1
|
Wang L, Hu T, Zhang R, Shi Y, Wang Y, Xuan Q, Zhou X. Liraglutide modulates ALCAT1-Mediated cardiolipin remodeling to improve cardiac function in obese mice. Biochem Biophys Res Commun 2025; 756:151583. [PMID: 40054063 DOI: 10.1016/j.bbrc.2025.151583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Obesity, a significant risk factor for cardiovascular diseases, induces cardiolipin (CL) remodeling. Acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT1), a key enzyme in CL metabolism, drives mitochondrial impairment and cardiac dysfunction in obesity. Although glucagon-like peptide-1 receptor agonists (GLP-1RAs) exhibit cardioprotective properties, their effects on ALCAT1-mediated CL remodeling in obesity-induced myocardial injury remain unclear. Male C57BL/6 mice fed a high-fat diet (HFD) or standard diet (STD) for 12 weeks received liraglutide (200 μg/kg/day) or saline during the last 4 weeks. Cardiac function was evaluated by echocardiography; CL content was quantified using LC-MS, and myocardial alterations were assessed through histological and protein analyses. In HFD-fed mice, cardiac lipid accumulation, left ventricular hypertrophy, and myocardial collagen deposition were observed. Additionally, these mice exhibited reduced CL content, altered CL aliphatic chain composition, and upregulated ALCAT1 expression. In contrast, liraglutide treatment significantly increased total CL content, modified CL acyl chain composition, and downregulated ALCAT1 expression. Mechanistically, liraglutide activated the PI3K/AKT pathway via GLP-1 receptor signaling, attenuated oxidative stress markers (3-nitrotyrosine, Rac1 activation), and improved mitochondrial dynamics by reducing DRP1-mediated fission. These results demonstrate that liraglutide mitigates obesity-induced cardiac dysfunction by suppressing ALCAT1-driven CL remodeling, enhancing mitochondrial homeostasis, and reducing oxidative stress. This study elucidates the cardioprotective mechanisms of liraglutide and highlights its therapeutic potential for obesity-related cardiomyopathy.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China; Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, 250012, Jinan, China
| | - Tingting Hu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Ruxuan Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Yingzhou Shi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Yan Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qiuhui Xuan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Xinli Zhou
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Zhai Y, Lu K, Yuan Y, Zhang Z, Xue L, Zhao F, Xu X, Wang H. Semaglutide improves cognitive function and neuroinflammation in APP/PS1 transgenic mice by activating AMPK and inhibiting TLR4/NF-κB pathway. J Alzheimers Dis 2025:13872877251329439. [PMID: 40151913 DOI: 10.1177/13872877251329439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundAlzheimer's disease (AD) causes cognitive function disorder and has become the preeminent cause of dementia. Glucagon-like peptide-1 (GLP-1) receptor agonists, semaglutide, have shown positive effects on promoting the cognitive function. However, research about the mechanism of semaglutide as a therapeutic intervention in AD is sparse.ObjectiveThis study was to investigate the therapeutic efficacy of semaglutide in a transgenic mouse model of AD pathology and explored the detailed mechanism by semaglutide modulated neuroinflammatory processes.MethodsMale amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice were treated with semaglutide or vehicle for 8 weeks. Morris water maze test was used to assess the therapeutic efficacy of semaglutide on recognition function. Pathology analysis was performed to detect the deposition of amyloid plaques. High-throughput sequencing analysis was applied to specify the mechanism. Microglia and astrocyte activation were assessed with immunofluorescent staining. Inflammation cytokine levels were evaluated with enzyme-linked immunosorbent assay (ELISA). Related proteins and pathway were evaluated with western blot.ResultsSemaglutide treatment attenuated Aβ accumulation and enhanced cognitive function in APP/PS1 transgenic mice. Through transcriptomic profiling, immunohistochemical staining, and ELISA, semaglutide was substantiated to inhibit the overactivation of microglia and astrocytes, as well as to curtail the secretion of inflammatory mediators. Furthermore, semaglutide robustly activated AMP-activated protein kinase (AMPK) and suppressed the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling cascade, thus reducing the Aβ deposition and dampening the inflammatory cascade.ConclusionsThe results demonstrated that semaglutide mitigated neuroinflammation and decelerated the advance of AD in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Yanyu Zhai
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Kaili Lu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Yuan Yuan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziyao Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Lixia Xue
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Fei Zhao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| |
Collapse
|
3
|
Waheed I, Sikandri T, Zaheen S, Khakwani MMAK, An Z, Liu T, Zhu C, Wei J. Evaluating the Molecular Interactions between Type 2 Diabetes Mellitus and Parkinson's Disease: Role of Antidiabetic Drugs as Promising Therapeutics. ACS Chem Neurosci 2025; 16:988-999. [PMID: 40042145 DOI: 10.1021/acschemneuro.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Evidence from previous research demonstrates a relationship between diabetes mellitus (DM) and Parkinson's disease (PD). T2DM is associated with chronic glucose dysregulation, as an etiological factor. It inhibits neuronal function through disrupted insulin signaling and oxidative stress, which ultimately lead to the loss of dopaminergic neurons in the substantia nigra (SN). Interactions between T2DM and PD were analyzed by gene expression, coexpression, and gene set enrichment via NCBI and STRING databases following pathways like KEGG and Reactome. The study identified nine key gene interactions through published literature on different databases and search engines that are involved in the progression of these chronic diseases. Furthermore, some genetic and nongenetic risk factors, gene mutations and environmental factors, are also involved in the progression of T2DM and PD. This review highlights the limitations of currently available drug treatments for these diseases and examines modern therapeutic approaches to address neurodegenerative and metabolic abnormalities. We critically assess the current experimental methodologies aimed at unraveling the pathophysiological mechanisms linking PD and T2DM while addressing the key challenges impeding a comprehensive understanding of the concurrent emergence of these debilitating age-related conditions.
