1
|
Liu X, Liu H, Wu X, Zhao Z, Wang S, Wang H, Qin X. Xiaoyaosan against depression through suppressing LPS mediated TLR4/NLRP3 signaling pathway in "microbiota-gut-brain" axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118683. [PMID: 39121928 DOI: 10.1016/j.jep.2024.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression impairs not only central nervous system, but also peripheral systems of the host. Gut microbiota have been proved to be involved in the pathogenesis of depression. Xiaoyaosan (XYS) has a history of over a thousand years in China for treating depression, dramatically alleviating anxiety, cognitive disorders, and especially gastrointestinal dysfunctions. Yet, it still just scratches the surface of the anti-depression mechanisms of XYS. AIM OF THE STUDY This study aims to elucidate the mechanism of actions of XYS from the perspective of "microbiota-gut-brain" axis. MATERIALS AND METHODS We firstly evaluated the effects of XYS on the macroscopic behaviors of depressed rats that induced by chronic unpredictable mild stress (CUMS). Secondly, the effects of XYS on intestinal homeostasis of depressed rats were revealed by using dysbacteriosis model. Subsequently, the underlying mechanisms were demonstrated by 16S rRNA gene sequencing technology and molecular biology methods. Finally, correlation analysis and visualization of the anti-depression effects of XYS were performed from the "microbiota - gut - brain" perspective. RESULTS Our data indicated that XYS ameliorated the depression-like symptoms of CUMS rats, partly depending on the presence of gut microbiota. Furthermore, we illustrated that XYS reversed CUMS-induced gut dysbiosis of depressed rats in terms of decreasing the Bacteroidetes/Firmicutes ratio and the abundances of Bacteroides, and Corynebacterium, while increasing the abundances of Lactobacillus and Adlercreutzia. The significant enrichment of Bacteroides and the level of lipopolysaccharides (LPS) suggested that depression damaged the immune responses and gut barrier. Mechanistically, XYS significantly down-regulated the expression levels of factors that involved in TLR4/NLRP3 signaling pathway in the colon and brain tissues of depressed rats. In addition, XYS significantly increased the levels of claudin 1 and ZO-1, showing that XYS positively maintained the integrity of gut and blood-brain barriers (BBB). CONCLUSION Our study offers insights into the anti-depression effects of XYS through a lens of "microbiota-TLR4/NLRP3 signaling pathway-barriers", providing a foundation for enhancing clinical efficiency and enriching drug selection, and contributing to our understanding of the mechanisms of traditional Chinese medicines (TCMs) in treating depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
| | - Huimin Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Huimin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| |
Collapse
|
2
|
Mafikandi V, Seyedaghamiri F, Hosseinzadeh N, Shahabi P, Shafiee-Kandjani AR, Babaie S, Maghsoumi-Norouzabad L, Farajdokht F, Hosseini L. Nasal administration of mitochondria relieves depressive- and anxiety-like behaviors in male mice exposed to restraint stress through the suppression ROS/NLRP3/caspase-1/IL-1β signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03487-9. [PMID: 39333279 DOI: 10.1007/s00210-024-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Neuroinflammation and oxidative stress are known to be implicated in the pathogenesis of depression. Exogenous mitochondrial transplantation has exhibited beneficial effects for treating neurological disorders. Hence, this research aimed to evaluate the impact of nasal administration of mitochondria on neuroinflammation and oxidative stress in mouse models displaying depressive- and anxiety-like behaviors caused by restraint stress (RS). Thirty male BALB/c mice were divided into control, RS, and RS + 340 µg of mitochondrial. Mice were subjected to RS using an immobilization falcon tube (2 h/day) for 2 weeks except for the control group. We conducted two behavioral tests to evaluate anxiety-like behaviors: elevated plus maze (EPM) and open field test (OFT). Tail suspension test (TST) was implemented to assess depressive-like behavior. ATP and reactive oxygen species (ROS) levels were measured in the hippocampus. Besides, serum corticosterone (CORT) levels were evaluated using the ELISA method. The expression of NLRP3 inflammasome, caspase-1 (Cas-1), and IL-1β was tested by western blot. We found that mitotherapy increased the time spent in the center of OFT and open arms of the EPM, while it diminished immobility time in TST. Mitochondrial administration considerably attenuated ROS generation and CORT levels and restored ATP levels. Additionally, mitotherapy prevented RS-induced upregulation of IL-1β, cleaved Cas1/Pro Cas1 ratio, and NLRP3/1 in the hippocampus of mice. These findings suggested that the beneficial effects of intranasal mitochondria on depression and anxiety may be attributed to suppression of the ROS/NLRP3/IL-1β/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Vida Mafikandi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Hosseinzadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Bi Y, Huang N, Xu D, Wu S, Meng Q, Chen H, Li X, Chen R. Manganese exposure leads to depressive-like behavior through disruption of the Gln-Glu-GABA metabolic cycle. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135808. [PMID: 39288524 DOI: 10.1016/j.jhazmat.2024.135808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
