1
|
Zhang Y, McKibben N, Li Q, Zhao C, Tan L. Lutein Emulsion Stabilized by a Food-Grade Biopolymer Enhanced Lutein Bioavailability and Improved Retinal Vessel Morphology in Neonatal Rats with Retinopathy of Prematurity. J Nutr 2025; 155:224-236. [PMID: 39551359 DOI: 10.1016/j.tjnut.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a leading cause of blindness in infants, affecting 32% of hospitalized preterm infants. Oxidative stress, a primary pathogenic factor in ROP, triggers abnormal neovascularization of retinal vessels. Lutein, an antioxidant and the main component of macular pigment, is found in low levels in preterm infants and may help ameliorate ROP. However, its low bioavailability limits its application as a nutritional intervention. OBJECTIVES The study aimed to assess the effect of a lutein emulsion stabilized by a food-grade biopolymer on lutein bioavailability in neonatal rats with ROP and examine the effects of both unemulsified lutein and lutein emulsion on the disease. METHODS Neonatal rats were subcutaneously administered KRN 633 (10 mg/kg body weight) on postnatal days 7 and 8 (P7 and P8) to induce ROP. Neonatal rats that did not receive the treatment served as the control. From P9 to P21, both ROP and non-ROP rats were divided into 3 groups and given daily doses of olive oil, unemulsified lutein (2 mg/kg body weight lutein), or lutein emulsion (2 mg/kg body weight lutein). On P22, serum and tissues were collected. Lutein concentrations were measured using ultra-performance liquid chromatography, and retinal morphology was assessed using immunohistochemistry. RESULTS Rats treated with lutein emulsion had significantly higher serum and tissue lutein concentrations than those receiving unemulsified lutein. Morphological assessments showed that ROP rats had more tortuous arteries, increased capillary density, enlarged vessels, reduced astrocyte density, and decreased neuronal cells. Both unemulsified lutein and lutein emulsion alleviated these abnormalities, with lutein emulsion showing superior efficacy in restoring neuronal cell levels to normal in the peripheral retina. CONCLUSIONS Lutein, in both unemulsified and emulsified forms, effectively inhibited ROP progression in neonatal rats. The biopolymer-based lutein emulsion showed promise as a delivery system to enhance lutein bioavailability and mitigate ROP in preterm infants.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, United States
| | - Nolan McKibben
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, United States
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Libo Tan
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
2
|
Iyer S, Bhat I, Bangera Sheshappa M. Lutein and the Underlying Neuroprotective Promise against Neurodegenerative Diseases. Mol Nutr Food Res 2024; 68:e2300409. [PMID: 38487969 DOI: 10.1002/mnfr.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/25/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's diseases (PD) are the two most common progressive neurodegenerative diseases with limited knowledge on their cause and, presently, have no cure. There is an existence of multiple treatment methods that target only the symptoms temporarily and do not stop the progression or prevent the onset of disease. Neurodegeneration is primarily attributed to the natural process of aging and the deleterious effects of heightened oxidative stress within the brain, whether via direct or indirect mechanisms. Emerging evidence suggests that certain nutritional aspects play a crucial role in the prevention and management of neurodegenerative diseases. Lutein, a dietary carotenoid, has been studied for its antioxidant properties for more than a decade with several applications against age-related macular degeneration. It is high antioxidant potential and selective accumulation in the brain makes it a versatile compound for combatting various neurodegenerative diseases. In this review, the studies exhibiting neuroprotective properties of lutein against neurodegenerative conditions, more specifically AD and PD in various model systems as well as clinical observations have been reviewed. Accordingly, the concerns associated with lutein absorption and potential strategies to improve its bioavailability have been discussed.
Collapse
Affiliation(s)
- Saisree Iyer
- Department of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Ishani Bhat
- Department of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Mamatha Bangera Sheshappa
- Department of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| |
Collapse
|
3
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
4
|
Harth JB, Renzi-Hammond LM, Hammond BR. A Dietary Strategy for Optimizing the Visual Range of Athletes. Exerc Sport Sci Rev 2023; 51:103-108. [PMID: 37083620 PMCID: PMC10259207 DOI: 10.1249/jes.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Visual range is quantified by assessing how far one can see clearly (an ability crucial to many athletes). This ability tends to vary significantly across individuals despite similar personal characteristics. We hypothesize that the primary driver of these differences is the individual response to scattered short-wave light in the environment moderated by the dietarily derived retinal pigments lutein and zeaxanthin.