Collapse
Affiliation(s)
- Irum Waheed
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Talal Sikandri
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Sumbal Zaheen
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | | | - Zhaowu An
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Mostafa MEA, Alrasheed T. Improvement of irritable bowel syndrome with glucagon like peptide-1 receptor agonists: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2025; 16:1548346. [PMID: 40134805 PMCID: PMC11932899 DOI: 10.3389/fendo.2025.1548346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Irritable bowel syndrome (IBS) is a severe gastrointestinal condition with symptoms like pain, bloating, diarrhea, and constipation. Glucagon-like peptide-1 (GLP-1) receptors, expressed in the central nervous system and peripheral tissues, have been found to affect gut motility. GLP-1 and its analog ROSE-010 have been shown to inhibit the migrating motor complex and decrease gastrointestinal motility in IBS patients. Aim This systematic review and meta-analysis aim to assess the efficacy and safety of GLP-1 receptor agonists in providing pain and symptom relief for individuals with IBS. Methods The study conducted extensive searches across various databases, including Cochrane Library, Web of Science, PubMed, Google Scholar, and Science Direct, to identify studies on IBS and related drugs. A search strategy using keywords and medical subject heading terms (MeSH) was developed to ensure inclusivity. Exclusion criteria included non-English language studies, books, conference papers, case reports, in vitro studies, animal studies, and non-original articles. Results The study found that ROSE-010 (100 µg) significantly lowered pain intensity in IBS patients compared to a placebo, with an overall odds ratio of 2.30, 95% CI: 1.53-3.46. ROSE-010 (300 µg) is more effective than a placebo for all irritable bowel syndrome subtypes, with consistent effects across trials. ROSE-010 is linked to a greater incidence of nausea, vomiting, and headache than placebo. Conclusion ROSE-010, a glucagon-like peptide-1 receptor agonist, has been shown to reduce pain in individuals with IBS. However, its higher frequency of nausea, vomiting, and headache suggests the need for close monitoring and individualized treatment plans. Further investigation is needed to understand its impact on different IBS subtypes and long-term effects. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024613545.
Collapse
Affiliation(s)
- Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
5
|
Ribeiro FM, Arnaldo L, P Milhomem L, S Aguiar S, Franco OL. The intricate relationship between circadian rhythms and gastrointestinal peptides in obesity. Peptides 2025; 185:171356. [PMID: 39929256 DOI: 10.1016/j.peptides.2025.171356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
There are different molecular pathways that regulate appetite, particularly the role of the hypothalamus, circadian rhythms, and gastrointestinal peptides. The hypothalamus integrates signals from orexigenic peptides like neuropeptide Y (NPY) and agouti-related protein (AgRP), which stimulate appetite, and anorexigenic peptides such as pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART), which promote satiety. These signals are influenced by peripheral hormones like leptin, ghrelin, insulin, and cortisol, as well as gut peptides including glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK). The circadian rhythm, regulated by proteins like circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), modulates the secretion of these peptides, aligning feeding behaviors with the sleep-wake cycle. In obesity, these regulatory systems are disrupted, leading to leptin resistance, increased ghrelin sensitivity, and altered gut peptide secretion. This results in heightened appetite and impaired satiety, contributing to overeating and metabolic dysfunction. Additionally, circadian disruptions further impair metabolic processes, exacerbating obesity. The present article underscores the importance of understanding the molecular interplay between circadian rhythms and gastrointestinal peptides, particularly in the context of obesity. While some molecular interactions, such as the regulation of GLP-1 and PYY by reverberation of circadian rhythm α (REV-ERBα) and retinoic acid-related orphan receptor α (RORα), are well-established, clinical studies are scarce. Future research is expected to explore these pathways in obesity management, especially with the rise of incretin-based treatments like semaglutide. A deeper understanding of hypothalamic molecular mechanisms could lead to novel pharmacological and non-pharmacological therapies for obesity.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Luiz Arnaldo
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil
| | - Lana P Milhomem
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Samuel S Aguiar
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Octavio L Franco
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, MS, Brazil.
| |
Collapse
|
6
|
Rocha GR, de Melo FF. Glucagon-like peptide-1 and impaired counterregulatory responses to hypoglycemia in type 1 diabetes. World J Diabetes 2025; 16:99928. [PMID: 39959274 PMCID: PMC11718485 DOI: 10.4239/wjd.v16.i2.99928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 12/30/2024] Open
Abstract
This letter comments on a study by Jin et al, published recently in the World Journal of Diabetes. Hypoglycemia is a significant complication of diabetes, with primary defense mechanisms involving the stimulation of glucagon secretion in α-cells and the inhibition of insulin secretion in pancreatic β-cells, which are often compromised in type 1 diabetes mellitus (T1DM) and advanced type 2 diabetes mellitus. Recurrent hypoglycemia predisposes the development of impaired hypoglycemia awareness, a condition underpinned by complex pathophysiological processes, encompassing central nervous system adaptations and several hormonal interactions, including a potential role for glucagon-like peptide-1 (GLP-1) in paracrine and endocrine vias. Experimental evidence indicates that GLP-1 may impair hypoglycemic counterregulation by disrupting the sympathoadrenal system and promoting somatostatin release in pancreatic δ-cells, which inhibits glucagon secretion from neighboring α-cells. However, current trials evaluating GLP-1 receptor agonists (GLP-1 RAs) in T1DM patients have shown promising benefits in reducing insulin requirements and body weight, without increasing the risk of hypoglycemia. Further research is essential to elucidate the specific roles of GLP-1 and GLP-1 RAs in modulating glucagon secretion and the sympathetic-adrenal reflex, and their impact on hypoglycemia unawareness in T1DM patients.
Collapse
Affiliation(s)
- Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45065-430, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45065-430, Bahia, Brazil
| |
Collapse
|
7
|
Alluri AA, Mohan Kurien M, Pokar NP, Madarapu A, Sadam S, Puvvala N, Seetharaman R. Exploring the therapeutic potential of GLP-1 receptor agonists in the management of obstructive sleep apnea: a comprehensive review. J Basic Clin Physiol Pharmacol 2025; 36:13-25. [PMID: 39804718 DOI: 10.1515/jbcpp-2024-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder marked by repeated episodes of partial or complete upper airway obstruction during sleep, which leads to intermittent hypoxia and fragmented sleep. These disruptions negatively impact cardiovascular health, metabolic function, and overall quality of life. Obesity is a major modifiable risk factor for OSA, as it contributes to both anatomical and physiological mechanisms that increase the likelihood of airway collapse during sleep. While continuous positive airway pressure (CPAP) therapy remains the gold standard for OSA treatment, its limitations - particularly issues with patient adherence - underscore the need for alternative or adjunct therapeutic options. One such option is the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), which are widely recognized for their ability to reduce body weight and improve metabolic health. Emerging evidence suggests that GLP-1 RAs may offer therapeutic benefits in managing OSA, particularly by addressing obesity, a key contributor to the condition. This narrative review seeks to explore the role of GLP-1 RAs in the treatment of OSA, evaluating their efficacy in reducing OSA severity and discussing their broader clinical implications for future research and practice.