There is a correlation between long-term manganese (Mn) exposure and the Parkinson's-like disease (PD), with depression as an early symptom of PD. However, the direct relationship between Mn exposure and depression, and the mechanisms involved, remain unclear. We found that Mn exposure led to depressive-like behavior and mild cognitive impairment in mice, with Mn primarily accumulating in the cornu ammonis 3 (CA3) area of the hippocampus. Mice displayed a reduction in neuronal dendritic spines and damage to astrocytes specifically in the CA3 area. Spatial metabolomics revealed that Mn downregulated glutamic acid decarboxylase 1 (GAD1) expression in astrocytes, disrupting the Glutamine-Glutamate-γ-aminobutyric acid (GlnGluGABA) metabolic cycle in the hippocampus, leading to neurotoxicity. We established an in vitro astrocyte Gad1 overexpression (OEX) model and found that the cultured medium from Gad1 OEX astrocytes reversed neuronal synaptic damage and the expression of gamma-aminobutyric acid (GABA) related receptors. Using the astrocyte Gad1 OEX mouse model, results showed that OEX of Gad1 ameliorated depressive-like behavior and cognitive dysfunction in mice. These findings provide new insight into the important role of GAD1 mediated GlnGluGABA metabolism disorder in Mn exposure induced depressive-like behavior. This study offers a novel sight to understanding abnormal emotional states following central nervous system damage induced by Mn exposure.
Collapse
Affiliation(s)
- Yujie Bi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nannan Huang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Duo Xu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| |
Collapse
|
4
|
Banerjee A, Chatterji U. Prevalence of perturbed gut microbiota in pathophysiology of arsenic-induced anxiety- and depression-like behaviour in mice. CHEMOSPHERE 2024; 364:143293. [PMID: 39245217 DOI: 10.1016/j.chemosphere.2024.143293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Severe toxic effects of arsenic on human physiology have been of immense concern worldwide. Arsenic causes irrevocable structural and functional disruption of tissues, leading to major diseases in chronically exposed individuals. However, it is yet to be resolved whether the effects result from direct deposition and persistence of arsenic in tissues, or via activation of indirect signaling components. Emerging evidences suggest that gut inhabitants play an active role in orchestrating various aspects of brain physiology, as the gut-brain axis maintains cognitive health, emotions, learning and memory skills. Arsenic-induced dysbiosis may consequentially evoke neurotoxicity, eventually leading to anxiety and depression. To delineate the mechanism of action, mice were exposed to different concentrations of arsenic. Enrichment of Gram-negative bacteria and compromised barrier integrity of the gut enhanced lipopolysaccharide (LPS) level in the bloodstream, which in turn elicited systemic inflammation. Subsequent alterations in neurotransmitter levels, microglial activation and histoarchitectural disruption in brain triggered onset of anxiety- and depression-like behaviour in a dose-dependent manner. Finally, to confirm whether the neurotoxic effects are specifically a consequence of modulation of gut microbiota (GM) by arsenic and not arsenic accumulation in the brain, fecal microbiota transplantations (FMT) were performed from arsenic-exposed mice to healthy recipients. 16S rRNA gene sequencing indicated major alterations in GM population in FMT mice, leading to severe structural, functional and behavioural alterations. Moreover, suppression of Toll-like receptor 4 (TLR4) using vivo-morpholino oligomers (VMO) indicated restoration of the altered parameters towards normalcy in FMT mice, confirming direct involvement of the GM in inducing neurotoxicity through the arsenic-gut-brain axis. This study accentuates the potential role of the gut microbiota in promoting neurotoxicity in arsenic-exposed mice, and has immense relevance in predicting neurotoxicity under altered conditions of the gut for designing therapeutic interventions that will target gut dysbiosis to attenuate arsenic-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ananya Banerjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India; Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, India.
| |
Collapse
|
5
|
Shi R, Tian X, Ji A, Zhang T, Xu H, Qi Z, Zhou L, Zhao C, Li D. A Mixture of Soybean Oil and Lard Alleviates Postpartum Cognitive Impairment via Regulating the Brain Fatty Acid Composition and SCFA/ERK(1/2)/CREB/BDNF Pathway. Nutrients 2024; 16:2641. [PMID: 39203778 PMCID: PMC11357458 DOI: 10.3390/nu16162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Lard is highly appreciated for its flavor. However, it has not been elucidated how to consume lard while at the same time eliminating its adverse effects on postpartum cognitive function. Female mice were divided into three groups (n = 10): soybean oil (SO), lard oil (LO), and a mixture of soybean oil and lard at a ratio of 1:1 (LS). No significant difference was observed between the SO and LS groups in behavioral testing of the maternal mice, but the LO group was significantly worse compared with these two groups. Moreover, the SO and LS supplementation increased docosahexaenoic acid (DHA) and total n-3 polyunsaturated fatty acid (PUFA) levels in the brain and short-chain fatty acid (SCFA)-producing bacteria in feces, thereby mitigating neuroinflammation and lowering the p-ERK(1/2)/ERK(1/2), p-CREB/CREB, and BDNF levels in the brain compared to the LO group. Collectively, the LS group inhibited postpartum cognitive impairment by regulating the brain fatty acid composition, neuroinflammation, gut microbiota, and the SCFA/ERK(1/2)/CREB/BDNF signaling pathway compared to lard.
