1
|
Sáez-Fuertes L, Kapravelou G, Grases-Pintó B, Massot-Cladera M, Bernabeu M, Knipping K, Garssen J, Bourdet-Sicard R, Castell M, Rodríguez-Lagunas MJ, Collado MC, Pérez-Cano FJ. Impact of maternal Bifidobacterium breve M-16V and scGOS/lcFOS supplementation during pregnancy and lactation on the maternal immune system and milk composition. Front Immunol 2024; 15:1418594. [PMID: 38975337 PMCID: PMC11224147 DOI: 10.3389/fimmu.2024.1418594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Maternal synbiotic supplementation during pregnancy and lactation can significantly influence the immune system. Prebiotics and probiotics have a positive impact on the immune system by preventing or ameliorating among others intestinal disorders. This study focused on the immunomodulatory effects of B. breve M-16V and short chain galacto-oligosaccharides (scGOS)/long chain fructo-oligosachairdes (lcFOS), including systemic and mucosal compartments and milk composition. Methods Lewis rats were orally administered with the synbiotic or vehicle during pregnancy (21 days) and lactation (21 days). At the weaning day, small intestine (SI), mammary gland (MG), adipose tissue, milk, mesenteric lymph nodes (MLN), salivary gland (SG), feces and cecal content were collected from the mothers. Results The immunoglobulinome profile showed increased IgG2c in plasma and milk, as well as elevated sIgA in feces at weaning. The supplementation improved lipid metabolism through enhanced brown adipose tissue activity and reinforced the intestinal barrier by increasing the expression of Muc3, Cldn4, and Ocln. The higher production of short chain fatty acids in the cecum and increased Bifidobacterium counts suggest a potential positive impact on the gastrointestinal tract. Discussion These findings indicate that maternal synbiotic supplementation during gestation and lactation improves their immunological status and improved milk composition.
Collapse
Affiliation(s)
- Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Garyfallia Kapravelou
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
| | - Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Malen Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Manuel Bernabeu
- Institute of Agrochemisty and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| | - Karen Knipping
- Division Immunology, Danone Nutricia Research, Utrecht, Netherlands
| | - Johan Garssen
- Division Immunology, Danone Nutricia Research, Utrecht, Netherlands
- Division Pharmacology, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Raphaëlle Bourdet-Sicard
- Life Science and Digital Health, Danone Global Research & Innovation Center, Gif-sur-Yvette, France
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Salud Carlos III, Madrid, Spain
| | - Maria José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Maria Carmen Collado
- Institute of Agrochemisty and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| | - Francisco José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
2
|
Sáez-Fuertes L, Kapravelou G, Grases-Pintó B, Bernabeu M, Knipping K, Garssen J, Bourdet-Sicard R, Castell M, Collado MC, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Maternal Synbiotic Supplementation with B. breve M-16V and scGOS/lcFOS Shape Offspring Immune Development and Gut Microbiota at the End of Suckling. Nutrients 2024; 16:1890. [PMID: 38931246 PMCID: PMC11206815 DOI: 10.3390/nu16121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Immune system development during gestation and suckling is significantly modulated by maternal environmental and dietary factors. Breastfeeding is widely recognized as the optimal source of nutrition for infant growth and immune maturation, and its composition can be modulated by the maternal diet. In the present work, we investigated whether oral supplementation with Bifidobacterium breve M-16V and short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) to rat dams during gestation and lactation has an impact on the immune system and microbiota composition of the offspring at day 21 of life. On that day, blood, adipose tissue, small intestine (SI), mesenteric lymph nodes (MLN), salivary gland (SG), cecum, and spleen were collected. Synbiotic supplementation did not affect the overall body or organ growth of the pups. The gene expression of Tlr9, Muc2, IgA, and Blimp1 were upregulated in the SI, and the increase in IgA gene expression was further confirmed at the protein level in the gut wash. Synbiotic supplementation also positively impacted the microbiota composition in both the small and large intestines, resulting in higher proportions of Bifidobacterium genus, among others. In addition, there was an increase in butanoic, isobutanoic, and acetic acid concentrations in the cecum but a reduction in the small intestine. At the systemic level, synbiotic supplementation resulted in higher levels of immunoglobulin IgG2c in plasma, SG, and MLN, but it did not modify the main lymphocyte subsets in the spleen and MLN. Overall, synbiotic maternal supplementation is able to positively influence the immune system development and microbiota of the suckling offspring, particularly at the gastrointestinal level.