Collapse
Affiliation(s)
- Amruth Akhil Alluri
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | - Merin Mohan Kurien
- Acute Medicine, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK
| | - Nikhil Patel Pokar
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Alekhya Madarapu
- Internal Medicine, Government Medical College Nizamabad, Nizamabad, Telangana, India
| | - Sreeja Sadam
- Internal Medicine, Government Medical College Mahabubnagar, Mahabubnagar, Telangana, India
| | - Nikhitha Puvvala
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Rajmohan Seetharaman
- Pharmacology, MGM Medical College and Hospital, MGM Institute of Health Sciences, Nerul, Navi Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Janket SJ, Chatanaka MK, Sohaei D, Tamimi F, Meurman JH, Diamandis EP. Does Incretin Agonism Have Sustainable Efficacy? Cells 2024; 13:1842. [PMID: 39594592 PMCID: PMC11592889 DOI: 10.3390/cells13221842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Recent clinical trials using synthetic incretin hormones, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have demonstrated that these treatments ameliorated many complications related to obesity, emphasizing the significant impact of body weight on overall health. Incretins are enteroendocrine hormones secreted by gut endothelial cells triggered by nutrient ingestion. The phenomenon that oral ingestion of glucose elicits a much higher insulin secretion than intra-venous injection of equimolar glucose is known as the incretin effect. This also alludes to the thesis that food intake is the root cause of insulin resistance. Synthetic GLP-1 and GIP agonists have demonstrated unprecedented glucoregulation and body weight reduction. Also, randomized trials have shown their ability to prevent complications of obesity, including development of diabetes from prediabetes, reducing cardiovascular disease risks and renal complications in diabetic patients. Moreover, the benefits of these agonists persist among the patients who are already on metformin or insulin. The ultimate question is "Are these benefits of incretin agonism sustainable?" Chronic agonism of pancreatic β-cells may decrease the number of receptors and cause β-cell exhaustion, leading to β-cell failure. Unfortunately, the long-term effects of these drugs are unknown at the present because the longest duration in randomized trials is 3 years. Additionally, manipulation of the neurohormonal axis to control satiety and food intake may hinder the long-term sustainability of these treatments. In this review, we will discuss the incretins' mechanism of action, challenges, and future directions. We will briefly review other molecules involved in glucose homeostasis such as amylin and glucagon. Amylin is co-expressed with insulin from the pancreas β-cells but does not have insulinotropic function. Amylin suppresses glucagon secretion, slowing gastric emptying and suppressing the reward center in the central nervous system, leading to weight loss. However, amylin can self-aggregate and cause serious cytotoxicity and may cause β-cell apoptosis. Glucagon is secreted by pancreatic α-cells and participates in glucose homeostasis in a glucose-dependent manner. In hypoglycemia, glucagon increases the blood glucose level by glycogenolysis and gluconeogenesis and inhibits glycogenesis in the liver. Several triple agonists, in combination with dual incretins and glucagon, are being developed.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Retired Research Associate Professor, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA;
| | - Miyo K. Chatanaka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Dorsa Sohaei
- M.D., C.M. Candidate 2026, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A QT2, Canada;
| | - Faleh Tamimi
- Department of Restorative Dentistry, College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Jukka H. Meurman
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, FI-00290 Helsinki, Finland;
| | | |
Collapse
|
9
|
D'Ávila M, Hall S, Horvath TL. GLP-1, GIP, and Glucagon Agonists for Obesity Treatment: A Hunger Perspective. Endocrinology 2024; 165:bqae128. [PMID: 39301751 DOI: 10.1210/endocr/bqae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
For centuries, increasingly sophisticated methods and approaches have been brought to bear to promote weight loss. Second only to the Holy Grail of research on aging, the idea of finding a single and simple way to lose weight has long preoccupied the minds of laymen and scientists alike. The effects of obesity are far-reaching and not to be minimized; the need for more effective treatments is obvious. Is there a single silver bullet that addresses this issue without effort on the part of the individual? The answer to this question has been one of the most elusive and sought-after in modern history. Now and then, a miraculous discovery propagates the illusion that a simple solution is possible. Now there are designer drugs that seem to accomplish the task: we can lose weight without effort using mono, dual, and triple agonists of receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon. There are, however, fundamental biological principles that raise intriguing questions about these therapies beyond the currently reported side-effects. This perspective reflects upon these issues from the angle of complex goal-oriented behaviors, and systemic and cellular metabolism associated with satiety and hunger.
Collapse
Affiliation(s)
- Mateus D'Ávila
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Samantha Hall
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Bruns Vi N, Tressler EH, Vendruscolo LF, Leggio L, Farokhnia M. IUPHAR review - Glucagon-like peptide-1 (GLP-1) and substance use disorders: An emerging pharmacotherapeutic target. Pharmacol Res 2024; 207:107312. [PMID: 39032839 PMCID: PMC11467891 DOI: 10.1016/j.phrs.2024.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Addiction is a chronic relapsing disease with high morbidity and mortality. Treatments for addiction include pharmacological and psychosocial interventions; however, currently available medications are limited in number and efficacy. The glucagon-like-peptide-1 (GLP-1) system is emerging as a potential novel pharmacotherapeutic target for alcohol and other substance use disorders (ASUDs). In this review, we summarize and discuss the wealth of available evidence from testing GLP-1 receptor (GLP-1R) agonist medications in preclinical models and humans with ASUDs, possible mechanisms underlying the impact of GLP-1R agonists on alcohol/substance use, gaps in knowledge, and future directions. Most of the research with GLP-1R agonists has been conducted in relation to alcohol use; psychostimulants, opioids, and nicotine have also been investigated. Preclinical evidence suggests that GLP-1R agonists reduce alcohol/substance use and other related outcomes. The main proposed mechanisms are related to reward processing, stress, and cognitive function, as well as broader mechanisms related to satiety, changes in gastric motility, and glucose homeostasis. More in-depth mechanistic studies are warranted. Clinical studies have been limited and their findings have been less conclusive; however, most support the safety and potential efficacy of GLP-1R agonists in ASUD treatment. Identifying preferred compounds, as well as possible subgroups who are most responsive to GLP-1R agonists are some of the key research questions to translate the promising preclinical data into clinical settings. Several clinical trials are underway to test GLP-1R agonists in people with ASUDs.
