1
|
Hoornenborg CW, Somogyi E, Bruggink JE, Boyle CN, Lutz TA, Emous M, van Beek AP, Nyakas C, van Dijk G. Weight loss in adult male Wistar rats by Roux-en-Y gastric bypass is primarily explained by caloric intake reduction and presurgery body weight. Am J Physiol Regul Integr Comp Physiol 2024; 326:R507-R514. [PMID: 38586888 PMCID: PMC11381017 DOI: 10.1152/ajpregu.00169.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
Diets varying in macronutrient composition, energy density, and/or palatability may cause differences in outcome of bariatric surgery. In the present study, rats feeding a healthy low-fat (LF) diet or an obesogenic high-fat/sucrose diet (HF/S) were either subjected to Roux-en-Y gastric bypass surgery (RYGB) or sham surgery, and weight loss trajectories and various energy balance parameters were assessed. Before RYGB, rats eating an HF/S (n = 14) diet increased body weight relative to rats eating an LF diet (n = 20; P < 0.01). After RYGB, absolute weight loss was larger in HF/S (n = 6) relative to LF feeding (n = 6) rats, and this was associated with reduced cumulative energy intake (EI; P < 0.05) and increased locomotor activity (LA; P < 0.05-0.001), finally leading to similar levels of reduced body fat content in HF/S and LF rats 3 wk after surgery. Regression analysis revealed that variation in RYGB-induced body weight loss was best explained by models including 1) postoperative cumulative EI and preoperative body weight (R2 = 0.87) and 2) postoperative cumulative EI and diet (R2 = 0.79), each without significant contribution of LA. Particularly rats on the LF diet became transiently more hypothermic and circadianally arrhythmic following RYGB (i.e., indicators of surgery-associated malaise) than HF/S feeding rats. Our data suggest that relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery, yet it promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.NEW & NOTEWORTHY Relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery in rats. Relative to feeding an LF diet, continued feeding an HF/S diet promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.
Collapse
Affiliation(s)
- C Warner Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, Groningen, The Netherlands
| | - Edit Somogyi
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- School of PhD Studies, University of Physical Education, Budapest, Hungary
| | - Jan E Bruggink
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Marloes Emous
- Department of Bariatric and Metabolic Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, Groningen, The Netherlands
| | - Csaba Nyakas
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- School of PhD Studies, University of Physical Education, Budapest, Hungary
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Cawthon CR, Spector AC. The Nature of Available Choices Affects the Intake and Meal Patterns of Rats Offered a Palatable Cafeteria-Style Diet. Nutrients 2023; 15:5093. [PMID: 38140351 PMCID: PMC10745827 DOI: 10.3390/nu15245093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Humans choose which foods they will eat from multiple options. The use of cafeteria-style diets with rodent models has increased our understanding of how a multichoice food environment affects eating and health. However, the wide variances in energy density, texture, and the content of micronutrients, fiber, and protein can be interpretatively problematic when human foodstuffs are used to create rodent cafeteria diets. We minimized these differences with a custom rodent cafeteria diet (ROD) that varied similarly to a previously used human-foods cafeteria diet (HUM) in fat and sugar content. Here, we used our custom Five-Item Food Choice Monitor to compare the intake and meal patterns of rats offered ROD and HUM in a crossover design. Compared with chow, rats consumed more calories, sugar, and fat and less protein and carbohydrate while on either of the choice diets (p < 0.05). While energy intake was similar between HUM and ROD, there were differences in the responses. Rats consumed more of the low-fat, low-sugar choice on the ROD compared with the nutritionally similar choice on the HUM leading to differences in fat and carbohydrate intake between the diets (p < 0.05). The stability of macronutrient intake while on either choice diet suggests macronutrient intake is determined by the available foods and is strongly regulated. Therefore, interpretative consideration must be given to the nature of food choices in the context of available options when interpreting cafeteria-diet intake.