Collapse
Affiliation(s)
- Runjia Shi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoying Tian
- Qingdao Medical College, Qingdao University, Qingdao 266071, China;
| | - Andong Ji
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Huina Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhongshi Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Liying Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chunhui Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Ye M, Ji F, Huang C, Li F, Zhang C, Zhang Y, Wang R, Ma K, Lu X, Wang H. A novel probiotic formula, BLLL, ameliorates chronic stress-induced depression-like behaviors in mice by reducing neuroinflammation and increasing neurotrophic factors. Front Pharmacol 2024; 15:1398292. [PMID: 39130643 PMCID: PMC11310130 DOI: 10.3389/fphar.2024.1398292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction: Probiotics have been recognized for their various biological activities, including antioxidant and anti-inflammatory properties. This study investigates the therapeutic effect of a novel probiotic formula, BLLL, consisting of Bifidobacterium breve, Lactobacillus plantarum, Lactobacillus paracasei, and Lactobacillus helveticus, on chronic stress-induced depression-like behaviors in mice. Methods: The BLLL formula or phosphate-buffered saline (PBS) was given orally at a dose of 2, 4, or 8 × 1010 CFU/kg once daily for 10 days in mice treated with chronic unpredictable stress (CUS) treated or vehicle. Depression-like behaviors were assessed using the sucrose preference test (SPT), the forced swimming test (FST), and the tail suspension test (TST). The mRNA and/or protein expression of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), IL-4, IL-10, and chitinase-3-like protein 3 (CHI3L1, also known as Ym-1), as well as the concentration of nitrite, malondialdehyde (MDA), glutathione (GSH), and brain-derived neurotrophic factor (BDNF) in the hippocampus and medial prefrontal cortex were examined. Results: The BLLL formula treatment at a dose of 8 × 1010 CFU/kg, but not at a dose of 2 or 4 × 1010 CFU/kg, improved CUS-induced depression-like behaviors in mice, as shown by the decrease in immobility time in the TST and FST and the increase in sucrose intake in the SPT. Further analysis revealed that BLLL treatment suppressed the CUS-induced increase in IL-1β, IL-6, and TNF-α mRNA and protein levels, as well as the CUS-induced decrease in IL-4, IL-10, and Ym-1 mRNA and/or protein levels in the hippocampus and medial prefrontal cortex. In addition, treatment with the BLLL formula countered the CUS-induced increase in nitrite and MDA levels and the CUS-induced decrease in GSH content and BDNF concentration in the hippocampus and medial prefrontal cortex. Conclusion: These results demonstrate that the novel probiotic formula BLLL ameliorates chronic stress-induced depression-like behavior in mice by suppressing neuroinflammation and oxido-nitrosative stress in the brain.
Collapse
Affiliation(s)
- Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Feng Ji
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | | | - Yu Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Runxin Wang
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, Jiangyin, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
7
|
Cai Y, Guo H, Han T, Wang H. Lactate: a prospective target for therapeutic intervention in psychiatric disease. Neural Regen Res 2024; 19:1473-1479. [PMID: 38051889 PMCID: PMC10883489 DOI: 10.4103/1673-5374.387969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/07/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Although antipsychotics that act via monoaminergic neurotransmitter modulation have considerable therapeutic effect, they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorders. This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs. Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitters. Among these candidate neurotransmitters, lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years. Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses; animal experiments have also shown that the supply of exogenous lactate exerts an antidepressant effect. In this review, we have described how medications targeting newer neurotransmitters offer promise in psychiatric diseases; we have also summarized the advances in the use of lactate (and its corresponding signaling pathways) as a signaling molecule. In addition, we have described the alterations in brain lactate levels in depression, anxiety, bipolar disorder, and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology.