Collapse
Affiliation(s)
- Nicolaus Bruns Vi
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Elizabeth H Tressler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Casteràs A, Fidilio E, Comas M, Zabalegui A, Flores V, Giralt M, Díaz-Troyano N, Ferrer R, Vilallonga R, Ciudin A, Biagetti B. Pre-Surgery Cortisol Levels as Biomarker of Evolution after Bariatric Surgery: Weight Loss and Weight Regain. J Clin Med 2024; 13:5146. [PMID: 39274358 PMCID: PMC11396150 DOI: 10.3390/jcm13175146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Bariatric surgery (BS) is effective for achieving significant weight loss. However, weight regain (WR) is an emerging problem. Objective: To assess the prognostic value of morning serum cortisol, a 1 mg dexamethasone suppression test (DST), 24 h urinary free cortisol (UFC) and late-night salivary cortisol (LNSC) in a cohort of patients with severe obesity (pwSO) undergoing BS in terms of weight loss and WR. Methods: Patients scheduled for BS underwent the following procedures at baseline, 12 months and 24 months after BS: medical history, anthropometric data, blood analysis and cortisol tests. We evaluated total weight loss (TWL) ≥ 30% at 1 year and WR after 2 years as an increase of ≥10% of the maximum weight lost. Results: In total, 142 subjects were included; 101 (71.1%) were females and the mean age was 45.9 ± 9.2 years. Up to 76.8% of subjects achieved ≥30% TWL, without statistically significant differences in DST results or morning serum cortisol, UFC or LNSC levels. However, a higher pre-surgery morning serum cortisol level was a significant predictor of a WR ≥ 10% (cortisol 17.8 [IQR 13.1-18.5] vs. 12.0 [IQR 8.8-15.8] μg/dL; p < 0.01); OR of 1.216 (95% CI 1.069-1.384); AUC [0.761, CI: (0.616-0.906); p < 0.01]. A cut-off value of cortisol > 13.0 μg/dL was predictive of a WR ≥ 10% (sensitivity 0.71; specificity 0.63). Conclusions: No cortisol test was useful in predicting weight loss; however, the pre-surgery morning serum cortisol level was able to predict a WR ≥ 10% in a cohort of pwSO 2 years after BS. A cut-off value of cortisol > 13 μg/dL might be an easy tool to identify patients at higher risk of WR, enabling healthcare providers to implement tailored, long-term strategies to minimize this outcome.
Collapse
Affiliation(s)
- Anna Casteràs
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Insitut de Recerca, 08035 Barcelona, Spain
| | - Enzamaria Fidilio
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Insitut de Recerca, 08035 Barcelona, Spain
| | - Marta Comas
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Insitut de Recerca, 08035 Barcelona, Spain
| | - Alba Zabalegui
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
| | - Vanesa Flores
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
| | - Marina Giralt
- Biochemistry Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Noelia Díaz-Troyano
- Biochemistry Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Roser Ferrer
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Biochemistry Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ramon Vilallonga
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Endocrine, Metabolic and Bariatric Unit, General Surgery Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Insitut de Recerca, 08035 Barcelona, Spain
| | - Betina Biagetti
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron 119-121, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Insitut de Recerca, 08035 Barcelona, Spain
| |
Collapse
|
12
|
Jin FX, Wang Y, Li MN, Li RJ, Guo JT. Intestinal glucagon-like peptide-1: A new player associated with impaired counterregulatory responses to hypoglycaemia in type 1 diabetic mice. World J Diabetes 2024; 15:1764-1777. [PMID: 39192849 PMCID: PMC11346100 DOI: 10.4239/wjd.v15.i8.1764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Impaired hypoglycaemic counterregulation has emerged as a critical concern for diabetic patients who may be hesitant to medically lower their blood glucose levels due to the fear of potential hypoglycaemic reactions. However, the patho-genesis of hypoglycaemic counterregulation is still unclear. Glucagon-like peptide-1 (GLP-1) and its analogues have been used as adjunctive therapies for type 1 diabetes mellitus (T1DM). The role of GLP-1 in counterregulatory dys-function during hypoglycaemia in patients with T1DM has not been reported. AIM To explore the impact of intestinal GLP-1 on impaired hypoglycaemic counterregulation in type 1 diabetic mice. METHODS T1DM was induced in C57BL/6J mice using streptozotocin, followed by intraperitoneal insulin injections to create T1DM models with either a single episode of hypoglycaemia or recurrent episodes of hypoglycaemia (DH5). Immunofluorescence, Western blot, and enzyme-linked immunosorbent assay were employed to evaluate the influence of intestinal GLP-1 on the sympathetic-adrenal reflex and glucagon (GCG) secretion. The GLP-1 receptor agonist GLP-1(7-36) or the antagonist exendin (9-39) were infused into the terminal ileum or injected intraperitoneally to further investigate the role of intestinal GLP-1 in hypoglycaemic counterregulation in the model mice. RESULTS The expression levels of intestinal GLP-1 and its receptor (GLP-1R) were significantly increased in DH5 mice. Consecutive instances of excess of intestinal GLP-1 weakens the sympathetic-adrenal reflex, leading to dysfunction of adrenal counterregulation during hypoglycaemia. DH5 mice showed increased pancreatic δ-cell mass, cAMP levels in δ cells, and plasma somatostatin concentrations, while cAMP levels in pancreatic α cells and plasma GCG levels decreased. Furthermore, GLP-1R expression in islet cells and plasma active GLP-1 levels were significantly increased in the DH5 group. Further experiments involving terminal ileal infusion and intraperitoneal injection in the model mice demonstrated that intestinal GLP-1 during recurrent hypoglycaemia hindered the secretion of the counterregulatory hormone GCG via the endocrine pathway. CONCLUSION Excessive intestinal GLP-1 is strongly associated with impaired counterregulatory responses to hypoglycaemia, leading to reduced appetite and compromised secretion of adrenaline, noradrenaline, and GCG during hypo-glycaemia.