Collapse
Affiliation(s)
- Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Garyfallia Kapravelou
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (M.J.R.-L.)
| | - Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Manuel Bernabeu
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Karen Knipping
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Institute for Pharmaceutical Sciences, 3584 Utrecht, The Netherlands
| | - Johan Garssen
- Danone Research & Innovation, 3584 Utrecht, The Netherlands; (K.K.); (J.G.)
- Division of Pharmacology, Faculty of Science, Institute for Pharmaceutical Sciences, 3584 Utrecht, The Netherlands
| | | | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Center for Biomedical Research Network for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Carmen Collado
- Institute of Agrochemisty and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.B.); (M.C.C.)
| | - Francisco José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (L.S.-F.); (G.K.); (B.G.-P.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
3
|
Wu J, Aga L, Tang L, Li H, Wang N, Yang L, Zhang N, Wang X, Wang X. Lacticaseibacillus paracasei JS-3 Isolated from "Jiangshui" Ameliorates Hyperuricemia by Regulating Gut Microbiota and iTS Metabolism. Foods 2024; 13:1371. [PMID: 38731742 PMCID: PMC11083236 DOI: 10.3390/foods13091371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Background: A diet high in purines can impair the function of the gut microbiota and disrupt purine metabolism, which is closely associated with the onset of hyperuricemia. Dietary regulation and intestinal health maintenance are key approaches for controlling uric acid (UA) levels. Investigating the impacts of fermented foods offers potential dietary interventions for managing hyperuricemia. Methods: In this study, we isolated a strain with potent UA-degrading capabilities from "Jiangshui", a fermented food product from Gansu, China. We performed strain identification and assessed its probiotic potential. Hyperuricemic quails, induced by a high-purine diet, were used to assess the UA degradation capability of strain JS-3 by measuring UA levels in serum and feces. Additionally, the UA degradation pathways were elucidated through analyses of the gut microbiome and fecal metabolomics. Results: JS-3, identified as Lacticaseibacillus paracasei, was capable of eliminating 16.11% of uric acid (UA) within 72 h, rapidly proliferating and producing acid within 12 h, and surviving in the gastrointestinal tract. Using hyperuricemic quail models, we assessed JS-3's UA degradation capacity. Two weeks after the administration of JS-3 (2 × 108 cfu/d per quail), serum uric acid (SUA) levels significantly decreased to normal levels, and renal damage in quails was markedly improved. Concurrently, feces from the JS-3 group demonstrated a significant degradation of UA, achieving up to 49% within 24 h. 16S rRNA sequencing revealed JS-3's role in gut microbiota restoration by augmenting the probiotic community (Bifidobacterium, Bacteroides unclassified_f-Lachnospiraceae, and norank_fynorank_o-Clostridia_UCG-014) and diminishing the pathogenic bacteria (Macrococus and Lactococcus). Corresponding with the rise in short-chain fatty acid (SCFA)-producing bacteria, JS-3 significantly increased SCFA levels (p < 0.05, 0.01). Additionally, JS-3 ameliorated metabolic disturbances in hyperuricemic quails, influencing 26 abnormal metabolites predominantly linked to purine, tryptophan, and bile acid metabolism, thereby enhancing UA degradation and renal protection. Conclusions: For the first time, we isolated and identified an active probiotic strain, JS-3, from the "Jiangshui" in Gansu, used for the treatment of hyperuricemia. It modulates host-microbiome interactions, impacts the metabolome, enhances intestinal UA degradation, reduces levels of SUA and fecal UA, alleviates renal damage, and effectively treats hyperuricemia without causing gastrointestinal damage. In summary, JS-3 can serve as a probiotic with potential therapeutic value for the treatment of hyperuricemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China; (J.W.); (L.T.); (H.L.); (N.W.)