Collapse
Affiliation(s)
- Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Tianle Han
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Wang T, Yang J, Zhu Y, Niu N, Ding B, Wang P, Zhao H, Li N, Chao Y, Gao S, Dong X, Wang Z. Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder. J Affect Disord 2024; 356:1-12. [PMID: 38548210 DOI: 10.1016/j.jad.2024.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and bipolar disorder (BD) are psychiatric disorders with overlapping symptoms, leading to high rates of misdiagnosis due to the lack of biomarkers for differentiation. This study aimed to identify metabolic biomarkers in urine samples for diagnosing MDD and BD, as well as to establish unbiased differential diagnostic models. METHODS We utilized a metabolomics approach employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to analyze the metabolic profiles of urine samples from individuals with MDD (n = 50), BD (n = 12), and healthy controls (n = 50). The identification of urine metabolites was verified using MS data analysis tools and online metabolite databases. RESULTS Two diagnostic panels consisting of a combination of metabolites and clinical indicators were identified-one for MDD and another for BD. The discriminative capacity of these panels was assessed using the area under the receiver operating characteristic (ROC) curve, yielding an area under the curve (AUC) of 0.9084 for MDD and an AUC value of 0.9017 for BD. CONCLUSIONS High-resolution mass spectrometry-based assays show promise in identifying urinary biomarkers for depressive disorders. The combination of urine metabolites and clinical indicators is effective in differentiating healthy controls from individuals with MDD and BD. The metabolic pathway indicating oxidative stress is seen to significantly contribute to depressive disorders.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuncheng Zhu
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Na Niu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Binbin Ding
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Ping Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China.
| | - Zuowei Wang
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China.
| |
Collapse
|
9
|
Xu J, Zhou L, Chen Z, Wang Y, Xu F, Kuang Q, Zhang Y, Zheng H. Bacillus coagulans and Clostridium butyricum synergistically alleviate depression in a chronic unpredictable mild stress mouse model through altering gut microbiota and prefrontal cortex gene expression. Front Pharmacol 2024; 15:1393874. [PMID: 38855745 PMCID: PMC11158626 DOI: 10.3389/fphar.2024.1393874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction: The prevalence of major depressive disorder (MDD) has gradually increased and has attracted widespread attention. The aim of this study was to investigate the effect of a probiotic compound consisting of Bacillus coagulans and Clostridium butyricum, on a mouse depression model. Methods: Mice were subjected to chronic unpredictable mild stress (CUMS) and then treated with the probiotics at different concentrations. And mice received behavior test such as forced swimming test and tail suspension test. After that, all mice were sacrificed and the samples were collected for analysis. Moreover, prefrontal cortex (PFC) gene expression and the gut microbiota among different groups were also analyzed. Results: Probiotics improved depressive-like behavior in CUMS mice, as indicated by decreased immobility time (p < 0.05) in the forced swimming test and tail suspension test. probiotics intervention also increased the level of 5-hydroxytryptamine (5-HT) in the prefrontal cortex and decreased the adrenocorticotropic hormone (ACTH) level in serum. In addition, by comparing the PFC gene expression among different groups, we found that the genes upregulated by probiotics were enriched in the PI3K-Akt signaling pathway in the prefrontal cortex. Moreover, we found that downregulated genes in prefrontal cortex of CUMS group such as Sfrp5 and Angpt2, which were correlated with depression, were reversed by the probiotics. Furthermore, the probiotics altered the structure of the gut microbiota, and reversed the reduction of cob(II)yrinate a,c-diamide biosynthesis I pathway in CUMS group. Several species like Bacteroides caecimuris and Parabacteroides distasoni, whose abundance was significantly decreased in the CUMS group but reversed after the probiotics intervention, showed significantly positive correlation with depression associated genes such as Tbxas1 and Cldn2. Discussion: These findings suggested that CUMS-induced depression-like behavior can be alleviated by the probiotics, possibly through alterations in the PFC gene expression and gut microbiota.
Collapse
Affiliation(s)
- Jingyi Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhaowei Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Fang Xu
- The Academician Workstation, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qun Kuang
- Jiangsu Limited Company of Suwei Microbiology, Wuxi, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- The Academician Workstation, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
10
|
Jarosz ŁS, Socała K, Michalak K, Wiater A, Ciszewski A, Majewska M, Marek A, Grądzki Z, Wlaź P. The effect of psychoactive bacteria, Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1, on brain proteome profiles in mice. Psychopharmacology (Berl) 2024; 241:925-945. [PMID: 38156998 PMCID: PMC11031467 DOI: 10.1007/s00213-023-06519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.