Collapse
Affiliation(s)
- Fang-Xin Jin
- Department of Histology and Embryology, Key Laboratory of Universities in Shandong Province, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yan Wang
- Department of Histology and Embryology, Key Laboratory of Universities in Shandong Province, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Min-Ne Li
- Department of Histology and Embryology, Key Laboratory of Universities in Shandong Province, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Ru-Jiang Li
- Department of Histology and Embryology, Key Laboratory of Universities in Shandong Province, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jun-Tang Guo
- Department of Pathological Physiology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
13
|
Singh K, Aulakh SK, Nijjar GS, Singh S, Sandhu APS, Luthra S, Tanvir F, Kaur Y, Singla A, Kaur MS. Rebalancing the Gut: Glucagon-Like Peptide-1 Agonists as a Strategy for Obesity and Metabolic Health. Cureus 2024; 16:e64738. [PMID: 39156410 PMCID: PMC11329331 DOI: 10.7759/cureus.64738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Obesity significantly impacts gut microbial composition, exacerbating metabolic dysfunction and weight gain. Traditional treatment methods often fall short, underscoring the need for innovative approaches. Glucagon-like peptide-1 (GLP-1) agonists have emerged as promising agents in obesity management, demonstrating significant potential in modulating gut microbiota. These agents promote beneficial bacterial populations, such as Bacteroides, Lactobacillus, and Bifidobacterium, while reducing harmful species like Enterobacteriaceae. By influencing gut microbiota composition, GLP-1 agonists enhance gut barrier integrity, reducing permeability and systemic inflammation, which are hallmarks of metabolic dysfunction in obesity. Additionally, GLP-1 agonists improve metabolic functions by increasing the production of short-chain fatty acids like butyrate, propionate, and acetate, which serve as energy sources for colonocytes, modulate immune responses, and enhance the production of gut hormones that regulate appetite and glucose homeostasis. By increasing microbial diversity, GLP-1 agonists create a more resilient gut microbiome capable of resisting pathogenic invasions and maintaining metabolic balance. Thus, by shifting the gut microbiota toward a healthier profile, GLP-1 agonists help disrupt the vicious cycle of obesity-induced gut dysbiosis and inflammation. This review highlights the intricate relationship between obesity, gut microbiota, and GLP-1 agonists, providing valuable insights into their combined role in effective obesity treatment and metabolic health enhancement.
Collapse
Affiliation(s)
| | - Smriti K Aulakh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | | | - Sumerjit Singh
- Internal Medicine, Government Medical College, Amritsar, IND
| | - Ajay Pal Singh Sandhu
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | - Shivansh Luthra
- Internal Medicine, Government Medical College, Amritsar, IND
| | - Fnu Tanvir
- Internal Medicine, Government Medical College, Amritsar, IND
| | - Yasmeen Kaur
- Internal Medicine, Government Medical College, Amritsar, IND
| | | | | |
Collapse
|
14
|
Arillotta D, Floresta G, Papanti Pelletier GD, Guirguis A, Corkery JM, Martinotti G, Schifano F. Exploring the Potential Impact of GLP-1 Receptor Agonists on Substance Use, Compulsive Behavior, and Libido: Insights from Social Media Using a Mixed-Methods Approach. Brain Sci 2024; 14:617. [PMID: 38928616 PMCID: PMC11202225 DOI: 10.3390/brainsci14060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is involved in a range of central and peripheral pathways related to appetitive behavior. Hence, this study explored the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on substance and behavioral addictions, including alcohol, caffeine, nicotine, cannabis, psychostimulants, compulsive shopping, and sex drive/libido. Data were collected from various social platforms. Keywords related to GLP-1 RAs and substance/behavioral addiction were used to extract relevant comments. The study employed a mixed-methods approach to analyze online discussions posted from December 2019 to June 2023 and collected using a specialized web application. Reddit entries were the focus here due to limited data from other platforms, such as TikTok and YouTube. A total of 5859 threads and related comments were extracted from six subreddits, which included threads about GLP-1 RAs drugs and associated brand names. To obtain relevant posts, keywords related to potential substance use and compulsive behavior were selected. Further analysis involved two main steps: (1) manually coding posts based on users' references to the potential impact of GLP-1 RAs on substance use and non-substance habits, excluding irrelevant or unclear comments; (2) performing a thematic analysis on the dataset of keywords, using AI-assisted techniques followed by the manual revision of the generated themes. Second, a thematic analysis was performed on the keyword-related dataset, using AI-assisted techniques followed by the manual revision of the generated themes. In total, 29.75% of alcohol-related; 22.22% of caffeine-related; and 23.08% of nicotine-related comments clearly stated a cessation of the intake of these substances following the start of GLP-1 RAs prescription. Conversely, mixed results were found for cannabis intake, and only limited, anecdotal data were made available for cocaine, entactogens, and dissociative drugs' misuse. Regarding behavioral addictions, 21.35% of comments reported a compulsive shopping interruption, whilst the sexual drive/libido elements reportedly increased in several users. The current mixed-methods approach appeared to be a useful tool in gaining insight into complex topics such as the effects of GLP-1 RAs on substance and non-substance addiction-related disorders; some GLP-1 RA-related mental health benefits could also be inferred from here. Overall, it appeared that GLP-1 RAs may show the potential to target both substance craving and maladaptive/addictive behaviors, although further empirical research is needed.
Collapse
Affiliation(s)
- Davide Arillotta
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - G. Duccio Papanti Pelletier
- Tolmezzo Community Mental Health Centre, ASUFC Mental Health Department, Via Giuliano Bonanni, 2, 33028 Tolmezzo, Italy;
| | - Amira Guirguis
- Pharmacy, Faculty of Medicine, Health and Life Science, Swansea University, Singleton Campus, Swansea SA2 8PP, Wales, UK;
| | - John Martin Corkery
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK; (J.M.C.); (F.S.)