Collapse
Affiliation(s)
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32304, USA;
| |
Collapse
|
3
|
Gero D, Bueter M. Post-bariatric changes in ingestive behavior: Shift in macronutrient preferences in rats and dynamic adaptation of the within-meal microstructure in humans. Physiol Behav 2023; 263:114113. [PMID: 36764423 DOI: 10.1016/j.physbeh.2023.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This invited review is based on a presentation given at the Annual Meeting of the Society for the Study of Ingestive Behavior in July 2022 and provides the summary of two recent studies on changes in ingestive behavior following bariatric surgery (BS). First, long-term changes in daily absolute and relative macronutrient intake are reported in a rodent model of Roux-en-Y gastric bypass (RYGB). Rats undergoing RYGB progressively decreased their daily calorie- and daily fat intake compared to their preoperative baseline and to the intake of sham operated animals. Second, postbariatric changes in the within-meal ingestive microstructure are portrayed, based on longitudinal data collected in RYGB patients using a drinkometer. The post-RYGB meal size showed a dynamic adjustment process, with the highest decrease in the early postoperative phase, followed by a steady convalescence up to 1-year, at which point the meal size of RYGB patients became comparable to the normal weight adults'. Results are contextualized and contrasted to recent reports on the effect of BS on taste and food choices and consumption. The showcased evidence supports the role of ingestive adaptation and learning in the achievement of reduced calorie intake after RYGB, both in humans and in rodents. The reorganized upper-gastrointestinal anatomy supposedly leads to increased postingestive caloric sensibility, which might be an important behavioral mediator of decreased postbariatric meal size and consequent weight loss.
Collapse
Affiliation(s)
- Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Surgery, Männedorf Hospital, Männedorf, Switzerland.
| |
Collapse
|
4
|
Albaugh VL, Axelrod C, Belmont KP, Kirwan JP. Physiology Reconfigured: How Does Bariatric Surgery Lead to Diabetes Remission? Endocrinol Metab Clin North Am 2023; 52:49-64. [PMID: 36754497 DOI: 10.1016/j.ecl.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bariatric surgery improves glucose homeostasis and glycemic control in patients with type 2 diabetes. Over the past 20 years, a breadth of studies has been conducted in humans and rodents aimed to identify the regulatory nodes responsible for surgical remission of type 2 diabetes. The review herein discusses central mechanisms of type 2 diabetes remission associated with weight loss and surgical modification of the gastrointestinal tract.
Collapse
Affiliation(s)
- Vance L Albaugh
- Metamor Institute, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA; Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Christopher Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Kathryn P Belmont
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
5
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Blonde GD, Fletcher FH, Tang T, Newsome R, Spector AC. A new apparatus to analyze meal-related ingestive behaviors in rats fed a complex multi-food diet. Physiol Behav 2022; 252:113824. [PMID: 35472328 PMCID: PMC10544710 DOI: 10.1016/j.physbeh.2022.113824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
The measurement of the size and timing of meals provides critical insight into the processes underlying food intake. While most work has been conducted with a single food or fluid, the availability of food choices can also influence eating and interact with these processes. The 5-Item Food Choice Monitor (FCM), a device that continuously measures eating and drinking behaviors of rats provided up to 5 foods and 2 fluids simultaneously, was designed to allow study of food choices simultaneously with meal patterns. To validate this device, adult male and female (n = 8 each) Sprague-Dawley rats were housed in the FCM. Food and fluid intake were measured continuously (22-h/day) while rats were presented water and powdered chow. Then a cafeteria diet of 5 foods varying in macronutrient content, texture, and flavors were offered along with water. Lastly, the 5 foods were offered along with 0.3 M sucrose and water. Analyses were conducted to find optimal criteria for parceling ingestive behavior into meals, and then meal patterns were quantified. Total intake, as assessed by FCM software, was in good concordance with that measured by an independent scale. A minimum meal size of 1 kcal and a meal termination criterion of 15-min accounted for >90% of total intake and produced meal dynamics that were in register with the literature. Use of the cafeteria diet allowed comparisons between meal patterns with a single food versus a multi-food diet, as well as analyses of macronutrient-related food choices across subsets of meals. The FCM proved to accurately measure food intake over a 22-h period and was able to detect differences and similarities in the meal patterns of rats as a function of sex and food choice availability. Combined with any number of experimental manipulations, the FCM holds great promise in the investigation of the physiological and neural controls of ingestive behavior in a dietary environment that allows food choices, more closely emulating human eating conditions.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Fred H Fletcher
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Ryan Newsome
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA.