| |
Collapse
|
4
|
Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol 2024; 14:1323233. [PMID: 38235147 PMCID: PMC10792057 DOI: 10.3389/fimmu.2023.1323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Lakshmanan AP, Deola S, Terranegra A. The Promise of Precision Nutrition for Modulation of the Gut Microbiota as a Novel Therapeutic Approach to Acute Graft-versus-host Disease. Transplantation 2023; 107:2497-2509. [PMID: 37189240 PMCID: PMC10664798 DOI: 10.1097/tp.0000000000004629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe side effect of allogeneic hematopoietic stem cell transplantation (aHSCT) that has complex phenotypes and often unpredictable outcomes. The current management is not always able to prevent aGVHD. A neglected actor in the management of aGVHD is the gut microbiota. Gut microbiota dysbiosis after aHSCT is caused by many factors and may contribute to the development of aGVHD. Diet and nutritional status modify the gut microbiota and a wide range of products are now available to manipulate the gut microbiota (pro-, pre-, and postbiotics). New investigations are testing the effect of probiotics and nutritional supplements in both animal models and human studies, with encouraging results. In this review, we summarize the most recent literature about the probiotics and nutritional factors able to modulate the gut microbiota and we discuss the future perspective in developing new integrative therapeutic approaches to reducing the risk of graft-versus-host disease in patients undergoing aHSCT.
Collapse
Affiliation(s)
| | - Sara Deola
- Advanced Cell Therapy Core, Research Branch, Sidra Medicine, Qatar
| | | |
Collapse
|
6
|
Wen C, Geervliet M, de Vries H, Fabà L, den Hil PJRV, Skovgaard K, Savelkoul HFJ, Schols HA, Wells JM, Tijhaar E, Smidt H. Agaricus subrufescens fermented rye affects the development of intestinal microbiota, local intestinal and innate immunity in suckling-to-nursery pigs. Anim Microbiome 2023; 5:24. [PMID: 37041617 PMCID: PMC10088699 DOI: 10.1186/s42523-023-00244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Agaricus subrufescens is considered as one of the most important culinary-medicinal mushrooms around the world. It has been widely suggested to be used for the development of functional food ingredients to promote human health ascribed to the various properties (e.g., anti-inflammatory, antioxidant, and immunomodulatory activities). In this context, the interest in A. subrufescens based feed ingredients as alternatives for antibiotics has also been fuelled during an era of reduced/banned antibiotics use. This study aimed to investigate the effects of a fermented feed additive -rye overgrown with mycelium (ROM) of A. subrufescens-on pig intestinal microbiota, mucosal gene expression and local and systemic immunity during early life. Piglets received ROM or a tap water placebo (Ctrl) perorally every other day from day 2 after birth until 2 weeks post-weaning. Eight animals per treatment were euthanized and dissected on days 27, 44 and 70. RESULTS The results showed ROM piglets had a lower inter-individual variation of faecal microbiota composition before weaning and a lower relative abundance of proteobacterial genera in jejunum (Undibacterium and Solobacterium) and caecum (Intestinibacter and Succinivibrionaceae_UCG_001) on day 70, as compared to Ctrl piglets. ROM supplementation also influenced gut mucosal gene expression in both ileum and caecum on day 44. In ileum, ROM pigs showed increased expression of TJP1/ZO1 but decreased expression of CLDN3, CLDN5 and MUC2 than Ctrl pigs. Genes involved in TLR signalling (e.g., TICAM2, IRAK4 and LY96) were more expressed but MYD88 and TOLLIP were less expressed in ROM pigs than Ctrl animals. NOS2 and HIF1A involved in redox signalling were either decreased or increased in ROM pigs, respectively. In caecum, differentially expressed genes between two groups were mainly shown as increased expression (e.g., MUC2, PDGFRB, TOLLIP, TNFAIP3 and MYD88) in ROM pigs. Moreover, ROM animals showed higher NK cell activation in blood and enhanced IL-10 production in ex vivo stimulated MLN cells before weaning. CONCLUSIONS Collectively, these results suggest that ROM supplementation in early life modulates gut microbiota and (local) immune system development. Consequently, ROM supplementation may contribute to improving health of pigs during the weaning transition period and reducing antibiotics use.
Collapse
Affiliation(s)
- Caifang Wen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Mirelle Geervliet
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lluís Fabà
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
| | - Petra J Roubos-van den Hil
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
- DSM Food and Beverages - Fresh Dairy, Wageningen, The Netherlands
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Fiocchi A, Cabana MD, Mennini M. Current Use of Probiotics and Prebiotics in Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2219-2242. [PMID: 35792336 DOI: 10.1016/j.jaip.2022.06.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
The microbiome plays an important role in the pathogenesis of allergic diseases. This review updates the reader on studies aimed at influencing allergic diseases through modulation of the gut microflora. A nonsystematic review of the literature was performed, focusing on relevant trials evaluating the effect of probiotics/prebiotics/symbiotics in the prevention and treatment of allergic disease. For each allergic disease, we were able to find not only a substantial number of clinical trials but also systematic reviews. Specific guidelines, based on systematic reviews and meta-analyses, are available for the prevention of allergic disease and for the treatment of food allergy. In each of the areas examined-allergic rhinitis, allergic asthma, atopic dermatitis, food allergy, and gastrointestinal allergies-there are substantial uncertainties in the efficacy of gut microflora modulation in prevention and treatment. At present, practicing clinicians can avail themselves of intestinal flora modulators as an adjunct in the prevention of atopic dermatitis but not of other forms of allergic diseases. Their effects on the treatment of allergic diseases remain controversial.
