1
|
Sindi AS, Stinson LF, Lai CT, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Zhou X, Payne MS, Geddes DT. Human milk lactoferrin and lysozyme concentrations vary in response to a dietary intervention. J Nutr Biochem 2025; 135:109760. [PMID: 39251146 DOI: 10.1016/j.jnutbio.2024.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
It is known that human milk (HM)1 antimicrobial protein composition varies during lactation. However, the impact of maternal diet on these antimicrobial proteins, particularly lactoferrin and lysozyme remains unknown. In addition, it is unclear whether daily, circadian, and between breast variations exist for lactoferrin and lysozyme concentrations. We investigated the impact of a low sugar, low fat, high fibre dietary intervention on HM lysozyme and lactoferrin concentrations. HM was sampled across a 3-week period; daily, at different times of day, and from both breasts to measure the level of intraindividual variation. The intervention significantly reduced maternal sugar, total fat, and saturated fat intake. HM lactoferrin concentration declined significantly over the course of the intervention however the effect size was relatively small. In addition, lactoferrin and lysozyme concentrations were variable over time, and differed significantly within and across the day but not between breasts.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, Western Australia, Australia; College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia
| | - Lisa F Stinson
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ching Tat Lai
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Zoya Gridneva
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, South Australia, Australia; Discipline of Paediatrics, The University of Adelaide, North Adelaide, South Australia, Australia; Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia; CSIRO, Adelaide, South Australia, Australia
| | - Xiaojie Zhou
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, Western Australia, Australia
| | - Donna T Geddes
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
2
|
Qureshi R, Fewtrell M, Wells JCK, Dib S. The association between maternal factors and milk hormone concentrations: a systematic review. Front Nutr 2024; 11:1390232. [PMID: 39021603 PMCID: PMC11253774 DOI: 10.3389/fnut.2024.1390232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Breast milk is the gold standard for infant feeding. It is a dynamic biological fluid rich in numerous bioactive components. Emerging research suggests that these components, including hormones, may serve as signals between mother and offspring. From an evolutionary perspective, maternal hormonal signals could allow co-adaptation of maternal and offspring phenotype, with implications for their Darwinian fitness. However, a series of steps need to be considered to establish the role of a component as a signal and this systematic review focuses on one step: 'Do maternal factors influence the concentration of milk hormones?' Objective To systematically review human studies which analyze the association between maternal factors and the concentration of hormones in breast milk. Methods Three databases were searched for studies reporting the association of maternal factors including body mass index (BMI), weight, fat mass, age, ethnicity, smoking with hormones such as adiponectin, leptin, insulin, ghrelin, and cortisol in breast milk. Results Thirty-three studies were eligible for inclusion. Maternal BMI was positively associated with milk leptin (20/21 studies) and with milk insulin (4/6 studies). Maternal weight also displayed a positive correlation with milk leptin levels, and maternal diabetes status was positively associated with milk insulin concentrations. Conversely, evidence for associations between maternal fat mass, smoking, ethnicity and other maternal factors and hormone levels in breast milk was inconclusive or lacking. Conclusion Current evidence is consistent with a signaling role for leptin and insulin in breast milk, however other steps need to be investigated to understand the role of these components as definitive signals. This review represents a first step in establishing the role of signaling components in human milk and highlights other issues that need to be considered going forward.