Collapse
Affiliation(s)
- Jacob B. Harth
- Institute of Gerontology, College of Public Health, The University of Georgia, Athens, GA
| | - Lisa M. Renzi-Hammond
- Institute of Gerontology, College of Public Health, The University of Georgia, Athens, GA
- Vision Sciences Laboratory, Behavioral and Brain Sciences Program, Department of Psychology, The University of Georgia, Athens, GA
| | - Billy R. Hammond
- Vision Sciences Laboratory, Behavioral and Brain Sciences Program, Department of Psychology, The University of Georgia, Athens, GA
| |
Collapse
|
5
|
Li X, Holt RR, Keen CL, Morse LS, Zivkovic AM, Yiu G, Hackman RM. Potential roles of dietary zeaxanthin and lutein in macular health and function. Nutr Rev 2023; 81:670-683. [PMID: 36094616 PMCID: PMC11494239 DOI: 10.1093/nutrit/nuac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin are three xanthophyll carotenoid pigments that selectively concentrate in the center of the retina. Humans cannot synthesize lutein and zeaxanthin, so these compounds must be obtained from the diet or supplements, with meso-zeaxanthin being converted from lutein in the macula. Xanthophylls are major components of macular pigments that protect the retina through the provision of oxidant defense and filtering of blue light. The accumulation of these three xanthophylls in the central macula can be quantified with non-invasive methods, such as macular pigment optical density (MPOD). MPOD serves as a useful tool for assessing risk for, and progression of, age-related macular degeneration, the third leading cause of blindness worldwide. Dietary surveys suggest that the dietary intakes of lutein and zeaxanthin are decreasing. In addition to low dietary intake, pregnancy and lactation may compromise the lutein and zeaxanthin status of both the mother and infant. Lutein is found in modest amounts in some orange- and yellow-colored vegetables, yellow corn products, and in egg yolks, but rich sources of zeaxanthin are not commonly consumed. Goji berries contain the highest known levels of zeaxanthin of any food, and regular intake of these bright red berries may help protect against the development of age-related macular degeneration through an increase in MPOD. The purpose of this review is to summarize the protective function of macular xanthophylls in the eye, speculate on the compounds' role in maternal and infant health, suggest the establishment of recommended dietary values for lutein and zeaxanthin, and introduce goji berries as a rich food source of zeaxanthin.
Collapse
Affiliation(s)
- Xiang Li
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Roberta R Holt
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Carl L Keen
- are with the Department of Nutrition, UC Davis, Davis, California, USA
- is with the Department of Internal Medicine, UC Davis, Sacramento, California, USA
| | - Lawrence S Morse
- are with the Department of Ophthalmology and Vision Science, UC Davis Medical Center, Sacramento, California, USA
| | - Angela M Zivkovic
- re with the Department of Nutrition, UC Davis, Davis, California, USA
| | - Glenn Yiu
- are with the Department of Ophthalmology and Vision Science, UC Davis Medical Center, Sacramento, California, USA
| | - Robert M Hackman
- are with the Department of Nutrition, UC Davis, Davis, California, USA
| |
Collapse
|
6
|
Pap R, Pandur E, Jánosa G, Sipos K, Nagy T, Agócs A, Deli J. Lutein Decreases Inflammation and Oxidative Stress and Prevents Iron Accumulation and Lipid Peroxidation at Glutamate-Induced Neurotoxicity. Antioxidants (Basel) 2022; 11:2269. [PMID: 36421455 PMCID: PMC9687421 DOI: 10.3390/antiox11112269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
The xanthophyll carotenoid lutein has been widely used as supplementation due to its protective effects in light-induced oxidative stress. Its antioxidant and anti-inflammatory features suggest that it has a neuroprotective role as well. Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), which plays a key role in regulating brain function. Excess accumulation of intracellular glutamate accelerates an increase in the concentration of reactive oxygen species (ROS) in neurons leading to glutamate neurotoxicity. In this study, we focused on the effects of glutamate on SH-SY5Y neuroblastoma cells to identify the possible alterations in oxidative stress, inflammation, and iron metabolism that affect the neurological function itself and in the presence of antioxidant lutein. First, ROS measurements were performed, and then catalase (CAT) and Superoxide Dismutase (SOD) enzyme activity were determined by enzyme activity assay kits. The ELISA technique was used to detect proinflammatory TNFα, IL-6, and IL-8 cytokine secretions. Alterations in iron uptake, storage, and release were followed by gene expression measurements and Western blotting. Total iron level detections were performed by a ferrozine-based iron detection method, and a heme assay kit was used for heme measurements. The gene expression toward lipid-peroxidation was determined by RT-PCR. Our results show glutamate changes ROS, inflammation, and antioxidant enzyme activity, modulate iron accumulation, and may initiate lipid peroxidation in SH-SY5Y cells. Meanwhile, lutein attenuates the glutamate-induced effects on ROS, inflammation, iron metabolism, and lipid peroxidation. According to our findings, lutein could be a beneficial, supportive treatment in neurodegenerative disorders.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Tamás Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Attila Agócs
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - József Deli
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| |
Collapse
|
7
|
The Effect of Music-Based Intervention on General Cognitive and Executive Functions, and Episodic Memory in People with Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of Recent Randomized Controlled Trials. Healthcare (Basel) 2022; 10:healthcare10081462. [PMID: 36011119 PMCID: PMC9408548 DOI: 10.3390/healthcare10081462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Music-based intervention has been used as first-line non-pharmacological treatment to improve cognitive function for people with mild cognitive impairment (MCI) or dementia in clinical practice. However, evidence regarding the effect of music-based intervention on general cognitive function as well as subdomains of cognitive functions in these individuals is scarce. Objective: To evaluate the efficacy of music-based interventions on a wide range of cognitive functions in people with MCI or dementia. Method: We searched the effect of various music therapies using randomized controlled trials on cognitive function using several databases. Studies based on any type of dementia or MCI were combined. The effects of music-based intervention on each cognitive function were pooled by meta-analysis. Results: A total of 19 studies involving n = 1024 participants (mean age ranged from 60 to 87 years old) were included. We found statistically significant improvements in MMSE (general cognitive function), the Frontal Assessment Battery (executive function), and the Auditory Verbal Learning Test (episodic memory). Conclusions: This study provides positive evidence to support music-based interventions for improving a wide range of cognitive functions in older adults with MCI and dementia. Therefore, we recommend increased use of music in people’s homes, day care centers and nursing homes. This study was registered with PROSPERO, number 250383.
