1
|
Haryani Y, Abdul Halid N, Goh SG, Nor-Khaizura MAR, Md Hatta MA, Sabri S, Radu S, Hasan H. Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds. J Biotechnol 2024; 395:53-63. [PMID: 39245212 DOI: 10.1016/j.jbiotec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.
Collapse
Affiliation(s)
- Yuli Haryani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru, Riau 28293, Indonesia
| | - Nadrah Abdul Halid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Sur Guat Goh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Halal Science Research, Halal Research Product Institute, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
2
|
Ma X. Heavy metals remediation through lactic acid bacteria: Current status and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174455. [PMID: 38964392 DOI: 10.1016/j.scitotenv.2024.174455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
With the development of industrialization and urbanization, heavy metal (HM) pollution has become an urgent problem in many countries. The use of microorganisms to control HM pollution has attracted the attention of many scholars due to its advantages of mild conditions, low process cost, and no secondary pollution. In this context, this review aimed to compile recent advances on the potential of lactic acid bacteria (LAB) as HMs biosorbents. As a food-safe class of probiotic, LAB can not only be used for HM remediation in soil and wastewater, but most importantly, can be used for metal removal in food. The extracellular adsorption and intracellular accumulation are the main mechanisms of HM removal by LAB. Lactic acid (LA) fermentation is also one of the removal mechanisms, especially in the food industry. The pH, temperature, biomass, ion concentration and adsorption time are the essential parameters to be considered during the bioremediation. Although the LAB remediation is feasible in theory and lab-scale experiments, it is limited in practical applications due to its low efficiency. Therefore, the commonly used methods to improve the adsorption efficiency of LAB, including pretreatment and mixed-cultivation, are also summarized in this review. Finally, based on the review of literature, this paper presents the emerging strategies to overcome the low adsorption capacity of LAB. This review proposes the future investigations required for this field, and provides theoretical support for the practical application of LAB bioremediation of HMs.
Collapse
Affiliation(s)
- Xiaoyu Ma
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China.
| |
Collapse
|
3
|
Allahverdi M, Dadmehr M, Sharifmoghadam MR, Bahreini M. Encapsulation of Lactiplantibacillus plantarum probiotics through cross-linked chitosan and casein for improving their viability, antioxidant and detoxification. Int J Biol Macromol 2024; 280:135820. [PMID: 39306184 DOI: 10.1016/j.ijbiomac.2024.135820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In the present study, encapsulation of Lactiplantibacillus plantarum (L.p) was performed using chitosan and casein through calcium phosphate intercrossing. Chitosan and casein both considered as non-toxic and biocompatible food derived components with intrinsic antioxidant properties. Layer by layer strategy was performed for deposition of modified cross-linked chitosan along with casein as the novel protective layers on the surface of probiotics. After confirmation of successful encapsulation, the viability and antioxidant activity of encapsulated L.p was evaluated. The results showed enhanced survival and antioxidant activity of encapsulated L.p compared to free bacteria in simulated digestive conditions. The survival of free and encapsulated L.p was respectively 1.38 ± 0.29 log cfu/ml and 6.99 ± 0.12 log cfu/ml in SGF and 8.54 ± 0.05 log cfu/ml and 7.25 ± 0.23 log cfu/ml in SIJ after 2 h of incubation. HPLC analysis was also used to investigate the detoxification activity of probiotics toward Aflatoxin M1 and obtained results showed encapsulated bacteria could significantly reduce aflatoxin M1 (68.44 ± 0.5 %) compared to free bacteria (43.76 ± 0.54 %). The results of this research suggest that the chitosan/casein mediated encapsulation of L.p with layer-by-layer technology is an effective method to improve the survival and antioxidant properties of probiotics with enhanced detoxification of AFM1.