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), Institute of Advanced Biomedical Technology (ITAB), University of Chieti-Pescara, Via dei Vestini 21, 66100 Chieti, Italy
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK; (J.M.C.); (F.S.)
| |
Collapse
|
15
|
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic Adenosine Monophosphate in Cardiac and Sympathoadrenal GLP-1 Receptor Signaling: Focus on Anti-Inflammatory Effects. Pharmaceutics 2024; 16:693. [PMID: 38931817 PMCID: PMC11206770 DOI: 10.3390/pharmaceutics16060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (R.A.S.)
| | | | | |
Collapse
|
16
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
17
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
18
|
Xiao J, El Eid L, Buenaventura T, Boutry R, Bonnefond A, Jones B, Rutter GA, Froguel P, Tomas A. Control of human pancreatic beta cell kinome by glucagon-like peptide-1 receptor biased agonism. Diabetes Obes Metab 2023; 25:2105-2119. [PMID: 37039251 PMCID: PMC10947446 DOI: 10.1111/dom.15083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
AIM To determine the kinase activity profiles of human pancreatic beta cells downstream of glucagon-like peptide-1 receptor (GLP-1R) balanced versus biased agonist stimulations. MATERIALS AND METHODS This study analysed the kinomic profiles of human EndoC-βh1 cells following vehicle and GLP-1R stimulation with the pharmacological agonist exendin-4, as well as exendin-4-based biased derivatives exendin-phe1 and exendin-asp3 for acute (10-minute) versus sustained (120-minute) responses, using PamChip protein tyrosine kinase and serine/threonine kinase assays. The raw data were filtered and normalized using BioNavigator. The kinase analyses were conducted with R, mainly including kinase-substrate mapping and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS The present analysis reveals that kinomic responses are distinct for acute versus sustained GLP-1R agonist exposure, with individual responses associated with agonists presenting specific bias profiles. According to pathway analysis, several kinases, including JNKs, PKCs, INSR and LKB1, are important GLP-1R signalling mediators, constituting potential targets for further research on biased GLP-1R downstream signalling. CONCLUSION The results from this study suggest that differentially biased exendin-phe1 and exendin-asp3 can modulate distinct kinase interaction networks. Further understanding of these mechanisms will have important implications for the selection of appropriate anti-type 2 diabetes therapies with optimized downstream kinomic profiles.
Collapse
Affiliation(s)
- Jiannan Xiao
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Liliane El Eid
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Teresa Buenaventura
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Raphaël Boutry
- INSERM/CNRS UMR 1283/8199-EGID, Institut Pasteur de Lille, CHU de Lille, Lille, France
| | - Amélie Bonnefond
- INSERM/CNRS UMR 1283/8199-EGID, Institut Pasteur de Lille, CHU de Lille, Lille, France
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre de Recherche du CHUM, University of Montreal, Montreal, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Philippe Froguel
- INSERM/CNRS UMR 1283/8199-EGID, Institut Pasteur de Lille, CHU de Lille, Lille, France
- Section of Genetics and Genomics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
19
|
Panfili E, Frontino G, Pallotta MT. GLP-1 receptor agonists as promising disease-modifying agents in WFS1 spectrum disorder. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1171091. [PMID: 37333802 PMCID: PMC10275359 DOI: 10.3389/fcdhc.2023.1171091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative disorder whose cardinal symptoms are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological signs ranging from mild to severe. The prognosis is poor as most patients die prematurely with severe neurological disabilities such as bulbar dysfunction and organic brain syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the disease and responsible for a dysregulated ER stress signaling, which leads to neuron and pancreatic β-cell death. There is no currently cure and no treatment that definitively arrests the progression of the disease. GLP-1 receptor agonists appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and increasing findings suggest they could be effective in delaying the progression of WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists and preclinical and clinical data obtained by testing them in WFS1-SD as a feasible strategy for managing this disease.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulio Frontino
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milano, Italy
| | | |
Collapse
|
20
|
Wang XY, Liu Y, Cao LX, Li YZ, Wan P, Qiu DL. Glucagon-like peptide-1 facilitates cerebellar parallel fiber glutamate release through PKA signaling in mice in vitro. Sci Rep 2023; 13:7948. [PMID: 37193712 DOI: 10.1038/s41598-023-34070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preproglucagon neurons; it plays important roles in modulating neuronal activity and synaptic transmission through its receptors. In the present study, we investigated the effects of GLP-1 on parallel fiber-Purkinje cell (PF-PC) synaptic transmission in mouse cerebellar slices using whole-cell patch-clamp recording and pharmacology methods. In the presence of a γ-aminobutyric acid type A receptor antagonist, bath application of GLP-1 (100 nM) enhanced PF-PC synaptic transmission, with an increased amplitude of evoked excitatory postsynaptic synaptic currents (EPSCs) and a decreased paired-pulse ratio. The GLP-1-induced enhancement of evoked EPSCs was abolished by a selective GLP-1 receptor antagonist, exendin 9-39, as well as by the extracellular application of a specific protein kinase A (PKA) inhibitor, KT5720. In contrast, inhibiting postsynaptic PKA with a protein kinase inhibitor peptide-containing internal solution failed to block the GLP-1-induced enhancement of evoked EPSCs. In the presence of a mixture of gabazine (20 μM) and tetrodotoxin (1 μM), application GLP-1 significantly increased frequency, but not amplitude of miniature EPSCs via PKA signaling pathway. The GLP-1-induced increase in miniature EPSC frequency was blocked by both exendin 9-39 and KT5720. Together, our results indicate that GLP-1 receptor activation enhances glutamate release at PF-PC synapses via the PKA signaling pathway, resulting in enhanced PF-PC synaptic transmission in mice in vitro. These findings suggest that, in living animals, GLP-1 has a critical role in the modulation of cerebellar function by regulating excitatory synaptic transmission at PF-PC synapses.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
| | - Yang Liu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China
| | - Li-Xin Cao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133000, Jilin, China
| | - Yu-Zi Li
- Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
| | - Peng Wan
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China.
| | - De-Lai Qiu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, 132013, Jilin, China.