Collapse
|
8
|
Nouchi R, Hu Q, Ushida Y, Suganuma H, Kawashima R. Effects of sulforaphane intake on processing speed and negative moods in healthy older adults: Evidence from a randomized controlled trial. Front Aging Neurosci 2022; 14:929628. [PMID: 35966784 PMCID: PMC9372582 DOI: 10.3389/fnagi.2022.929628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have reported that sulforaphane (SFN) intake with cognitive training had positive effects on cognitive functions. However, it is still unknown whether SFN intake alone has beneficial effects on cognition as well as mood. We investigated whether a SFN intake intervention improved cognitive performance and mood states in healthy older adults. Methods In a 12-week, double-blinded, randomized controlled trial (RCT), we randomly assigned 144 older adults to a SFN group or a placebo group. We asked the participants to take a supplement (SFN or placebo) for 12 weeks. We measured several cognitive functions, mood states, and biomarkers before and after the intervention period. Results The SFN group showed improvement in processing speed and a decrease in negative mood compared to the placebo group. In addition, the SFN group exhibited a higher SFN-N-acetyl-L-cysteine (NAC) level compared to the placebo group. However, there were no significant results in other biomarkers of oxidant stress, inflammation, or neural plasticity. Discussion These results indicate that nutrition interventions using SFN can have positive effects on cognitive functioning and mood in healthy older adults.
Collapse
Affiliation(s)
- Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- *Correspondence: Rui Nouchi,
| | - Qingqiang Hu
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | | | - Ryuta Kawashima
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Hammond BR, Renzi-Hammond L. The influence of the macular carotenoids on women's eye and brain health. Nutr Neurosci 2022:1-7. [PMID: 35694839 DOI: 10.1080/1028415x.2022.2084125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction: The mortality-morbidity paradox refers to the inconsistency in survival and disease between males and females: females live longer but tend to suffer greater age-related disease and disability. Many aspects of the latter can be targeted by lifestyle interventions, such as changes in dietary behavior.Methods: The relevant literature is reviewed.Conclusion: Dietary intake of the pigmented carotenoids appears to be particularly important for issues such as visual and cognitive loss. This may be due to the highly selective presence of a fraction of carotenoids, namely lutein (L) and zeaxanthin (Z), in specific tissues of the eye and brain. At those sites, L and Z have been shown to directly improve function and prevent central nervous system degeneration. On the palliative side, retinal LZ reduce glare disability, discomfort and photostress, improve chromatic contrast and visual range (e.g., the ability to see through blue atmospheric haze). These effects on input reflect changes in neural output such as improved visual processing speed, problem solving, memory and executive function (presumably due, also, to local effects in areas such as the hippocampus and frontal cortex). These effects on function throughout the central nervous system are mirrored by effects on disease progression. As potent antioxidants/anti-inflammatory agents, and "blue-blockers" within the retina, the pigments prevent loss that precedes neurodegenerative diseases such as age-related macular degeneration and some forms of dementia.