Collapse
Affiliation(s)
| | - Mary Fewtrell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | | |
Collapse
|
3
|
Montana AV, Mildon A, Daniel AI, Pitino MA, Baxter JAB, Beggs MR, Unger SL, O'Connor DL, Walton K. Is Maternal Body Weight or Composition Associated with Onset of Lactogenesis II, Human Milk Production, or Infant Consumption of Mother's Own Milk? A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100228. [PMID: 38609047 PMCID: PMC11163153 DOI: 10.1016/j.advnut.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal adiposity impacts lactation performance, but the pathways are unclear. We conducted a systematic review to understand whether maternal adiposity (body mass index [BMI] or percentage fat mass) is associated with onset of lactogenesis II (copious milk; hours), human milk production (expressed volume/24 h), and infant consumption of mother's own milk (volume/24 h). We used random-effects standard meta-analyses to compare the relative risk (RR) of delayed lactogenesis II (>72 h) between mothers classified as underweight (BMI <18.5 kg/m2), healthy weight (BMI, 18.5-24.9 kg/m2), and overweight/obese (BMI ≥25 kg/m2) and random-effects meta-regressions to examine associations with hours to lactogenesis II and infant milk consumption. The certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation approach. We included 122 articles. Mothers with underweight (RR: 0.64; 95% CI: 0.49, 0.83; I2 = 39.48%; 8 articles/data points) or healthy weight status (RR: 0.67; 95% CI: 0.57, 0.79; I2 = 70.91%; 15 articles/data points) were less likely to experience delayed lactogenesis II than mothers with overweight/obesity. We found no association between maternal BMI and time to onset of lactogenesis II (β: 1.45 h; 95% CI: -3.19, 6.09 h; P = 0.52, I2 = 0.00%; 8 articles, 17 data points). Due to limited data, we narratively reviewed articles examining BMI or percentage fat mass and milk production (n = 6); half reported an inverse association and half no association. We found no association between maternal BMI (β: 6.23 mL; 95% CI: -11.26, 23.72 mL; P = 0.48, I2 = 47.23%; 58 articles, 75 data points) or percentage fat mass (β: 7.82 mL; 95% CI: -1.66, 17.29 mL; P = 0.10, I2 = 28.55%; 30 articles, 41 data points) and infant milk consumption. The certainty of evidence for all outcomes was very low. In conclusion, mothers with overweight/obesity may be at risk of delayed lactogenesis II. The available data do not support an association with infant milk consumption, but the included studies do not adequately represent mothers with obesity. This study was registered in PROSPERO as 285344.
Collapse
Affiliation(s)
- Amanda V Montana
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Alison Mildon
- Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | | | - Michael A Pitino
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Jo-Anna B Baxter
- Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Megan R Beggs
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada
| | - Sharon L Unger
- Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada; Paediatrics, Mount Sinai Hospital, Toronto ON, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto ON, Canada
| | - Deborah L O'Connor
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto ON, Canada; Paediatrics, Mount Sinai Hospital, Toronto ON, Canada
| | - Kathryn Walton
- Translational Medicine, The Hospital for Sick Children, Toronto ON, Canada; Department of Family Relations & Applied Nutrition, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Sindi AS, Stinson LF, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Rea A, Trevenen ML, Geddes DT, Payne MS. Maternal dietary intervention during lactation impacts the maternal faecal and human milk microbiota. J Appl Microbiol 2024; 135:lxae024. [PMID: 38323424 DOI: 10.1093/jambio/lxae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, SA 5000, Australia
- Discipline of Paediatrics, The University of Adelaide, North Adelaide, SA 5006, Australia
- Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
- CSIRO, Adelaide, SA 5000, Australia
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - Michelle L Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
| |
Collapse
|
5
|
