1
|
Saddiqa A, Faisal Z, Akram N, Afzaal M, Saeed F, Ahmed A, Almudaihim A, Touqeer M, Ahmed F, Asghar A, Saeed M, Hailu GG. Algal pigments: Therapeutic potential and food applications. Food Sci Nutr 2024; 12:6956-6969. [PMID: 39479711 PMCID: PMC11521690 DOI: 10.1002/fsn3.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Algae-derived natural compounds have shown significant potential in treating various health conditions, including cancer, obesity, diabetes, and inflammation. Recent advancements in nanotechnology have enabled the development of precise drug delivery systems and diagnostic tools utilizing these compounds. Central to this innovation are the vibrant pigments found in algae chlorophylls, carotenoids, and phycobiliproteins which not only impart color but also possess notable nutritional, medicinal, and antioxidant properties. These pigments are extensively used in supplements and the food industry for their health benefits. Emerging research highlights the role of algal pigments in promoting gut health by modulating gut microbiota. This review comprehensively examines the therapeutic benefits of algae, recent progress in algal-derived nanoparticle technology, and the synergistic effects of algae and their pigments on gut health. Novel insights and recent data underscore the transformative potential of algal compounds in modern medicine and nutrition.
Collapse
Affiliation(s)
- Ayesha Saddiqa
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human Nutrition and DieteticsIqra UniversityKarachiPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Abeer Almudaihim
- Department of Clinical NutritionKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Muhammad Touqeer
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mubarra Saeed
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
2
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
3
|
Pan Y, Liu C, Jiang S, Guan L, Liu X, Wen L. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. ULTRASONICS SONOCHEMISTRY 2024; 108:106961. [PMID: 38936294 PMCID: PMC11260389 DOI: 10.1016/j.ultsonch.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.
Collapse
Affiliation(s)
- Ying Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Chunjuan Liu
- Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Shuo Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
4
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Bahnamiri PJ, Hajizadeh Moghaddam A, Ranjbar M, Nazifi E. Effects of Nostoc commune extract on the cerebral oxidative and neuroinflammatory status in a mice model of schizophrenia. Biochem Biophys Rep 2024; 37:101594. [PMID: 38371525 PMCID: PMC10873873 DOI: 10.1016/j.bbrep.2023.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 02/20/2024] Open
Abstract
Cyanobacterium Nostoc commune has long been used to alleviate various diseases. This research examines the effects of Nostoc commune extract (NCE) against behavioral disorders, cerebral oxidative stress, and inflammatory damage in the ketamine-induced schizophrenia model. Oral NCE administration (70 and 150 mg/kg/d) is performed after intraperitoneal ketamine injection (20 mg/kg) for 14 consecutive days. The forced swimming and open field tests are used to assess schizophrenia-like behaviors. After the behavioral test, dopamine (DA) level, oxidative stress markers, as well as the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression are measured in the cerebral cortex. The results show that NCE treatment ameliorates KET-induced anxiety and depressive-like behaviors in OFT and FST, respectively. NCE considerably decreases the malondialdehyde (MDA) and DA levels and IL-6 and TNF-α expressions in mice with schizophrenia-like symptoms. Also, a significant increase is observed in the glutathione (GSH) level and catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GRx) activity in cerebral tissue. The present study shows that NCE treatment effectively improves KET-induced schizophrenia-like behaviors and oxidative and inflammatory damage. Therefore, NCE, via its bioactive constituents, could have strong neuroprotective effects in the schizophrenia-like model.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Ehsan Nazifi
- Department of Plant Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Lee SG, Kang H. In vitro Adipocyte Differentiation Inhibition and in vivo Effects on Lipid Metabolism in High-Fat Diet-Induced Obesity of Euphorbia humifusa. J Microbiol Biotechnol 2024; 34:387-398. [PMID: 37986586 PMCID: PMC10940745 DOI: 10.4014/jmb.2308.08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Euphorbia humifusa Willd (Euphorbiaceae) is a functional raw material with various pharmacological activities. This study aimed to validate the inhibitory effect of Euphorbia humifusa extract (EHE) on adipocyte differentiation in vitro and in a high-fat-diet (HFD)-induced mouse model to evaluate the E.a humifusa as a novel anti-obesity and lipid metabolism enhancer agent. EHE effects on obesity and lipid metabolism were assessed in HFD-induced obese mice after 4-week treatments. Results were compared among four treatment groups (n = 7/group): low fat diet (LFD), high fat diet (HFD), and HFD-induced obese mice treated with either 100 or 200 mg/kg/day EHE (EHE100 and EHE200, respectively). EHE (50 to 200 μg/ml) and quercetin (50 μg/ml) significantly reduced 3T3-L1 preadipocyte differentiation (p < 0.001), in a concentration-dependent manner. EHE affected lipid metabolism, as evidenced by changes in serum lipid components. The HFD-EHE100 and HFD-EHE200 groups exhibited significantly (p < 0.05) reduced triglycerides (TG, 97.50 ± 6.56 and 82.50 ± 13.20 mg/dL, respectively) and low-density lipoprotein-cholesterol (LDL-c: 40.25 ± 4.99 and 41.25 ± 6.36 mg/dL, respectively) compared to the HFD group (TG: 129.25 ± 19.81 mg/dL; LDL-c: 51.75 ± 11.59 mg/dL). Haematoxylin and Eosin (H&E) and Oil red O staining showed that EHE markedly reduced lipid accumulation and inhibited lipogenesis in the liver. Interestingly, EHE significantly (p < 0.01) reduced the expression of adipogenic transcription factors in liver tissue. Our results indicated that EHE has the potential to be a therapeutic agent for addressing obesity and lipid metabolism.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
7
|
Chen YT, Huang YW, Shen TY, Wu CC, Wang JJ, Hsieh SL. Evaluation of antioxidant and anti-obesity potential of Sargassum extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1723-1730. [PMID: 37187983 PMCID: PMC10170008 DOI: 10.1007/s13197-023-05707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Sargassum are brown algae belonging to the class Phaeophyceae. Brown algae are rich in nutrients and widely used in food. Most previous experiments have focused on the functional evaluation of organic solvent extracts of Sargassum. Considering food safety, this study investigated the antioxidant and antiobesity activities of Sargassum hemiphyllum water extract (SE). The antioxidant activity of SE (500-4000 mg/mL) was determined in vitro. The results indicated that SE has good DPPH radical scavenging activity (14-74%), reducing power (20-78%), ABTS+ radical scavenging activity (8-91%), and Fe2+ chelating ability (5-25%). Furthermore, the antiobesity activity of SE (50-300 mg/mL) was analysed in a 3T3-L1 adipocyte model. SE effectively inhibited lipid accumulation (determined by methods including measuring the absorbance of Oil red O after staining and the triglyceride content, which were decreased by 10% and 20%, respectively) by reducing peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in 3T3-L1 adipocytes. This study suggested that SE has good antioxidant and antiobesity properties. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05707-1.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Tsai-Ying Shen
- Division of Nutrition, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, 43301 Taiwan
| | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| |
Collapse
|
8
|
Lu YY, Li SQ, Lai QZ, Wang LY, Zhou WM, Hua CL, Ning DD, Zhang CC, Li MY, Jiang FS. Chemical constituents, antioxidant and hepatoprotective properties of ethanol extract from Artemisia japonica Thumb. Leaves. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|