Collapse
Affiliation(s)
- Alessandro Fiocchi
- Translational Research in Pediatric Specialities Area, Allergy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Michael D Cabana
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY
| | - Maurizio Mennini
- Translational Research in Pediatric Specialities Area, Allergy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Morales-Ferré C, Franch À, Castell M, Olivares M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Staphylococcus epidermidis' Overload During Suckling Impacts the Immune Development in Rats. Front Nutr 2022; 9:916690. [PMID: 35859758 PMCID: PMC9289531 DOI: 10.3389/fnut.2022.916690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Mastitis is an inflammation of the mammary gland occurring in 3-33% of the breastfeeding mothers. The majority of mastitis cases have an infectious etiology. More than 75% of infectious mastitis are caused by Staphylococcus epidermidis and Staphylococcus aureus and involves breast milk microbiota alteration, which, may have an impact in lactating infant. The aim of this study was to analyze in rats during the suckling period and later in life the impact of a high and a low overload of Staphylococcus epidermidis, similarly as it occurs during the clinical and the subclinical mastitis, respectively. From days 2 to 21 of life, suckling rats were daily supplemented with low (Ls group) or high (Hs group) dose of S. epidermidis. Body weight and fecal humidity were periodically recorded. On days 21 and 42 of life, morphometry, hematological variables, intestinal gene expression, immunoglobulin (Ig) and cytokine profile and spleen cells' phenotype were measured. Although no differences were found in body weight, Ls and Hs groups showed higher body length and lower fecal humidity. Both doses induced small changes in lymphocytes subpopulations, reduced the plasma levels of Ig and delayed the Th1/Th2 balance causing a bias toward the Th2 response. No changes were found in cytokine concentration. The low dose affected the Tc cells intestinal homing pattern whereas the high dose had an impact on the hematological variables causing leukocytosis and lymphocytosis and also influenced the intestinal barrier maturation. In conclusion, both interventions with Staphylococcus epidermidis overload during suckling, affects the immune system development in short and long term.
Collapse
Affiliation(s)
- Carla Morales-Ferré
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | | | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
9
|
Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The Role of Nutritional Factors in the Modulation of the Composition of the Gut Microbiota in People with Autoimmune Diabetes. Nutrients 2022; 14:2498. [PMID: 35745227 PMCID: PMC9227140 DOI: 10.3390/nu14122498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a disease marked by oxidative stress, chronic inflammation, and the presence of autoantibodies. The gut microbiota has been shown to be involved in the alleviation of oxidative stress and inflammation as well as strengthening immunity, thus its' possible involvement in the pathogenesis of T1DM has been highlighted. The goal of the present study is to analyze information on the relationship between the structure of the intestinal microbiome and the occurrence of T1DM. The modification of the intestinal microbiota can increase the proportion of SCFA-producing bacteria, which could in turn be effective in the prevention and/or treatment of T1DM. The increased daily intake of soluble and non-soluble fibers, as well as the inclusion of pro-biotics, prebiotics, herbs, spices, and teas that are sources of phytobiotics, in the diet, could be important in improving the composition and activity of the microbiota and thus in the prevention of metabolic disorders. Understanding how the microbiota interacts with immune cells to create immune tolerance could enable the development of new therapeutic strategies for T1DM and improve the quality of life of people with T1DM.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Karolina Jachimowicz
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
10
|
Massot-Cladera M, Rigo-Adrover MDM, Herrero L, Franch À, Castell M, Vulevic J, Pérez-Cano FJ, Lagunas MJR. A Galactooligosaccharide Product Decreases the Rotavirus Infection in Suckling Rats. Cells 2022; 11:1669. [PMID: 35626706 PMCID: PMC9139879 DOI: 10.3390/cells11101669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of gastroenteritis among young children worldwide is the Group A rotaviruses (RV), which produce a wide range of symptoms, from a limited diarrhea to severe dehydration and even death. After an RV infection, immunity is not complete and less severe re-infections usually occur. These infections could be ameliorated by nutritional interventions with bioactive compounds, such as prebiotics. The aim of this research was to study the impact of a particular galactooligosaccharide (B-GOS) on the RV symptomatology and immune response during two consecutive infections. Lewis neonatal rats were inoculated with SA11 (first RV infection) on day 6 of life and with EDIM (second RV infection) on day 17 of life. B-GOS group was administered by oral gavage with a daily dose of B-GOS between days three to nine of life. Clinical and immunological variables were assessed during both infective processes. In the first infection, after the prebiotic intervention with B-GOS, a lower incidence, duration, and overall severity of the diarrhea (p < 0.05) was observed. In addition, it improved another severity indicator, the fecal weight output, during the diarrhea period (p < 0.05). The second RV infection failed in provoking diarrhea in the groups studied. The immune response during first infection with SA11 was not affected by B-GOS administration and had no impact on second infection, but the prebiotic intervention significantly increased IFN-γ and TNF-α intestinal production after the second infection (p < 0.05). In summary, B-GOS supplementation is able to reduce the incidence and severity of the RV-associated diarrhea and to influence the immune response against RV infections.