Zielinska-Pukos MA, Kopiasz Ł, Hamulka J. The Effect of Maternal Overweight/Obesity on Serum and Breastmilk Leptin, and Its Associations with Body Composition, Cardiometabolic Health Indices, and Maternal Diet: The BLOOM Study. Metabolites 2024; 14:221. [PMID: 38668349 PMCID: PMC11051946 DOI: 10.3390/metabo14040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In overweight and obese patients, elevated serum and breastmilk leptin concentrations are observed, with serum leptin also being likely affected by the diet. We analyzed serum and breastmilk leptin in normal weight (NW) and overweight/obese (OW/OB) mothers, and evaluated its associations with (1) maternal anthropometric parameters; (2) markers of cardiometabolic health; and (3) the maternal diet. The BLOOM (Breastmilk and the Link to Overweight/Obesity and Maternal diet) study was conducted among 40 women (n = 20 OW/OB; n = 20, NW) who were exclusively or predominantly breastfeeding for 15.5 ± 1.2 (OW/OB group (0.99)) weeks. We collected 24 h breastmilk and fasting blood samples for leptin analysis by ELISA. Maternal dietary habits were evaluated using a 3-day dietary record and food frequency questionnaire, which were used to calculate the Polish-adapted Mediterranean Diet score. Maternal anthropometric measurements and DEXA scans were performed, and anthropometric and cardiometabolic indices were calculated. The OW mothers had 1.4 times higher serum levels, while OB mothers had 4.5 and 6.2 higher serum and breastmilk leptin levels, respectively, in comparison to the NW mothers. The FM% was correlated with serum and breastmilk leptin levels (r = 0.878, r = 0.638). Serum leptin was associated with markers of cardiometabolic health such as AIP, CMI, and VAI in the NW mothers, and with LAP in the OW/OB mothers. Higher energy, fructose intake and adherence to the Mediterranean diet were associated with serum leptin in the NW mothers (β = 0.323, 0.039-0.608; β = 0.318, 0.065-0.572; β = 0.279, 0.031-0.528); meanwhile, higher adherence to the Mediterranean diet could protect against elevated breastmilk leptin concentrations in OW/OB mothers (β = -0.444, -0.839--0.050), even after adjustment for FM%. Our results suggest a potential association between maternal serum leptin concentrations and cardiometabolic health. In addition, we confirm the importance of healthy dietary patterns in the improvement of breastmilk composition.
Collapse
Affiliation(s)
- Monika A. Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
6
|
Brockway MM, Daniel AI, Reyes SM, Gauglitz JM, Granger M, McDermid JM, Chan D, Refvik R, Sidhu KK, Musse S, Patel PP, Monnin C, Lotoski L, Geddes DT, Jehan F, Kolsteren P, Bode L, Eriksen KG, Allen LH, Hampel D, Rodriguez N, Azad MB. Human Milk Bioactive Components and Child Growth and Body Composition in the First 2 Years: A Systematic Review. Adv Nutr 2024; 15:100127. [PMID: 37802214 PMCID: PMC10831900 DOI: 10.1016/j.advnut.2023.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Human milk (HM) contains macronutrients, micronutrients, and a multitude of other bioactive factors, which can have a long-term impact on infant growth and development. We systematically searched MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science to synthesize evidence published between 1980 and 2022 on HM components and anthropometry through 2 y of age among term-born infants. From 9992 abstracts screened, 141 articles were included and categorized based on their reporting of HM micronutrients, macronutrients, or bioactive components. Bioactives including hormones, HM oligosaccharides (HMOs), and immunomodulatory components are reported here, based on 75 articles from 69 unique studies reporting observations from 9980 dyads. Research designs, milk collection strategies, sampling times, geographic and socioeconomic settings, reporting practices, and outcomes varied considerably. Meta-analyses were not possible because data collection times and reporting were inconsistent among the studies included. Few measured infant HM intake, adjusted for confounders, precisely captured breastfeeding exclusivity, or adequately described HM collection protocols. Only 5 studies (6%) had high overall quality scores. Hormones were the most extensively examined bioactive with 46 articles (n = 6773 dyads), compared with 13 (n = 2640 dyads) for HMOs and 12 (n = 1422 dyads) for immunomodulatory components. Two studies conducted untargeted metabolomics. Leptin and adiponectin demonstrated inverse associations with infant growth, although several studies found no associations. No consistent associations were found between individual HMOs and infant growth outcomes. Among immunomodulatory components in HM, IL-6 demonstrated inverse relationships with infant growth. Current research on HM bioactives is largely inconclusive and is insufficient to address the complex composition of HM. Future research should ideally capture HM intake, use biologically relevant anthropometrics, and integrate components across categories, embracing a systems biology approach to better understand how HM components work independently and synergistically to influence infant growth.