Collapse
Affiliation(s)
- Łukasz S Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
11
|
Kolzhetsov N, Markelova N, Frolova M, Alikina O, Glazunova O, Safonova L, Kalashnikova I, Yudin V, Makarov V, Keskinov A, Yudin S, Troshina D, Rechkina V, Shcherbakova V, Shavkunov K, Ozoline O. Enterotype-Dependent Probiotic-Mediated Changes in the Male Rat Intestinal Microbiome In Vivo and In Vitro. Int J Mol Sci 2024; 25:4558. [PMID: 38674145 PMCID: PMC11049970 DOI: 10.3390/ijms25084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Beneficial properties of lactic acid bacteria have been known long ago, but particular interest in probiotics has arisen in the last two decades due to the understanding of the important role of intestinal microflora in human life. Thus, the ability of probiotics to support healthy homeostasis of gut microbiomes has received particular attention. Here, we evaluated the effect of a probiotic consisting of Bifidobacterium longum and Lacticaseibacillus paracasei on the gut microbiome of male rats, assessed their persistence in the fecal biota, and compared probiotic-mediated changes in vitro and in vivo. As expected, microbiomes of two enterotypes were identified in the feces of 21 animals, and it turned out that even a single dose of the probiotic altered the microbial composition. Upon repeated administration, the E1 biota temporarily acquired properties of the E2 type. Being highly sensitive to the intervention of probiotic bacteria at the phylum and genus levels, the fecal microbiomes retained the identity of their enterotypes when transferred to a medium optimized for gut bacteria. For the E2 biota, even similarities between probiotic-mediated reactions in vitro and in vivo were detected. Therefore, fecal-derived microbial communities are proposed as model consortia to optimize the response of resident bacteria to various agents.
Collapse
Affiliation(s)
- Nikolay Kolzhetsov
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Natalia Markelova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Maria Frolova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Alikina
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Glazunova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Lubov Safonova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Irina Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Vladimir Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Valentin Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Anton Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Sergey Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Daria Troshina
- Faculty of Biotechnology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoria Rechkina
- Laboratory of Anaerobic Microorganisms, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (V.R.); (V.S.)
| | - Viktoria Shcherbakova
- Laboratory of Anaerobic Microorganisms, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (V.R.); (V.S.)
| | - Konstantin Shavkunov
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Ozoline
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| |
Collapse
|
12
|
Ma M, Zheng Z, Li J, He Y, Kang W, Ye X. Association between the gut microbiota, inflammatory factors, and colorectal cancer: evidence from Mendelian randomization analysis. Front Microbiol 2024; 15:1309111. [PMID: 38562480 PMCID: PMC10982360 DOI: 10.3389/fmicb.2024.1309111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors primarily affecting individuals over the age of 50 years. Recent studies have suggested that the dysbiosis of the gut microbiota, a community of microorganisms in the human gut, is closely associated with the occurrence and development of CRC. Additionally, inflammatory factors (IFs) have also been reported to play a significant role in the development of CRC. However, the causal relationships between the gut microbiota, IFs, and CRC remain unclear. Methods In this study, we performed Mendelian randomization (MR) analysis using publicly available genome-wide association study (GWAS) data to explore the causal relationship between the gut microbiota, IFs, and CRC. The gut microbiota GWAS data were obtained from the MiBioGen study, while the IFs GWAS data were derived from the comprehensive analysis of three independent cohorts. Causal relationship analysis was conducted using appropriate instrumental variables (IVs) and statistical models. Results MR analysis of the gut microbiota and CRC revealed a negative correlation between the Lachnospiraceae species in the gut and CRC risk, while a positive correlation was observed between Porphyromonadaceae species, Lachnospiraceae UCG010 genus, Lachnospira genus, and Sellimonas genus in the gut, and CRC risk. Additionally, we observed a causal relationship between IL-10 and CRC risk. These findings suggest that the dysbiosis of the gut microbiota might be associated with an increased risk of CRC and that specific bacterial groups may play a crucial role in the occurrence and development of CRC. Conclusion Using MR analysis, this study revealed the causal relationships between the gut microbiota, IFs, and CRC. The negative correlation between the Lachnospiraceae species in the gut and CRC risk, as well as the causal relationship between IL-10 and CRC, provide important clues for the potential roles of gut microbiota regulation and inflammatory factor control in the prevention and treatment of CRC.