Collapse
Affiliation(s)
- Malén Massot-Cladera
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - María del Mar Rigo-Adrover
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Laura Herrero
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Àngels Franch
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Margarida Castell
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - María J. Rodríguez Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
11
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Kienesberger B, Obermüller B, Singer G, Arneitz C, Gasparella P, Klymiuk I, Horvath A, Stadlbauer V, Magnes C, Zügner E, López-García P, Trajanoski S, Miekisch W, Fuchs P, Till H, Castellani C. Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC ® AAD10) and Effects of Its Postbiotic Culture Supernatant. Nutrients 2022; 14:1194. [PMID: 35334850 PMCID: PMC8952306 DOI: 10.3390/nu14061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. METHODS Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. RESULTS A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. CONCLUSIONS The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo.
Collapse
Affiliation(s)
- Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Arneitz
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Paolo Gasparella
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Ingeborg Klymiuk
- Department of Cell Biology, Histology and Embryology, Medical University of Graz, 8034 Graz, Austria;
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Christoph Magnes
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | - Elmar Zügner
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, 8034 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| |
Collapse
|
13
|
Morales-Ferré C, Azagra-Boronat I, Massot-Cladera M, Tims S, Knipping K, Garssen J, Knol J, Franch À, Castell M, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Preventive Effect of a Postbiotic and Prebiotic Mixture in a Rat Model of Early Life Rotavirus Induced-Diarrhea. Nutrients 2022; 14:nu14061163. [PMID: 35334820 PMCID: PMC8954028 DOI: 10.3390/nu14061163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Rotavirus (RV) is the main cause of gastroenteritis in children. Prebiotics and, more recently, postbiotics are used for preventing and treating gastrointestinal infections. The aim of this study was to analyze the effects of a LactofidusTM, short-chain galacto-oligosaccharides (scGOS) and long-chain fructo-oligosaccharides (lcFOS) mixture, and their combination on RV infection, in a rat model, for early life diarrhea. Fifteen litters of suckling rats were intragastrically administered daily with the vehicle, the prebiotic mixture, the postbiotic or the combination. The RV was inoculated on day 5 and then fecal samples were clinically evaluated daily. Viral shedding, intestinal permeability assay, in vitro blocking assay, immunoglobulin profiles, and anti-RV response were assessed at day 8 and 16 of life. Cecal microbiota composition, intestinal gene expression, and short chain fatty acids (SCFAs) were analyzed at day 16. The incidence and severity of diarrhea were significantly reduced by all the supplementations. Moreover, they showed blocking activity, changes in the immunoglobulin profiles, in gut microbiota, and in the intestinal gene expression. The prebiotic mixture reduced gut permeability and changed the SCFA profile, whereas the postbiotic enhanced the expression of Toll-like receptors (TLRs). The combination preserved most of the individual observed effects, and furthermore, complementary effects, such as an increase in white blood cells and lymphocytes recruitment, as well as upregulation of TLR7 and TLR9 gene expression.
Collapse
Affiliation(s)
- Carla Morales-Ferré
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
| | - Karen Knipping
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Laboratory of Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence: ; Tel.: +34-934-024-505
| | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|