Collapse
Affiliation(s)
- Meredith Merilee Brockway
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Allison I Daniel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah M Reyes
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew Granger
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Deborah Chan
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
| | - Rebecca Refvik
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karanbir K Sidhu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suad Musse
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Pooja P Patel
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, Unites States
| | - Caroline Monnin
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, MB, Canada
| | - Larisa Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Fyezah Jehan
- Department of Pediatrics & Child Health, Aga Khan University, Karachi, Pakistan
| | - Patrick Kolsteren
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | - Lars Bode
- Department of Pediatrics, Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego (UC San Diego), San Diego, CA, United States
| | - Kamilla G Eriksen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lindsay H Allen
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Daniela Hampel
- Department of Nutrition, University of California, Davis, CA, United States; Western Human Nutrition Research Center, Agriculture Research Service, United States Department of Agriculture, Washington, DC, Unites States
| | - Natalie Rodriguez
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Yang C, Guo Q, Cui M, Li X, Zhang J, Peng X, Liu J, Liu P, Wang L. Association between maternal metabolic profiles in pregnancy, dietary patterns during lactation and breast milk leptin: a retrospective cohort study. Br J Nutr 2023; 130:1537-1547. [PMID: 37066691 DOI: 10.1017/s0007114523000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Breast milk leptin plays a potential role in preventing childhood obesity. However, the associations of breast milk leptin with maternal metabolism in pregnancy and dietary patterns during lactation are still unclear. We aimed to explore associations of breast milk leptin with maternal metabolic profiles in pregnancy and dietary patterns during lactation. A total of 332 participants were recruited for this retrospective cohort study. Breast milk samples were collected at approximately 6 weeks postpartum. Breast milk leptin and twenty-three metabolic profiles in pregnancy were measured in this study. A semi-quantitative FFQ was used to gather dietary information during lactation. Both principal component analysis and the diet balance index were used to derive dietary patterns. Among twenty-three maternal metabolic profiles, maternal serum glucose (β = 1·61, P = 0·009), γ-glutamyl transferase (β = 0·32, P = 0·047) and albumin (β = -2·96, P = 0·044) in pregnancy were correlated with breast milk leptin. All dietary patterns were associated with breast milk leptin. Given the joint effects of maternal metabolism in pregnancy and dietary patterns during lactation, only diet quality distance was significantly associated with leptin concentrations in breast milk (low level v. almost no diet problem: β = -0·46, P = 0·011; moderate/high level v. almost no diet problem: β = -0·43, P = 0·035). In conclusion, both maternal metabolism in pregnancy and dietary patterns during lactation were associated with breast milk leptin. Maternal diet balance during lactation was helpful to improve breast milk leptin concentration.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qianying Guo
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing, People's Republic of China
| | - Mingxuan Cui
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xuening Li
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing, People's Republic of China
| | - Jinjuan Zhang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Co. Ltd., Changsha, Hunan, People's Republic of China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing, People's Republic of China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, People's Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Ramiro-Cortijo D, Singh P, Herranz Carrillo G, Gila-Díaz A, Martín-Cabrejas MA, Martin CR, Arribas SM. Association of maternal body composition and diet on breast milk hormones and neonatal growth during the first month of lactation. Front Endocrinol (Lausanne) 2023; 14:1090499. [PMID: 36936154 PMCID: PMC10018215 DOI: 10.3389/fendo.2023.1090499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Preterm birth is associated with altered growth patterns and an increased risk of cardiometabolic diseases, with breast milk (BM) being a counteracting factor. Preterm infants also show alterations in adipokines and gut hormones influencing appetite and metabolism. Since these hormones are present in BM, it is possible that their levels may equilibrate deficiencies improving infant growth. We aimed to assess 1) the BM levels of ghrelin, resistin, leptin, insulin, peptide YY, and the gastrointestinal peptide in women with preterm and term labor; 2) the relationship between BM hormones and neonatal growth; and 3) the influence of maternal body