Collapse
Affiliation(s)
- Mehrana Allahverdi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | - Masoumeh Bahreini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Lázaro Á, Vila-Donat P, Manyes L. Emerging mycotoxins and preventive strategies related to gut microbiota changes: probiotics, prebiotics, and postbiotics - a systematic review. Food Funct 2024; 15:8998-9023. [PMID: 39229841 DOI: 10.1039/d4fo01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Recent research has focused on the involvement of the gut microbiota in various diseases, where probiotics, prebiotics, synbiotics, and postbiotics (PPSP) exert beneficial effects through modulation of the microbiome. This systematic review aims to provide insight into the interplay among emerging mycotoxins, gut microbiota, and PPSP. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In this review, unregulated yet highly recurrent mycotoxins are classified as emerging mycotoxins. The most frequently observed mycotoxins included those from the Fusarium genus-enniatins (n = 11) and beauvericin (n = 11)-and the Alternaria genus-alternariol monomethyl ether, altertoxin, and tentoxin (n = 10). Among probiotics, the most studied genera were Lactobacillus, Bifidobacterium, and the yeast Saccharomyces cerevisiae. Inulin and cellulose were the most found prebiotics. Data on synbiotics and postbiotics are scarce. Studies have shown that both the gut microbiota and PPSP can detoxify and mitigate the harmful effects of emerging mycotoxins. PPSP not only reduced mycotoxin bioaccessibility, but also counteracted their detrimental effects by activating health-promoting pathways such as short-chain fatty acid production, genoprotection, and reduction of oxidative stress. However, both quantitative and qualitative data remain limited, indicating a need for further in vivo and long-term studies. The formulation of PPSP as functional foods, feeds, or nutraceuticals should be considered a preventive strategy against the toxicity of emerging mycotoxins, for which, there is no established regulatory framework.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Pilar Vila-Donat
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Lara Manyes
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| |
Collapse
|
5
|
Liu P, Sun M, Xia S, Ju J, Mao W, Zhao H, Yanbin Hao. Earthworms and lactic acid bacteria (LAB) cooperate to promote the biodegradation of tetracycline residues in livestock manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:166-175. [PMID: 38905906 DOI: 10.1016/j.wasman.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Tetracycline is an antibiotic with extensive veterinary use in the livestock industry. However, their widespread application poses risks to soil health as residue in livestock feces, and their removal is crucial for sustainable soil-ecosystem development. Physical and chemical approaches to extract tetracycline may have adverse effects on soil ecosystems, but no studies have thus far examined the potential for biological methods, such as collective degradation action of soil fauna. Thus, this study aimed to investigate the synergistic effects of lactic acid bacteria (LAB) and earthworms (Eisenia fetida) on biodegradation of tetracycline residues in sheep manure. We assessed earthworm biomass, tetracycline residue, and bacterial communities in both earthworm intestines and vermicompost. Earthworm biomass and tetracycline degradation efficiency increased significantly with LAB addition, with a degradation rate of up to 80.16%. This increase may be attributable to LAB acting as electron donors to spur tetracycline degradation. Additionally, we noted that tetracycline presence significantly influenced bacterial communities in earthworm intestines and vermicompost, elevating the abundance of potential pathogenic bacteria (e.g., Flavobacterium, Gammaproteobacteria, and Enterobacteriaceae). This finding suggests that heightened environmental stress from antibiotics could actually facilitate the growth of less prevalent bacteria, including potential pathogens. In conclusion, our study provides evidence supporting the effectiveness of LAB and earthworms in degrading tetracycline residues. In particular, LAB appears to mitigate stress from tetracycline exposure in earthworms, thus increasing their vermicomposting efficacy. Our work has important implications for soil management, with the potential to enhance pollution clean-up rates while minimizing negative side-effects to soil microbial communities.
Collapse
Affiliation(s)
- Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009
| | - Minghui Sun
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Siqi Xia
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Jing Ju
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009
| | - Wei Mao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009.
| | - Yanbin Hao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China; Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Lee HB, Park M, Lee SY, Ha SK, Kim Y, Lee KW, Park HY. Lactococcus lactis KF140 Ameliorates Nonalcoholic Fatty Liver Disease Induced by N ε-Carboxymethyl-Lysine and High-Fat Diet. Mol Nutr Food Res 2024; 68:e2400260. [PMID: 38962859 DOI: 10.1002/mnfr.202400260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Indexed: 07/05/2024]
Abstract
SCOPE Long-term consumption of excessive dietary advanced glycation end-products such as Nε-carboxymethyl-lysine (CML), which are produced by the Maillard reaction during food thermal processing, leads to nonalcoholic fatty liver disease (NAFLD) along with high fat consumption. The study previously finds that administration of Lactococcus lactis KF140 (LL-KF140) detoxifies CML by decreasing CML absorption both in a rat model and clinical trial. METHODS AND RESULTS The present study evaluates the ameliorative effect of LL-KF140 on NAFLD and fatty liver-related biomarkers in a mouse model induced by CML and high fat. LL-KF140 is orally administered to mice at a concentration of 1 × 107 or 1 × 108 colony-forming unit (CFU) per mouse for 8 weeks. LL-KF140 administration ameliorates the NAFLD-related symptoms by reducing body weight and fat mass gain along with levels of serum aspartate transaminase, alanine transferase, and lipids as well as glucose intolerance and insulin resistance in CML-treated mice. In addition, histological analysis including staining and western blotting shows that LL-KF140 suppresses the lipogenesis pathway and CML absorption, thereby suppressing CML-induced NAFLD. CONCLUSION These findings suggest that LL-KF140 attenuates dietary CML-induced NAFLD by suppressing the de novo lipogenesis pathway, and it may be used as a probiotic strain.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