Collapse
Affiliation(s)
| | | | | | | | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Pan Y, Li Y, Chhetri JK, Liu P, Li B, Liu Z, Shui G, Ma L. Dysregulation of acyl carnitines, pentose phosphate pathway and arginine and ornithine metabolism are associated with decline in intrinsic capacity in Chinese older adults. Aging Clin Exp Res 2024; 36:36. [PMID: 38345670 PMCID: PMC10861606 DOI: 10.1007/s40520-023-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Intrinsic capacity is the combination of individual physical and mental abilities, reflecting the aging degree of the older adults. However, the mechanisms and metabolic characteristics of the decline in intrinsic capacity are still unclear. AIMS To identify metabolic signatures and associated pathways of decline in intrinsic capacity based on the metabolite features. METHODS We recruited 70 participants aged 77.19 ± 8.31 years. The five domains of intrinsic capacity were assessed by Short Physical Performance Battery (for mobility), Montreal cognition assessment (for cognition), 30-Item Geriatric Depression Scale (for psychology), self-reported hearing/visual impairment (for sensory) and Nutritional risk screening (for vitality), respectively. The serum samples of participants were analyzed by liquid chromatography-mass spectrometry-based metabolomics, followed by metabolite set enrichment analysis and metabolic pathway analysis. RESULTS There were 50 participants with a decline in intrinsic capacity in at least one of the domains. A total of 349 metabolites were identified from their serum samples. Overall, 24 differential metabolites, 5 metabolite sets and 13 pathways were associated with the decline in intrinsic capacity. DISCUSSION Our results indicated that decline in intrinsic capacity had unique metabolomic profiles. CONCLUSION The specific change of acyl carnitines was observed to be a feature of decline in intrinsic capacity. Dysregulation of the pentose phosphate pathway and of arginine and ornithine metabolism was strongly associated with the decline in intrinsic capacity.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Jagadish K Chhetri
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics, Second Affiliated Hospital and Department of Big Data in Health Science, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
14
|
Merchak AR, Wachamo S, Brown LC, Thakur A, Moreau B, Brown RM, Rivet-Noor CR, Raghavan T, Gaultier A. Lactobacillus from the Altered Schaedler Flora maintain IFNγ homeostasis to promote behavioral stress resilience. Brain Behav Immun 2024; 115:458-469. [PMID: 37924959 PMCID: PMC10842688 DOI: 10.1016/j.bbi.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The gut microbiome consists of trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea, has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea: L. intestinalis and L. murinus. Using this microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and provide novel methods to study potential therapies to treat mood disorders.
Collapse
Affiliation(s)
- Andrea R Merchak
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.
| | - Samuel Wachamo
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Lucille C Brown
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Alisha Thakur
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Brett Moreau
- Department of Medicine, Division of Infectious Diseases, University of Virginia, Charlottesville, VA, USA
| | - Ryan M Brown
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Courtney R Rivet-Noor
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Tula Raghavan
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Alban Gaultier
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Kwon H, Lee EH, Choi J, Park JY, Kim YK, Han PL. Extracellular Vesicles Released by Lactobacillus paracasei Mitigate Stress-induced Transcriptional Changes and Depression-like Behavior in Mice. Exp Neurobiol 2023; 32:328-342. [PMID: 37927131 PMCID: PMC10628865 DOI: 10.5607/en23024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Various probiotic strains have been reported to affect emotional behavior. However, the underlying mechanisms by which specific probiotic strains change brain function are not clearly understood. Here, we report that extracellular vesicles derived from Lactobacillus paracasei (Lpc-EV) have an ability to produce genome-wide changes against glucocorticoid (GC)-induced transcriptional responses in HT22 hippocampal neuronal cells. Genome-wide analysis using microarray assay followed by Rank-Rank Hypergeometric Overlap (RRHO) method leads to identify the top 20%-ranked 1,754 genes up- or down-regulated following GC treatment and their altered expressions are reversed by Lpc-EV in HT22 cells. Serial k-means clustering combined with Gene Ontology enrichment analyses indicate that the identified genes can be grouped into multiple functional clusters that contain functional modules of "responses to stress or steroid hormones", "histone modification", and "regulating MAPK signaling pathways". While all the selected genes respond to GC and Lpc-EV at certain levels, the present study focuses on the clusters that contain Mkp-1, Fkbp5, and Mecp2, the genes characterized to respond to GC and Lpc-EV in opposite directions in HT22 cells. A translational study indicates that the expression levels of Mkp-1, Fkbp5, and Mecp2 are changed in the hippocampus of mice exposed to chronic stress in the same directions as those following GC treatment in HT22 cells, whereas Lpc-EV treatment restored stress-induced changes of those factors, and alleviated stress-induced depressive-like behavior. These results suggest that Lpc-EV cargo contains bioactive components that directly induce genome-wide transcriptional responses against GC-induced transcriptional and behavioral changes.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | | | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
16
|
Letenneur V, Monnoye M, Philippe C, Holowacz S, Rabot S, Lepage P, Jacouton E, Naudon L. Effects of a Lacticaseibacillus Mix on Behavioural, Biochemical, and Gut Microbial Outcomes of Male Mice following Chronic Restraint Stress. Nutrients 2023; 15:4635. [PMID: 37960288 PMCID: PMC10648220 DOI: 10.3390/nu15214635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The effect of supplementation with Lactobacillus strains to prevent the consequences of chronic stress on anxiety in mouse strains sensitive to stress and the consequences on gut microbiota have been relatively unexplored. Thus, we administered a Lacticaseibacillus casei LA205 and Lacticaseibacillus paracasei LA903 mix to male BALB/cByJrj mice two weeks before and during 21-day chronic restraint stress (CRS) (non-stressed/solvent (NS-PBS), non-stressed/probiotics (NS-Probio), CRS/solvent (S-PBS), CRS/probiotics (S-Probio)). CRS resulted in lower body weight and coat state alteration, which were attenuated by the probiotic mix. S-Probio mice showed less stress-associated anxiety-like behaviours than their NS counterpart, while no difference was seen in PBS mice. Serum corticosterone levels were significantly higher in the S-Probio group than in other groups. In the hippocampus, mRNA expression of dopamine and serotonin transporters was lower in S-Probio than in S-PBS mice. Few differences in bacterial genera proportions were detected, with a lower relative abundance of Alistipes in S-Probio vs. S-PBS. CRS was accompanied by a decrease in the proportion of caecal acetate in S-PBS mice vs. NS-PBS, but not in the intervention groups. These data show that the probiotic mix could contribute to better coping with chronic stress, although the precise bacterial mechanism is still under investigation.