| |
Collapse
|
7
|
Ismaeil A, Gero D, Boyle CN, Alceste D, Taha O, Spector AC, Lutz TA, Bueter M. Early Postoperative Exposure to High-Fat Diet Does Not Increase Long-Term Weight Loss or Fat Avoidance After Roux-en-Y Gastric Bypass in Rats. Front Nutr 2022; 9:834854. [PMID: 35495960 PMCID: PMC9044042 DOI: 10.3389/fnut.2022.834854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Bariatric surgery alters food preferences in rats and reportedly decreases desire to consume high-fat high-sugar food in humans. The aim of this study was to investigate whether early post-operative exposure to high-fat food could increase body weight loss after Roux-en-Y gastric bypass (RYGB) by triggering fat avoidance. Methods Male Wistar rats underwent either RYGB (n = 15) or sham-operations (n = 16). Preoperatively a standardized 4-choice cafeteria diet [dietary options: low-fat/low-sugar (LFLS), low-fat/high-sugar (LFHS), high-fat/low-sugar (HFLS), high-fat/high-sugar (HFHS)] was offered. First, each option was available for 4 days, thereafter rats were offered the 4 options simultaneously for 3 days preoperatively. Post-surgery, 8 rats in the RYGB- and 8 in the sham-group were exposed to a high-fat content diet (Oatmeal + 30% lard, OM+L) for 10 days, while 7 RYGB rats and 8 sham-rats received OM alone. From the 11th postoperative day, the 4-choice cafeteria diet was reintroduced for 55-days. The intake of all available food items, macronutrients and body weight changes were monitored over 8 weeks. Main outcomes were long-term body-weight and daily change in relative caloric intake during the postoperative cafeteria period compared to the preoperative cafeteria. Results During the first 12 days of postoperative cafeteria access, RYGB-rats exposed to OM+L had a higher mean caloric intake per day than RYGB rats exposed to OM alone (Δ10 kCal, Padj = 0.004), but this difference between the RYGB groups disappeared thereafter. Consequently, in the last 33 days of the postoperative cafeteria diet, the mean body weight of the RYGB+OM+L group was higher compared to RYGB+OM (Δ51 g, Padj < 0.001). RYGB rats, independently from the nutritional intervention, presented a progressive decrease in daily consumption of calories from fat and increased their daily energy intake mainly from non-sugar carbohydrates. No such differences were detected in sham-operated controls exposed to low- or high fat postoperative interventions. Conclusion A progressive decrease in daily fat intake over time was observed after RYGB, independently from the nutritional intervention. This finding confirms that macronutrient preferences undergo progressive changes over time after RYGB and supports the role of ingestive adaptation and learning. Early postoperative exposure to high-fat food failed to accentuate fat avoidance and did not lead to superior weight loss in the long-term.
Collapse
Affiliation(s)
- Aiman Ismaeil
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Department of General Surgery, Aswan University Hospital, Aswan, Egypt
| | - Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Daniela Alceste
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Osama Taha
- Department of Plastic Surgery, Assiut University Hospital, Asyut, Egypt
| | - Alan C. Spector
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Marco Bueter,
| |
Collapse
|
8
|
Blonde GD, Mathes CM, Inui T, Hamel EA, Price RK, Livingstone MBE, Le Roux CW, Spector AC. Oromotor and somatic taste reactivity during sucrose meals reveals internal state and stimulus palatability after gastric bypass in rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R204-R218. [PMID: 35043683 PMCID: PMC8858674 DOI: 10.1152/ajpregu.00285.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
After Roux-en-Y gastric bypass (RYGB), rats consume less high-energy foods and fluids, though whether this reflects a concomitant change in palatability remains unclear. By measuring behavior during intraorally delivered liquid meals across days (1 water, 8 sucrose sessions), we showed that RYGB rats (RYGB, n = 8/sex) consumed less 1.0 M sucrose than their sham surgery counterparts (SHAM, n = 8 males, n = 11 females) but displayed similarly high levels of ingestive taste reactivity responses at the start of infusions. Relative to water, both groups increased intake of sucrose, and ingestive responses were dominated by tongue protrusions rather than mouth movements. Thus, RYGB animals still found sucrose palatable despite consuming less than the SHAM group. As the intraoral infusion progressed but before meal termination, aversive behavior remained low and both RYGB and SHAM animals showed fewer ingestive responses, predominantly mouth movements as opposed to tongue protrusions. This shift in responsiveness unrelated to surgical manipulation suggests negative alliesthesia, or a decreased palatability, as rats approach satiation. Notably, only in RYGB rats, across sessions, there was a striking emergence of aversive behavior immediately after the sucrose meal. Thus, although lower intake in RYGB rats seems independent of the hedonic taste properties of sucrose, taste reactivity behavior in these animals immediately after termination of a liquid meal appears to be influenced by postoral events and reflects a state of nimiety or excessive consumption. Measurement of taste reactivity behaviors during an intraorally delivered meal represents a promising way to make inferences about internal state in nonverbal preclinical models.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Clare M Mathes
- Department of Neuroscience, Baldwin Wallace University, Berea, Ohio
| | - Tadashi Inui
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Elizabeth A Hamel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Ruth K Price
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - M Barbara E Livingstone
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Carel W Le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|