7
|
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024; 13:2408. [PMID: 39123599 PMCID: PMC11311503 DOI: 10.3390/foods13152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
8
|
Zhao S, Bian Y, Zhang G, Yang G, Hou X, Gui J, Mu S, Liu S, Fang Y. Shelf-life extension of Pacific white shrimp (Litopenaeus vannamei) using sodium alginate/chitosan incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 during cold storage. J Food Sci 2024; 89:1976-1987. [PMID: 38454630 DOI: 10.1111/1750-3841.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Seafood is highly perishable and has a short shelf-life. This study investigated the effect of chitosan and alginate (CH-SA) coating combined with the cell-free supernatant of Streptococcus thermophilus FUA329 (CFS) as a preservative on the quailty of white shrimp (Litopenaeus vannamei) refrigerated at 4° for 0, 3, 6, 9, 12, 15 days. Freshly shrimps were randomly divided into four groups: the CFS group (400 mL); the CH-SA group (1% chitosan/1% alginate); the CFS-CH-SA group (1% chitosan/1% alginate with 400 mL CFS) are treatment groups, and the control group (400 mL sterile water). The CFS-CH-SA coating effectively suppressed microbial growth total viable count and chemical accumulation (pH, total volatile basic nitrogen, thiobarbituric acid reactive substance) compared with the control. Additionally, the CFS-CH-SA coating improved the texture and sensory characteristics of shrimp during storage. The coated shrimp exhibited significantly reduced water loss (p < 0.05). The combination of CH-SA coating with CFS treatment can extend the shelf life of shrimp. PRACTICAL APPLICATION: Recently, edible films have received more consideration as a promising method to enhance the shelf life of seafood. The presence of Lactic acid bacteria metabolites in edible films reduces spoilage and improves consumer health. Our findings encourage the application of edible coating incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 to design multifubctional foods and preserve the qualities of shrimp.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yingying Bian
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Gewen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jiajin Gui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shuting Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
9
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
10
|
Witczak A, Mituniewicz-Małek A, Dmytrów I. Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage. Molecules 2024; 29:528. [PMID: 38276605 PMCID: PMC10820736 DOI: 10.3390/molecules29020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Hexachlorobenzene (HCB) is a persistent organic pollutant that is possibly carcinogenic to humans. It is still found in the environment, humans and animals, and in foods, including milk and dairy products; (2) Methods: The influence of the probiotic cultures Lacticaseibacillus rhamnosus LCR and Lactiplantibacillus plantarum subsp. plantarum LP on the possibility of effecting the biodegradation of HCB in dairy products fermented from mare milk was investigated, taking into account the product storage time (maximum 21 days). HCB content was determined using the GC/MS method; (3) Results: A strong negative Pearson correlation (p < 0.05) was found between HCB concentration and the refrigeration storage time of the fermented beverages. The highest HCB reduction was observed in milk fermented with both Lacticaseibacillus rhamnosus LCR and Lactiplantibacillus plantarum subsp. plantarum LP (78.77%), while the lowest was noted when only Lactiplantibacillus plantarum subsp. plantarum LP was used (73.79%); (4) Conclusions: This pilot study confirmed that probiotics commonly used to give products health-promoting properties can also contribute to reducing the content of undesirable substances, and the bacterial cultures used might provide an alternative method for reducing HCB residues in fermented drinks.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 70-310 Szczecin, Poland; (A.M.-M.); (I.D.)
| | | | | |
Collapse
|
11
|
Krishnan SV, Nampoothiri KM, Suresh A, Linh NT, Balakumaran PA, Pócsi I, Pusztahelyi T. Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria. Front Microbiol 2024; 14:1260166. [PMID: 38235432 PMCID: PMC10791833 DOI: 10.3389/fmicb.2023.1260166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Mycotoxins produced by Fusarium species are secondary metabolites with low molecular weight formed by filamentous fungi generally resistant to different environmental factors and, therefore, undergo slow degradation. Contamination by Fusarium mycotoxins in cereals and millets is the foremost quality challenge the food and feed industry faces across the globe. Several types of chemical preservatives are employed in the mitigation process of these mycotoxins, and they help in long-term storage; however, chemical preservatives can be used only to some extent, so the complete elimination of toxins from foods is still a herculean task. The growing demand for green-labeled food drives to evade the use of chemicals in the production processes is getting much demand. Thus, the biocontrol of food toxins is important in the developing food sector. Fusarium mycotoxins are world-spread contaminants naturally occurring in commodities, food, and feed. The major mycotoxins Fusarium species produce are deoxynivalenol, fumonisins, zearalenone, and T2/HT2 toxins. Lactic acid bacteria (LAB), generally regarded as safe (GRAS), is a well-explored bacterial community in food preparations and preservation for ages. Recent research suggests that LAB are the best choice for extenuating Fusarium mycotoxins. Apart from Fusarium mycotoxins, this review focuses on the latest studies on the mechanisms of how LAB effectively detoxify and remove these mycotoxins through their various bioactive molecules and background information of these molecules.