composition and diet on these BM hormones. METHODS BM from 48 women (30 term and 18 preterm labor) was collected at days 7, 14, and 28 of lactation. Maternal body composition was evaluated by bioimpedance, and neonate anthropometric parameters were collected from medical records. The maternal dietary pattern was assessed by a 72-h dietary recall at days 7 and 28 of lactation. BM hormones were analyzed by the U-Plex Ultra-sensitive method. Data were analyzed using linear regression models. BM from women with preterm labor had lower ghrelin levels, with the other hormones being significantly higher compared to women with term delivery. RESULTS In premature infants, growth was positively associated with BM ghrelin, while, in term infants, it was positively associated with insulin and negatively with peptide YY. In the first week of lactation, women with preterm labor had higher body fat compared to women with term labor. In this group, ghrelin levels were positively associated with maternal body fat and with fiber and protein intake. In women with term labor, no associations between anthropometric parameters and BM hormones were found, and fiber intake was negatively associated with peptide YY. DISCUSSION Preterm labor is a factor influencing the levels of BM adipokines and gut hormones, with BM ghrelin being a relevant hormone for premature infant growth. Since ghrelin is lower in BM from women with preterm labor and the levels are associated with maternal fat storage and some dietary components, our data support the importance to monitor diet and body composition in women who gave birth prematurely to improve the BM hormonal status.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Instituto Universitario de Estudios de la Mujer (IUEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gloria Herranz Carrillo
- Division of Neonatology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Andrea Gila-Díaz
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid, Consejo Superior de Investigación Científica (CSIC), Madrid, Spain
| | - Camilia R. Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Division of Translational Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Universitario de Estudios de la Mujer (IUEM), Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Silvia M. Arribas,
| |
Collapse
|
9
|
Sindi AS, Stinson LF, Lean SS, Chooi YH, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Geddes DT, Payne MS. Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome. Front Microbiol 2022; 13:900702. [PMID: 36060782 PMCID: PMC9428759 DOI: 10.3389/fmicb.2022.900702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveA growing body of literature has shown that maternal diet during pregnancy is associated with infant gut bacterial composition. However, whether maternal diet during lactation affects the exclusively breastfed infant gut microbiome remains understudied. This study sets out to determine whether a two-week of a reduced fat and sugar maternal dietary intervention during lactation is associated with changes in the infant gut microbiome composition and function.DesignStool samples were collected from four female and six male (n = 10) infants immediately before and after the intervention. Maternal baseline diet from healthy mothers aged 22–37 was assessed using 24-h dietary recall. During the 2-week dietary intervention, mothers were provided with meals and their dietary intake was calculated using FoodWorks 10 Software. Shotgun metagenomic sequencing was used to characterize the infant gut microbiome composition and function.ResultsIn all but one participant, maternal fat and sugar intake during the intervention were significantly lower than at baseline. The functional capacity of the infant gut microbiome was significantly altered by the intervention, with increased levels of genes associated with 28 bacterial metabolic pathways involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the dietary intervention did not affect the bacterial composition of the infant gut microbiome, relative difference in maternal fiber intake was positively associated with increased abundance of genes involved in biosynthesis of storage compounds (p = 0.016), such as cyanophycin. Relative difference in maternal protein intake was negatively associated with Veillonella parvula (p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). Relative difference in maternal sugar intake was positively associated with Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake was positively associated with genes involved in the biosynthesis of storage compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator (p = 0.038) metabolic pathways.ConclusionThis pilot study demonstrates that a short-term maternal dietary intervention during lactation can significantly alter the functional potential, but not bacterial taxonomy, of the breastfed infant gut microbiome. While the overall diet itself was not able to change the composition of the infant gut microbiome, changes in intakes of maternal protein and sugar during lactation were correlated with changes in the relative abundances of certain bacterial species.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ACTRN12619000606189).