| |
Collapse
|
21
|
Liu Y, Cao LX, Wang WY, Piao YR, Wang JY, Chu CP, Bing YH, Qiu DL. GLP-1 enhances hyperpolarization-activated currents of mouse cerebellar Purkinje cell in vitro. Front Mol Neurosci 2023; 16:1126447. [PMID: 37089690 PMCID: PMC10113493 DOI: 10.3389/fnmol.2023.1126447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preglucagonergic neurons in the nucleus tractus solitarius, which plays critical roles in regulation of neuronal activity in the central nervous system through its receptor. In the cerebellar cortex, GLP-1 receptor is abundantly expressed in the molecular layer, Purkinje cell (PC) layer and granular layer, indicating that GLP-1 may modulate the cerebellar neuronal activity. In this study, we investigated the mechanism by which GLP1 modulates mouse cerebellar PC activity in vitro. After blockade of glutamatergic and GABAergic synaptic transmission in PCs, GLP1 increased the spike firing rate accompanied by depolarization of membrane potential and significantly depressed the after-hyperpolarizing potential and outward rectifying current of spike firing discharges via GLP1 receptors. In the presence of TTX and Ba2+, GLP1 significantly enhanced the hyperpolarized membrane potential-evoked instant current, steady current, tail current (I-tail) and hyperpolarization-activated (IH) current. Application of a selective IH channel antagonist, ZD7288, blocked IH and abolished the effect of GLP1 on PC membrane currents. The GLP1 induced enhancement of membrane currents was also abolished by a selective GLP1 receptor antagonist, exendin-9-39, as well as by protein kinase A (PKA) inhibitors, KT5720 and H89. In addition, immunofluorescence detected GLP1 receptor in the mouse cerebellar cortex, mostly in PCs. These results indicated that GLP1 receptor activation enhanced IH channel activity via PKA signaling, resulting in increased excitability of mouse cerebellar PCs in vitro. The present findings indicate that GLP1 plays a critical role in modulating cerebellar function by regulating the spike firing activity of mouse cerebellar PCs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Li-Xin Cao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Wei-Yao Wang
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, Jilin, China
| | - Yong-Rui Piao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Department of Urology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jun-Ya Wang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Chun-Ping Chu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, Jilin, China
| | - Yan-Hua Bing
- Functional Experiment Center, College of Medicine, Yanbian University, Yanji, Jilin, China
- *Correspondence: Yan-Hua Bing,
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, Jilin, China
- De-Lai Qiu, ;
| |
Collapse
|
22
|
Glucagon-like Peptide 1 Receptor Activation Inhibits Microglial Pyroptosis via Promoting Mitophagy to Alleviate Depression-like Behaviors in Diabetic Mice. Nutrients 2022; 15:nu15010038. [PMID: 36615696 PMCID: PMC9824834 DOI: 10.3390/nu15010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Depression is a frequent and serious comorbidity associated with diabetes which adversely affects prognosis and quality of life. Glucagon-like peptide-1 receptor (GLP-1R) agonists, widely used in the treatment of diabetes, are reported to exert neuroprotective effects in the central nervous system. Thus, we aim to evaluate whether GLP-1R agonist exendin-4 (EX-4) could alleviate depression-like behaviors in diabetic mice and to explore its underlying mechanism. The antidepressant effects of EX-4 were evaluated using behavioral tests in db/db mice. The effects of EX-4 on microglial pyroptosis and neuroinflammation were assessed in N9 microglial cells. EX-4 administration alleviated depression-like behaviors in diabetic db/db mice. GLP-1R activation by EX-4 significantly suppressed microglial pyroptosis and neuroinflammation by downregulation of gasdermin D (GSDMD) and interleukin (IL)-1β in diabetic mice and lipopolysaccharide (LPS)-primed N9 microglia. Mechanistically, GLP-1R activation improved mitochondrial function and promoted mitophagy by decreasing the accumulation of mitochondrial reactive oxygen species (mtROS) and intracellular ROS production. EX-4 exhibits antidepressant effects in depression associated with diabetes in diabetic mice, which may be mediated by inhibiting microglial pyroptisis via promoting mitophagy. It is supposed that GLP-1R agonists may be a promising therapy in depression associated with diabetes.
Collapse
|
23
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|
24
|
Bolus Injection of Liraglutide Raises Plasma Glucose in Normal Rats by Activating Glucagon-like Peptide 1 Receptor in the Brain. Pharmaceuticals (Basel) 2022; 15:ph15070904. [PMID: 35890201 PMCID: PMC9320491 DOI: 10.3390/ph15070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is commonly treated with glucagon-like peptide-1 receptor (GLP-1R) agonists including liraglutide and others. However, liraglutide was found to raise plasma glucose levels in normal rats. The current study aims to determine how liraglutide causes this contentious condition in rats, both normal and diabetic. An adrenalectomy was performed to investigate the relationship between steroid hormone and liraglutide. To investigate the effect of central liraglutide infusion on blood glucose in rats, rats were intracerebroventricularly administrated with liraglutide with or without HPA axis inhibitors such as berberine and dexamethasone. The results showed that a single injection of liraglutide caused a temporary increase in blood glucose in healthy rats. Another GLP-1R agonist, Exendin-4 (Ex-4), increased blood sugar in a manner similar to that of liraglutide. The effects of liraglutide were also blocked by guanethidine pretreatment and vanished in normal rats with adrenalectomy. Additionally, central infusion of liraglutide via intracerebroventricular (icv) injection into normal rats also causes a temporary increase in blood glucose that was blocked by GLP-1R antagonists or the inhibitors such as berberine and dexamethasone. Similarly, central liraglutide treatment causes temporary increases in plasma glucose, adrenocorticotropic hormone (ACTH), and cortisol levels, which were reversed by inhibitors for the hypothalamic-pituitary-adrenal (HPA) axis. In normal rats, the temporary glucose-increasing effect of liraglutide was gradually eliminated during consecutive daily treatments, indicating tolerance formation. Additionally, liraglutide and Ex-4 cross-tolerance was also discovered in normal rats. Liraglutide was more effective in diabetic rats than in normal rats in activating GLP-1R gene expression in the isolated adrenal gland. Interestingly, the effect of liraglutide on glycemic control varied depending on whether the rats were diabetic or not. In normal rats, bolus injection of liraglutide, such as Ex-4, may stimulate the HPA axis, resulting in hyperglycemia. The cross-tolerance of liraglutide and Ex-4 provided a novel perspective on GLP-1R activation.