Collapse
Affiliation(s)
- Billy R Hammond
- Vision Sciences Laboratory; Behavioral and Brain Sciences Program; Department of Psychology, University of Georgia, Athens, GA, USA
| | - Lisa Renzi-Hammond
- Institute of Gerontology; Department of Health Promotion and Behavior, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Beydoun MA, Beydoun HA, Fanelli-Kuczmarski MT, Weiss J, Hossain S, Canas JA, Evans MK, Zonderman AB. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults. Neurology 2022; 98:e2150-e2162. [PMID: 35508396 PMCID: PMC9169941 DOI: 10.1212/wnl.0000000000200289] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Serum antioxidant vitamins and carotenoids may protect against neurodegeneration with age. We examined associations of these nutritional biomarkers with incident all-cause and Alzheimer disease (AD) dementia among US middle-aged and older adults. METHODS Using data from the third National Health and Nutrition Examination Surveys (1988-1994), linked with Centers for Medicare & Medicaid follow-up data, we tested associations and interactions of serum vitamins A, C, and E and total and individual serum carotenoids and interactions with incident AD and all-cause dementia. Cox proportional hazards regression models were conducted. RESULTS After ≤26 years follow-up (mean 16-17 years, 7,283 participants aged 45-90 years at baseline), serum lutein+zeaxanthin was associated with reduced risk of all-cause dementia (65+ age group), even in the lifestyle-adjusted model (per SD: hazard ratio [HR] 0.93, 95% CI 0.87-0.99; p = 0.037), but attenuated in comparison with a socioeconomic status (SES)-adjusted model (HR 0.92, 95% CI 0.86-0.93; p = 0.013). An inverse relationship was detected between serum β-cryptoxanthin (per SD increase) and all-cause dementia (45+ and 65+) for age- and sex-adjusted models (HR 0.86, 95% CI 0.80-0.93; p < 0.001 for 45+; HR 0.86, 95% CI 0.80-0.93; p = 0.001 for 65+), a relationship remaining strong in SES-adjusted models (HR 0.89, 95% CI 0.82-0.96; p = 0.006 for 45+; HR 0.88, 95% CI 0.81-0.96; p = 0.007 for 65+), but attenuated in subsequent models. Antagonistic interactions indicate putative protective effects of 1 carotenoid may be observed at lower levels other carotenoids or antioxidant vitamin. DISCUSSION Incident all-cause dementia was inversely associated with serum lutein+zeaxanthin and β-cryptoxanthin levels. Further studies with time-dependent exposures and randomized trials are needed to test neuroprotective effects of supplementing the diet with select carotenoids. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that incident all-cause dementia was inversely associated with serum lutein+zeaxanthin and β-cryptoxanthin levels.
Collapse
Affiliation(s)
- May A Beydoun
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Hind A Beydoun
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Marie T Fanelli-Kuczmarski
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Jordan Weiss
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Sharmin Hossain
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Jose Atilio Canas
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Michele Kim Evans
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Alan B Zonderman
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| |
Collapse
|
11
|
Dreher ML, Cheng FW, Ford NA. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021; 13:nu13124376. [PMID: 34959933 PMCID: PMC8705026 DOI: 10.3390/nu13124376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
This first comprehensive review of fresh Hass avocados includes 19 clinical trials, five observational studies, and biological mechanisms. We identified four primary avocado health effects: (1) reducing cardiovascular disease risk in healthy overweight or obese adults with dyslipidemia by lowering non-HDL-C profiles, triglycerides, LDL oxidation, small atherogenic LDL particles and promoting postprandial vascular endothelial health for better peripheral blood flow; (2) lowering the risk of being overweight or obese, supporting weight loss, and reducing visceral fat tissue in overweight or obese women; (3) improving cognitive function in older normal-weight adults and in young to middle age overweight or obese adults especially in frontal cortex executive function; and (4) stimulating improved colonic microbiota health in overweight or obese adults by promoting healthier microflora and fecal metabolites. We also identified a unique combination of four Hass avocado nutritional features that appear to be primarily responsible for these health effects: (1) a 6 to 1 unsaturated (rich in oleic acid) to saturated fat ratio similar to olive oil; (2) a source of multifunctional prebiotic and viscous fiber; (3) a relatively low energy density of 1.6 kcal/g (79% of edible Hass avocado weight consists of water and fiber with a creamy, smooth texture); and (4) its oleic acid and water emulsion increases carotenoid absorption from low-fat fruits and vegetables (e.g., salsa or salad) when consumed with avocados. They are also a good source of micronutrients and polyphenols, and are very low in sodium and available carbohydrates supporting secondary health and wellness benefits. Hass avocado health effects are best demonstrated when consumed in a healthy dietary plan such as the Mediterranean diet. More extensive and longer clinical trials are needed to further enhance our understanding of the Hass avocado’s health effects.
Collapse
Affiliation(s)
- Mark L. Dreher
- Nutrition Science Solutions, LLC, 900 S Rainbow Ranch Rd., Wimberley, TX 78676, USA;
| | - Feon W. Cheng
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA;
| | - Nikki A. Ford
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA;
- Correspondence: ; Tel.: +1-949-341-3250
| |
Collapse
|