Collapse
Affiliation(s)
- Azhar S. Sindi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Soo Sum Lean
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gabriela E. Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Merryn J. Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Discipline of Pediatrics, The University of Adelaide, Adelaide, SA, Australia
- Women’s and Children’s Hospital, Adelaide, SA, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, VIC, Australia
| | - Beverly S. Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- CSIRO, Adelaide, SA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, Perth, WA, Australia
- *Correspondence: Matthew S. Payne,
| |
Collapse
|
10
|
Derkach KV, Bondareva VM, Shpakov AO. [Influence of intranasally administered insulin on metabolic and hormonal parameters in adult male rats, impaired due to three-day fasting in the early postnatal period]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:263-271. [PMID: 36005844 DOI: 10.18097/pbmc20226804263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporary cessation or restriction of breastfeeding can lead to metabolic disorders in adulthood. However, data on the effect of fasting in the early postnatal period on the functions of the endocrine system in adulthood are rare and contradictory. Approaches for the correction of metabolic and hormonal disorders caused by premature cessation of breastfeeding have not been developed yet. The aim of the work was to study the metabolic and hormonal parameters and changes in the hormonal status of the gonadal and thyroid systems in 10-month-old male rats with interruption of breastfeeding on days P19-P21, as well as to evaluate the restorative effect on them of four weeks of treatment with intranasal insulin (II) administered in the postnatal period (P28-P55) or in adulthood (P183-P210). Lactation interruption has been induced by treatment of lactating females with bromocriptine (10 mg/day/rat, P19-P21). Male rats with temporary cessation of breastfeeding developed characteristic signs of the metabolic syndrome (obesity, dyslipidemia, impaired glucose tolerance, hyperleptinemia), decreased levels of testosterone and thyroid hormones (fT4, tT3) and weakened the synthesis of testosterone and thyroxine, stimulated respectively by GnRH and thyroliberin. This was due to a decrease in the sensitivity of the testes to luteinizing hormone (LH) and the thyroid gland to thyroid-stimulating hormone (TSH). Treatment with II in early ontogenesis reduced body weight and fat, improved lipid profile, sensitivity to insulin, leptin, LH and TSH, restored the levels of testosterone and thyroid hormones and their stimulation by releasing factors. Treatment with II in adulthood normalized the levels of testosterone, thyroid hormones, their stimulation by releasing factors, but had a little effect on metabolic and hormonal parameters. The obtained data point to a wide range of metabolic and hormonal disorders in adult male rats with the "neonatal" model of metabolic syndrome and to the effectiveness of various strategies for their correction using long-term II treatment.
Collapse
Affiliation(s)
- K V Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - V M Bondareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia; Faculty of Medicine, Saint Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
11
|
Gridneva Z, George AD, Suwaydi MA, Sindi AS, Jie M, Stinson LF, Geddes DT. Environmental determinants of human milk composition in relation to health outcomes. Acta Paediatr 2022; 111:1121-1126. [PMID: 35067980 DOI: 10.1111/apa.16263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Humans are exposed to environmental factors at every stage of life including infancy. The aim of this mini-review was to present a narrative of environmental factors influencing human milk composition. Current literature shows lactation is a dynamic process and is responsive to multiple environmental challenges including geographical location, lifestyle, persistent pollutants and maternal factors (ethnicity, diet, stress, allergy and adiposity) that may influence human milk composition in a synergistic manner and should be considered in order to improve infant and maternal outcomes on a populations scale. Further interventional studies on larger international cohorts are needed to elucidate these complex relationships. Lactating women should aim for a healthy lifestyle and maintain a healthy body composition prior to and throughout the reproductive period, including during lactation.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Alexandra D. George
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
- Metabolomics Laboratory Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Majed A. Suwaydi
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- Department of Medical Laboratory Technology College of Applied Medical Sciences Jazan University Jazan Saudi Arabia
| | - Azhar S. Sindi
- Division of Obstetrics and Gynaecology School of Medicine The University of Western Australia Crawley Western Australia Australia
- College of Applied Medical Sciences Umm Al‐Qura University Makkah Saudi Arabia
| | - Ma Jie
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
| | - Lisa F. Stinson
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Donna T. Geddes
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| |
Collapse
|
12
|
Gridneva Z, Rea A, Lai CT, Tie WJ, Kugananthan S, Warden AH, Perrella SL, Murray K, Geddes DT. Human Milk Macronutrients and Bioactive Molecules and Development of Regional Fat Depots in Western Australian Infants during the First 12 Months of Lactation. Life (Basel) 2022; 12:life12040493. [PMID: 35454985 PMCID: PMC9029383 DOI: 10.3390/life12040493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
We investigated associations between intakes of human milk (HM) components (macronutrients and biologically active molecules) and regional fat depots development in healthy term infants (n = 20) across the first year of lactation. Infant limb (mid-arm and mid-thigh) lean and fat areas were assessed by ultrasound imaging at 2, 5, 9 and 12 months of age. Concentrations of HM total protein, whey protein, casein, adiponectin, leptin, lysozyme, lactoferrin, secretory IGA, total carbohydrates, lactose, HM oligosaccharides (total HMO, calculated) and infant 24-h milk intake were measured, and infant calculated daily intakes (CDI) of HM components were determined. This pilot study shows higher 24-h milk intake was associated with a larger mid-arm fat area (p = 0.024), higher breastfeeding frequency was associated with larger mid-arm (p = 0.008) and mid-thigh (p < 0.001) fat areas. Lysozyme (p = 0.001) and HMO CDI (p = 0.004) were time-dependently associated with the mid-arm fat area. Intakes of HM components and breastfeeding parameters may modulate infant limb fat depots development during the first year of age and potentially promote favorable developmental programming of infant body composition; however, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
- Correspondence: ; Tel.: +61-8-6488-4467
| | - Alethea Rea
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia;
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
| | - Wan Jun Tie
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
| | - Sambavi Kugananthan
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
| | - Ashleigh H. Warden
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
| | - Sharon L. Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
| | - Kevin Murray
- School of Population and Global Health, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (W.J.T.); (S.K.); (A.H.W.); (S.L.P.); (D.T.G.)
| |
Collapse
|
13
|
Geddes DT, Gridneva Z, Perrella SL, Mitoulas LR, Kent JC, Stinson LF, Lai CT, Sakalidis V, Twigger AJ, Hartmann PE. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients 2021; 13:3071. [PMID: 34578947 PMCID: PMC8465002 DOI: 10.3390/nu13093071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Researchers have recently called for human lactation research to be conceptualized as a biological framework where maternal and infant factors impacting human milk, in terms of composition, volume and energy content are studied along with relationships to infant growth, development and health. This approach allows for the development of evidence-based interventions that are more likely to support breastfeeding and lactation in pursuit of global breastfeeding goals. Here we summarize the seminal findings of our research programme using a biological systems approach traversing breast anatomy, milk secretion, physiology of milk removal with respect to breastfeeding and expression, milk composition and infant intake, and infant gastric emptying, culminating in the exploration of relationships with infant growth, development of body composition, and health. This approach has allowed the translation of the findings with respect to education, and clinical practice. It also sets a foundation for improved study design for future investigations in human lactation.
Collapse
Affiliation(s)
- Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Leon Robert Mitoulas
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
- Medela, AG, Lättichstrasse 4b, 6340 Baar, Switzerland
| | - Jacqueline Coral Kent
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | - Vanessa Sakalidis
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| | | | - Peter Edwin Hartmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (Z.G.); (S.L.P.); (L.R.M.); (J.C.K.); (L.F.S.); (C.T.L.); (V.S.); (P.E.H.)
| |
Collapse
|