Collapse
Affiliation(s)
- Vivien Letenneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Sophie Holowacz
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Elsa Jacouton
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
17
|
Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023; 9:361. [PMID: 37773196 PMCID: PMC10541886 DOI: 10.1038/s41420-023-01666-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Inflammatory Bowel Disease (IBD), a chronic nonspecific intestinal inflammatory disease, is comprised of Ulcerative Colitis (UC) and Crohn's Disease (CD). IBD is closely related to a systemic inflammatory reaction and affects the progression of many intestinal and extraintestinal diseases. As one of the representative bacteria for probiotic-assisted therapy in IBD, multiple strains of Lactobacillus have been proven to alleviate intestinal damage and strengthen the intestinal immunological barrier, epithelial cell barrier, and mucus barrier. Lactobacillus also spares no effort in the alleviation of IBD-related diseases such as Colitis-associated Colorectal cancer (CAC), Alzheimer's Disease (AD), Depression, Anxiety, Autoimmune Hepatitis (AIH), and so on via gut-brain axis and gut-liver axis. This article aims to discuss the role of Lactobacillus in IBD and IBD-related diseases, including its underlying mechanisms and related curative strategies from the present to the future.
Collapse
Affiliation(s)
- Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Long
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
18
|
Herselman MF, Bobrovskaya L. The Effects of Chronic Unpredictable Mild Stress and Semi-Pure Diets on the Brain, Gut and Adrenal Medulla in C57BL6 Mice. Int J Mol Sci 2023; 24:14618. [PMID: 37834073 PMCID: PMC10572190 DOI: 10.3390/ijms241914618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system. CUMS induced anxiety-like behaviour, dysregulated the tryptophan and serotonin metabolic pathways in the hippocampus, prefrontal cortex, and colon, and altered the composition of the gut microbiota. CUMS reduced the catecholamine synthetic capacity of the adrenal glands. Differential effects were found in these parameters in the HFD and SUP diet. Thus, dietary modifications may profoundly affect the multiple dynamic systems involved in mood disorders.
Collapse
Affiliation(s)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
19
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
20
|
Bifidobacterium breve Bif11 supplementation improves depression-related neurobehavioural and neuroinflammatory changes in the mouse. Neuropharmacology 2023; 229:109480. [PMID: 36868402 DOI: 10.1016/j.neuropharm.2023.109480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Gut dysbiosis has been closely linked to the onset and progression of several brain-related disorders such as depression. The administration of microbiota-based formulations such as probiotics helps restore healthy gut flora and plays a role in preventing and treating depression-like behavior. Therefore, we evaluated the efficacy of probiotic supplementation using our recently isolated putative probiotic Bifidobacterium breve Bif11 in ameliorating lipopolysaccharide (LPS)-induced depression-like behavior in male Swiss albino mice. Mice were fed orally with B. breve Bif11 (1 × 1010 CFU and 2 × 1010 CFU) for 21 days before being challenged with a single intraperitoneal LPS injection (0.83 mg/kg). Behavioral, biochemical, histological and molecular analysis were done with an emphasis on inflammatory pathways linked to depression-like behavior. Daily supplementation with B. breve Bif11 for 21 days prevented the onset of depression-like behavior induced by LPS injection, besides reducing the levels of inflammatory cytokines such as matrix metalloproteinase-2, c-reactive protein, interleukin-6, tumor necrosis factor-alpha and nuclear factor kappa-light-chain-enhancer of activated B cells. It also prevented the decrease of the brain-derived neurotrophic factor levels and neuronal cell viability in the prefrontal cortex of LPS-treated mice. Furthermore, we observed that gut permeability was reduced, there was an improved short-chain fatty acid profile and reduced gut dysbiosis in the LPS mice fed with B. breve Bif11. Similarly, we observed a decrease in behavioural deficits and restoration of gut permeability in chronic mild stress. Together, these results would help in deciphering the role of probiotics in the management of neurological disorders where depression, anxiety and inflammation are prominent clinical features.