Collapse
Affiliation(s)
- S. Vipin Krishnan
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Anandhu Suresh
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Nguyen Thuy Linh
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - P. A. Balakumaran
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Li X, Li B, Liu Y, Xu J. Rhizospheric Lactobacillus spp. contribute to the high Cd-accumulating characteristics of Phytolacca spp. in acidic Cd-contaminated soil. ENVIRONMENTAL RESEARCH 2023; 238:117270. [PMID: 37776944 DOI: 10.1016/j.envres.2023.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Screening high Cd-accumulating plants and understanding the interactions between plants, rhizospheric microbes and Cd are important in developing microbe-assisted phytoremediation techniques for Cd-contaminated soils. In this study, the Cd tolerance and accumulation characteristics of Phytolacca americana L., P. icosandra L. and P. polyandra Batalin growing in acidic Cd-contaminated soil were compared to evaluate their phytoremediation potential. According to Cd concentrations (root: 8.26-37.09 mg kg-1, shoot: 2.80-9.26 mg kg-1), bioconcentration factors (BCFs) and translocation factors (TFs), the three Phytolacca species exhibited high Cd-accumulation capacities, ranked in the following order: P. icosandra (root BCF: 1.25, shoot BCF: 0.31, TF: 0.25) > P. polyandra (root BCF: 0.68, shoot BCF: 0.26, TF: 0.44) > P. americana (root BCF: 0.28, shoot BCF: 0.09, TF: 0.38). Phytolacca icosandra and P. polyandra can thus be considered as two new Cd accumulators for phytoremediation. Soil pH, available Cd (ACd) concentration and certain bacterial taxa (e.g. Lactobacillus, Helicobacter, Alistipes, Desulfovibrio and Mucispirillum) were differentially altered in the rhizospheres of the three Phytolacca species in comparison to unplanted soil. Correlation analysis showed that there were significant interactions between rhizospheric ACd concentration, pH and Lactobacillus bacteria (L. murinus, L. gasseri and L. reuteri), which affected Cd uptake by Phytolacca plants. The mono- and co-inoculation of L. murinus strain D51883, L. gasseri strain D51533 and L. reuteri strain D24591 in the rhizosphere of P. icosandra altered the rhizospheric pH and ACd concentrations, in addition to increasing the shoot Cd contents by 31.9%-44.6%. These results suggest that recruitment of rhizospheric Lactobacillus spp. by Phytolacca plants contributes to their high Cd-accumulating characteristics. This study provides novel insights into understanding the interactions between plants, rhizobacteria and heavy metals.
Collapse
Affiliation(s)
- Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China.
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanyuan Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, China
| |
Collapse
|
13
|
Zhang M, Chen Y, Lai J, Wang X, Hu K, Li J, Li Q, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. Cypermethrin adsorption by Lactiplantibacillus plantarum and its behavior in a simulated fecal fermentation model. Appl Microbiol Biotechnol 2023; 107:6985-6998. [PMID: 37702791 DOI: 10.1007/s00253-023-12764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
The presence of cypermethrin in the environment and food poses a significant threat to human health. Lactic acid bacteria have shown promise as effective absorbents for xenobiotics and well behaved in wide range of applications. This study aimed to characterize the biosorption behavior of cypermethrin by Lactiplantibacillus plantarum RS60, focusing on cellular components, functional groups, kinetics, and isotherms. Results indicated that RS60 exopolysaccharides played a crucial role removing cypermethrin, with the cell wall and protoplast contributing 71.50% and 30.29% to the overall removal, respectively. Notably, peptidoglycans exhibited a high affinity for cypermethrin binding. The presence of various cellular surface groups including -OH, -NH, -CH3, -CH2, -CH, -P = O, and -CO was responsible for the efficient removal of pollutants. Additionally, the biosorption process demonstrated a good fit with pseudo-second-order and Langmuir-Freundlich isotherm. The biosorption of cypermethrin by L. plantarum RS60 involved complex chemical and physical interactions, as well as intraparticle diffusion and film diffusion. RS60 also effectively reduced cypermethrin residues in a fecal fermentation model, highlighting its potential in mitigating cypermethrin exposure in humans and animals. These findings provided valuable insights into the mechanisms underlying cypermethrin biosorption by lactic acid bacteria and supported the advancement of their application in environmental and health-related contexts. KEY POINTS: • Cypermethrin adsorption by L. plantarum was clarified. • Cell wall and protoplast showed cypermethrin binding ability. • L. plantarum can reduce cypermethrin in a fecal fermentation model.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jinghui Lai
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
14
|
Ibrahim RA, Abd El-Salam BA, Alsulami T, Ali HS, Hoppe K, Badr AN. Neoteric Biofilms Applied to Enhance the Safety Characteristics of Ras Cheese during Ripening. