [PMID: 35010984 PMCID: PMC8746931 DOI: 10.3390/nu14010108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023] Open
Abstract
Botanicals are natural alternatives to pharmacological therapies that aim at reducing hypercholesterolemia. In this context, despite bergamot being effective in modulating lipid profile, some subjects failed to achieve a satisfactory response to supplementation. The aim of this study was to evaluate whether the association of 600 mg of bergamot phytosome® (from Citrus Bergamia Risso) and 100 mg of artichoke leaf standardized dry extract (from Cynara cardunculus L.) can be an alternative in patients with mild hypercholesterolemia who are poor responders to bergamot in a 2-month randomized placebo-controlled trial. Sixty overweight adults were randomized into two groups: 30 were supplemented and 30 received a placebo. The metabolic parameters and DXA body composition were evaluated at the start, after 30 and 60 days. Between the two groups, total and LDL cholesterol in the supplemented group (compared to placebo) showed significant decreases overtime. A significant reduction of waist circumference and visceral adipose tissue (VAT) was recorded in the supplemented group (compared to placebo), even in subjects who did not follow a low-calorie diet. In conclusion, the synergism between Citrus Bergamia polyphenols and Cynara cardunculus extracts may be an effective option and may potentially broaden the therapeutic role of botanicals in dyslipidemic patients.
Collapse
|
42
|
Jack A, Mohd MA, Kamaruddin NN, Mohd Din LH, Hajri NA, Tengku Muhammad TS. Acaudina molpadioides mediates lipid uptake by suppressing PCSK9 transcription and increasing LDL receptor in human liver cells. Saudi J Biol Sci 2021; 28:7105-7116. [PMID: 34867013 PMCID: PMC8626262 DOI: 10.1016/j.sjbs.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/09/2022] Open
Abstract
Acaudina molpadioides has been long used as traditional medicinal resources and reported to demonstrate various important bioactivities such as anticoagulation, antithrombosis, anti-hyperglycemia and anticancer. However, its lipid lowering activity is yet to be fully explored. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that enhances the lysosomal degradation of hepatic low density lipoprotein receptor (LDLR) resulting in excessive accumulation of the plasma levels of LDL-cholesterols (LDL-C) which subsequently accelerate atherosclerosis. In the present study, A. molpadioides fractions were subjected to promoter-reporter luciferase assay to determine its role as PCSK9 inhibitors. It was found both fractions (EFA and EFB) reduced the transcriptional activity of PCSK9 promoter. Among the seven 5′end deletion constructs of PCSK9 promoter, fragments D1 (−1,711/−94), D3 (−709/−94) and D4 (−440/−94), were suppressed in the presence of both fractions whereas D2 (−1,214/−94), and, D6 (−351/−94) as well as D7 (−335/−94) were inhibited only by EFA and EFB, respectively. Further transcription factor binding sites prediction using MatInspector software discovered various potential cis-regulatory elements namely, PPAR, KLFs, RBPJ-kappa and SREBP that may potentially be involved in ameliorating the transcriptional activity of PCSK9. Immunofluorescence staining was used to evaluate the effects of both fractions on LDL-C and LDLR. Results showed that levels of LDL-C uptake in EFA-treated cells were 69.1% followed by EFB at 32.6%, as compared to untreated control after 24 h treatment. The LDLR protein distribution was induced by 62.41% and 32.2%, which corresponded to an increase in LDL-C uptake in both EFA and EFB treatment, respectively. Hence, the inhibition of PCSK9 by bioactive compounds in EFA and EFB could be another promising therapeutic agent in reducing the cholesterol levels and atherosclerosis by targeting PCSK9.
Collapse
Affiliation(s)
- Allicia Jack
- Nutrition & Food Safety Programme, Food Science & Technology Research Centre, Malaysian Agricultural Research & Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muzaida Aminah Mohd
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Lukman Hakim Mohd Din
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nor Azwin Hajri
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
43
|
Ahluwalia MK. Nutrigenetics and nutrigenomics-A personalized approach to nutrition. ADVANCES IN GENETICS 2021; 108:277-340. [PMID: 34844714 DOI: 10.1016/bs.adgen.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prevalence of non-communicable diseases has been on an upward trajectory for some time and this puts an enormous burden on the healthcare expenditure. Lifestyle modifications including dietary interventions hold an immense promise to manage and prevent these diseases. Recent advances in genomic research provide evidence that focussing these efforts on individual variations in abilities to metabolize nutrients (nutrigenetics) and exploring the role of dietary compounds on gene expression (nutrigenomics and nutri-epigenomics) can lead to more meaningful personalized dietary strategies to promote optimal health. This chapter aims to provide examples on these gene-diet interactions at multiple levels to support the need of embedding targeted dietary interventions as a way forward to prevent, avoid and manage diseases.
Collapse
|
44
|
Chae HS, Pel P, Cho J, Kim YM, An CY, Huh J, Choi YH, Kim J, Chin YW. Identification of neolignans with PCSK9 downregulatory and LDLR upregulatory activities from Penthorum chinense and the potential in cholesterol uptake by transcriptional regulation of LDLR via SREBP2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114265. [PMID: 34111537 DOI: 10.1016/j.jep.2021.114265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense has been used in East Asia for the treatment of cholecystitis, infectious hepatitis, jaundice and to treat liver problems. Recent evidences provided the potential for the clinical use of P. chinense in the treatment of metabolic disease. AIM OF THE STUDY Based on the traditional use and recent evidences, we investigated the effects of constituents from P. chinense with modulation on proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR) expression, and the effect of the most active substance on cholesterol uptake, and genes relevant to lipid metabolism. MATERIALS AND METHODS The isolation of compounds from the BuOH-soluble extract of 80% methanol extract of P. chinense was conducted using chromatographic methods and the structures were established by interpreting spectroscopic data. Quantitative real time-PCR, and Western blot analysis were performed to monitor the regulatory activity on PCSK9 and LDLR expression. PCSK9-LDLR binding interaction was also tested. The cholesterol uptake in hepatocyte was measured using 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI)-labeled LDL cholesterol. Additionally, gene network analysis of LDLR and responses of its target proteins were carried out to discover genes germane to the effect of active compound on HepG2 cells. Moreover, we performed protein-protein interaction analysis via String and constructed the compound target network using Cytoscape. RESULTS Two new neolignans and 37 known compounds were characterized from P. chinense. Of the isolated compounds, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3), penthorin A (4) and methyl gallate (25) were found to suppress PCSK9 mRNA expression with IC50 values of 5.13, 15.56 and 11.66 μM, respectively. However, all the isolated compounds were found to be inactive in PCSK9-LDLR interaction assay. Additionally, a dibenzoxepine-type lignan analog, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) demonstrated to upregulate LDLR mRNA and protein expression via transcriptional factor sterol regulatory element-binding protein 2 (SREBP2). Furthermore, (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) increase the LDL-cholesterol uptake in DiI-LDL assay. CONCLUSION (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one (3) seemed to increase potentially cholesterol uptake via the downregulation of PCSK9 and the activation of LDLR in hepatocytes. Moreover, SREBP2 was found to play an important role in regulation of PCSK9 and LDLR by (7'E,8S)-2',4,8-trihydroxy-3-methoxy-2,4'-epoxy-8,5'-neolign-7'-en-7-one.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jinwoo Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Chae-Yeong An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea.
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
45
|
Lin YK, Yeh CT, Kuo KT, Yadav VK, Fong IH, Kounis NG, Hu P, Hung MY. Pterostilbene Increases LDL Metabolism in HL-1 Cardiomyocytes by Modulating the PCSK9/HNF1α/SREBP2/LDLR Signaling Cascade, Upregulating Epigenetic hsa-miR-335 and hsa-miR-6825, and LDL Receptor Expression. Antioxidants (Basel) 2021; 10:antiox10081280. [PMID: 34439528 PMCID: PMC8389247 DOI: 10.3390/antiox10081280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) can promote the degradation of low-density lipoprotein (LDL) receptor (LDLR), leading to hypercholesterolemia and myocardial dysfunction. The intracellular regulatory mechanism by which the natural polyphenol pterostilbene modulates the PCSK9/LDLR signaling pathway in cardiomyocytes has not been evaluated. We conducted Western blotting, flow cytometry, immunofluorescence staining, and mean fluorescence intensity analyses of pterostilbene-treated mouse HL-1 cardiomyocytes. Pterostilbene did not alter cardiomyocyte viability. Compared to the control group, treatment with both 2.5 and 5 μM pterostilbene significantly increased the LDLR protein expression accompanied by increased uptake of LDL. The expression of the mature PCSK9 was significantly suppressed at the protein and mRNA level by the treatment with both 2.5 and 5 μM pterostilbene, respectively, compared to the control. Furthermore, 2.5 and 5 μM pterostilbene treatment resulted in a significant reduction in the protein hepatic nuclear factor 1α (HNF1α)/histone deacetylase 2 (HDAC2) ratio and sterol regulatory element-binding protein-2 (SREBP2)/HDAC2 ratio. The expression of both hypoxia-inducible factor-1 α (HIF1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) at the protein level was also suppressed. Pterostilbene as compared to short hairpin RNA against SREBP2 induced a higher protein expression of LDLR and lower nuclear accumulation of HNF1α and SREBP2. In addition, pterostilbene reduced PCSK9/SREBP2 interaction and mRNA expression by increasing the expression of hsa-miR-335 and hsa-miR-6825, which, in turn, increased LDLR mRNA expression. In cardiomyocytes, pterostilbene dose-dependently decreases and increases the protein and mRNA expression of PCSK9 and LDLR, respectively, by suppressing four transcription factors, HNF1α, SREBP2, HIF1α, and Nrf2, and enhancing the expression of hsa-miR-335 and hsa-miR-6825, which suppress PCSK9/SREBP2 interaction.
Collapse
Affiliation(s)
- Yen-Kuang Lin
- Biostatistics Research Center, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Kuang-Tai Kuo
- Department of Surgery, Division of Thoracic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Surgery, Division of Thoracic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26221 Patras, Greece;
| | - Patrick Hu
- Department of Cardiology, University of California, Riverside, CA 92521, USA;
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Department of Internal Medicine, Division of Cardiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Division of Cardiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: ; Tel.: +88-62-2249-0088; Fax: +88-62-8262-2010
| |
Collapse
|
46
|
Wong XK, Yeong KY. A Patent Review on the Current Developments of Benzoxazoles in Drug Discovery. ChemMedChem 2021; 16:3237-3262. [PMID: 34289258 DOI: 10.1002/cmdc.202100370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Indexed: 12/11/2022]
Abstract
The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
47
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
48
|
Sut S, Ferrarese I, Lupo MG, De Zordi N, Tripicchio E, Ferri N, Dall’ Acqua S. The Modulation of PCSK9 and LDLR by Supercritical CO 2 Extracts of Mentha longifolia and Isolated Piperitone Oxide, an In Vitro Study. Molecules 2021; 26:molecules26133886. [PMID: 34202378 PMCID: PMC8272093 DOI: 10.3390/molecules26133886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Nicola De Zordi
- Società Agricola Moldoi – S.A.M, SrL, Loc. Maras Moldoi 151/a, 32037 Sospirolo, Italy; (N.D.Z.); (E.T.)
| | - Elisa Tripicchio
- Società Agricola Moldoi – S.A.M, SrL, Loc. Maras Moldoi 151/a, 32037 Sospirolo, Italy; (N.D.Z.); (E.T.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Stefano Dall’ Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
- Correspondence:
| |
Collapse
|
49
|
Kim E, Kim YM, Ahn J, Chae HS, Chin YW, Kim J. Prenylated Flavonoid Glycosides with PCSK9 mRNA Expression Inhibitory Activity from the Aerial Parts of Epimedium koreanum. Molecules 2021; 26:molecules26123590. [PMID: 34208231 PMCID: PMC8230864 DOI: 10.3390/molecules26123590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
Phytochemical investigation on the n-BuOH-soluble fraction of the aerial parts of Epimedium koreanum using the PCSK9 mRNA monitoring assay led to the identification of four previously undescribed acylated flavonoid glycosides and 18 known compounds. The structures of new compounds were elucidated by NMR, MS, and other chemical methods. All isolated compounds were tested for their inhibitory activity against PCSK9 mRNA expression in HepG2 cells. Of the isolates, compounds 6, 7, 10, 15, and 17–22 were found to significantly inhibit PCSK9 mRNA expression. In particular, compound 7 was shown to increase LDLR mRNA expression. Thus, compound 7 may potentially increase LDL uptake and lower cholesterol levels in the blood.
Collapse
|
50
|
Okoro EU. TNFα-Induced LDL Cholesterol Accumulation Involve Elevated LDLR Cell Surface Levels and SR-B1 Downregulation in Human Arterial Endothelial Cells. Int J Mol Sci 2021; 22:ijms22126236. [PMID: 34207810 PMCID: PMC8227244 DOI: 10.3390/ijms22126236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Excess lipid droplets are frequently observed in arterial endothelial cells at sites of advanced atherosclerotic plaques. Here, the role of tumor necrosis factor alpha (TNFα) in modulating the low-density lipoprotein (LDL) content in confluent primary human aortic endothelial cells (pHAECs) was investigated. TNFα promoted an up to 2 folds increase in cellular cholesterol, which was resistant to ACAT inhibition. The cholesterol increase was associated with increased 125I-LDL surface binding. Using the non-hydrolysable label, Dil, TNFα could induce a massive increase in Dil-LDL by over 200 folds. The elevated intracellular Dil-LDL was blocked with excess unlabeled LDL and PCSK9, but not oxidized LDL (oxLDL), or apolipoprotein (apoE) depletion. Moreover, the TNFα-induced increase of LDL-derived lipids was elevated through lysosome inhibition. Using specific LDLR antibody, the Dil-LDL accumulation was reduced by over 99%. The effects of TNFα included an LDLR cell surface increase of 138%, and very large increases in ICAM-1 total and surface proteins, respectively. In contrast, that of scavenger receptor B1 (SR-B1) was reduced. Additionally, LDLR antibody bound rapidly in TNFα-treated cells by about 30 folds, inducing a migrating shift in the LDLR protein. The effect of TNFα on Dil-LDL accumulation was inhibited by the antioxidant tetramethythiourea (TMTU) dose-dependently, but not by inhibitors against NF-κB, stress kinases, ASK1, JNK, p38, or apoptosis caspases. Grown on Transwell inserts, TNFα did not enhance apical to basolateral LDL cholesterol or Dil release. It is concluded that TNFα promotes LDLR functions through combined increase at the cell surface and SR-B1 downregulation.
Collapse
Affiliation(s)
- Emmanuel Ugochukwu Okoro
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|