Collapse
|
25
|
Al-Beltagi M, Bediwy AS, Saeed NK. Insulin-resistance in paediatric age: Its magnitude and implications. World J Diabetes 2022; 13:282-307. [PMID: 35582667 PMCID: PMC9052009 DOI: 10.4239/wjd.v13.i4.282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is insulin failure in normal plasma levels to adequately stimulate glucose uptake by the peripheral tissues. IR is becoming more common in children and adolescents than before. There is a strong association between obesity in children and adolescents, IR, and the metabolic syndrome components. IR shows marked variation among different races, crucial to understanding the possible cardiovascular risk, specifically in high-risk races or ethnic groups. Genetic causes of IR include insulin receptor mutations, mutations that stimulate autoantibody production against insulin receptors, or mutations that induce the formation of abnormal glucose transporter 4 molecules or plasma cell membrane glycoprotein-1 molecules; all induce abnormal energy pathways and end with the development of IR. The parallel increase of IR syndrome with the dramatic increase in the rate of obesity among children in the last few decades indicates the importance of environmental factors in increasing the rate of IR. Most patients with IR do not develop diabetes mellitus (DM) type-II. However, IR is a crucial risk factor to develop DM type-II in children. Diagnostic standards for IR in children are not yet established due to various causes. Direct measures of insulin sensitivity include the hyperinsulinemia euglycemic glucose clamp and the insulin-suppression test. Minimal model analysis of frequently sampled intravenous glucose tolerance test and oral glucose tolerance test provide an indirect estimate of metabolic insulin sensitivity/resistance. The main aim of the treatment of IR in children is to prevent the progression of compensated IR to decompensated IR, enhance insulin sensitivity, and treat possible complications. There are three main lines for treatment: Lifestyle and behavior modification, pharmacotherapy, and surgery. This review will discuss the magnitude, implications, diagnosis, and treatment of IR in children.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| |
Collapse
|
26
|
Glucagon-like Peptide-1 Receptor Agonists in the Management of Type 2 Diabetes Mellitus and Obesity: The Impact of Pharmacological Properties and Genetic Factors. Int J Mol Sci 2022; 23:ijms23073451. [PMID: 35408810 PMCID: PMC8998939 DOI: 10.3390/ijms23073451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of antihyperglycemic drugs that enhance appropriate pancreatic β-cell secretion, pancreatic α-cell (glucagon) suppression, decrease liver glucose production, increase satiety through their action on the central nervous system, slow gastric emptying time, and increase insulin action on peripheral tissue. They are effective in the management of type 2 diabetes mellitus and have a favorable effect on weight loss. Their cardiovascular and renal safety has been extensively investigated and confirmed in many clinical trials. Recently, evidence has shown that in addition to the existing approaches for the treatment of obesity, semaglutide in higher doses promotes weight loss and can be used as a drug to treat obesity. However, some T2DM and obese patients do not achieve a desired therapeutic effect of GLP-1 receptor agonists. This could be due to the multifactorial etiologies of T2DM and obesity, but genetic variability in the GLP-1 receptor or signaling pathways also needs to be considered in non-responders to GLP-1 receptor agonists. This review focuses on the pharmacological, clinical, and genetic factors that may influence the response to GLP-1 receptor agonists in the treatment of type 2 diabetes mellitus and obesity.
Collapse
|
27
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Mallo F. Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. VITAMINS AND HORMONES 2022; 118:457-478. [PMID: 35180937 DOI: 10.1016/bs.vh.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone very well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain, and it displays critical roles in neuroprotection by activating the GLP-1 receptor signaling pathways. GLP-1 enhances learning and memory in the hippocampus, promotes neurogenesis, decreases inflammation and apoptosis, modulates reward behavior, and reduces food intake. Its pharmacokinetics have been improved to enhance the peptide's half-life, enhancing exposure and time of action. The GLP-1 agonists are successfully in clinical use for the treatment of type-2 diabetes, obesity, and clinical evaluation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
28
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|
29
|
Głombik K, Detka J, Budziszewska B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021; 10:2937. [PMID: 34831160 PMCID: PMC8616269 DOI: 10.3390/cells10112937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
The developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system. Moreover, excess or deficiency of hormones is associated with cell damage and loss of function in mitochondria. This review aims to expound on the impact of hormones (GLP-1, insulin, thyroid hormones, glucocorticoids) on metabolic processes in the brain with special emphasis on oxidative phosphorylation dysregulation, which may contribute to the formation of pathological changes. Since the brain concentrations of sex hormones and neurosteroids decrease with age as well as in neurodegenerative diseases, in parallel with the occurrence of mitochondrial dysfunction and the weakening of cognitive functions, their beneficial effects on oxidative phosphorylation and expression of antioxidant enzymes are also discussed.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
30
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
32
|
Detka J, Głombik K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol Rep 2021; 73:1020-1032. [PMID: 34003475 PMCID: PMC8413152 DOI: 10.1007/s43440-021-00274-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
Depression is a highly prevalent mood disorder and one of the major health concerns in modern society. Moreover, it is characterized by a high prevalence of coexistence with many other diseases including metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity. Currently used antidepressant drugs, which mostly target brain monoaminergic neurotransmission, have limited clinical efficacy. Although the etiology of depression has not been fully elucidated, current scientific data emphasize the role of neurotrophic factors deficiencies, disturbed homeostasis between the nervous system and the immune and endocrine systems, as well as disturbances in brain energy metabolism and dysfunctions in the gut-brain axis as important factors in the pathogenesis of this neuropsychiatric disorder. Therefore, therapeutic options that could work in a way other than classic antidepressants are being sought to increase the effectiveness of the treatment. Interestingly, glucagon-like peptide-1 receptor agonists (GLP-1RAs), used in the treatment of T2DM and obesity, are known to show pro-cognitive and neuroprotective properties, and exert modulatory effects on immune, endocrine and metabolic processes in the central nervous system. This review article discusses the potential antidepressant effects of GLP-1RAs, especially in the context of their action on the processes related to neuroprotection, inflammation, stress response, energy metabolism, gut-brain crosstalk and the stability of the gut microbiota.
Collapse
Affiliation(s)
- Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland.
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Cracow, Poland
| |
Collapse
|
33
|
Abstract
The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior. Crosstalk between commensal bacteria and the central and peripheral nervous systems is associated with alterations in signaling of neurotransmitters and neuropeptides such as dopamine, brain-derived neurotrophic factor (BDNF), and glucagon-like peptide-1 (GLP-1). We further consider areas for future research on mechanisms by which gut microbes may influence feeding behavior involving these neural pathways. Understanding roles for the gut microbiota in feeding regulation will be important for informing therapeutic strategies to treat metabolic and eating disorders.
Collapse
|