Collapse
|
21
|
Merchak AR, Wachamo S, Brown LC, Thakur A, Moreau B, Brown RM, Rivet-Noor C, Raghavan T, Gaultier A. Lactobacillus maintains IFNγ homeostasis to promote behavioral stress resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540223. [PMID: 37214985 PMCID: PMC10197651 DOI: 10.1101/2023.05.10.540223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The gut microbiome consists of the trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea , has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, for the first time, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea . Using this novel microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and give novel methods to study potential therapies developed to treat mood disorders.
Collapse
|
22
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
23
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Li Y, Li J, Cheng R, Liu H, Zhao Y, Liu Y, Chen Y, Sun Z, Zhai Z, Wu M, Yan Y, Sun Y, Zhang Z. Alteration of the gut microbiome and correlated metabolism in a rat model of long-term depression. Front Cell Infect Microbiol 2023; 13:1116277. [PMID: 37051300 PMCID: PMC10084793 DOI: 10.3389/fcimb.2023.1116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
ObjectiveThis study aims to investigate the composition and function of the gut microbiome in long-term depression using an 8-week chronic unpredictable mild stress (CUMS) rat model.Materials and methodsAnimals were sacrificed after either 4 weeks or 8 weeks under CUMS to mimic long-term depression in humans. The gut microbiome was analyzed to identify potential depression-related gut microbes, and the fecal metabolome was analyzed to detect their functional metabolites. The correlations between altered gut microbes and metabolites in the long-term depression rats were explored. The crucial metabolic pathways related to long-term depression were uncovered through enrichment analysis based on these gut microbes and metabolites.ResultsThe microbial composition of long-term depression (8-week CUMS) showed decreased species richness indices and different profiles compared with the control group and the 4-week CUMS group, characterized by disturbance of Alistipes indistinctus, Bacteroides ovatus, and Alistipes senegalensis at the species level. Additionally, long-term depression was associated with disturbances in fecal metabolomics. D-pinitol was the only increased metabolite in the 8-week CUMS group among the top 10 differential metabolites, while the top 3 decreased metabolites in the long-term depression rats included indoxyl sulfate, trimethylaminen-oxide, and 3 alpha,7 alpha-dihydroxy-12-oxocholanoic acid. The disordered fecal metabolomics in the long-term depression rats mainly involved the biosynthesis of pantothenate, CoA, valine, leucine and isoleucine.ConclusionOur findings suggest that the gut microbiome may participate in the long-term development of depression, and the mechanism may be related to the regulation of gut metabolism.
Collapse
Affiliation(s)
- Yubo Li
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yubo Li, ; Yuxiu Sun, ; Zhiguo Zhang,
| | - Junling Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ran Cheng
- Department of Gynaecology and Obstetrics, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixia Liu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjun Liu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Sun
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiguang Zhai
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Wu
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yupeng Yan
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxiu Sun
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yubo Li, ; Yuxiu Sun, ; Zhiguo Zhang,
| | - Zhiguo Zhang
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yubo Li, ; Yuxiu Sun, ; Zhiguo Zhang,
| |
Collapse
|
25
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
26
|
Li T, Chu C, Yu L, Zhai Q, Wang S, Zhao J, Zhang H, Chen W, Tian F. Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson's Disease. Nutrients 2022; 14:4678. [PMID: 36364939 PMCID: PMC9655354 DOI: 10.3390/nu14214678] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 08/31/2023] Open
Abstract
There is mounting evidence that the microbiota-gut-brain axis (MGBA) is critical in the pathogenesis and progression of Parkinson's disease (PD), suggesting that probiotic therapy restoring gut microecology may slow down disease progression. In this study, we examined the disease-alleviating effects of Bifidobacterium breve CCFM1067, orally administered for 5 weeks in a PD mouse model. Our study shows that supplementation with the probiotic B. breve CCFM1067 protected dopaminergic neurons and suppressed glial cell hyperactivation and neuroinflammation in PD mice. In addition, the antioxidant capacity of the central nervous system was enhanced and oxidative stress was alleviated. Moreover, B. breve CCFM1067 protected the blood-brain and intestinal barriers from damage in the MPTP-induced mouse model. The results of fecal microbiota analysis showed that B. breve CCFM1067 intervention could act on the MPTP-induced microecological imbalance in the intestinal microbiota, suppressing the number of pathogenic bacteria (Escherichia-Shigella) while increasing the number of beneficial bacteria (Bifidobacterium and Akkermansia) in PD mice. In addition, the increase in short chain fatty acids (acetic and butyric acids) may explain the anti-inflammatory action of B. breve CCFM1067 in the gut or brain of the MPTP-induced PD mouse model. In conclusion, we demonstrated that the probiotic B. breve CCFM1067, which can prevent or treat PD by modulating the gut-brain axis, can be utilized as a possible new oral supplement for PD therapy.
Collapse
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanqi Chu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Department of Child Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|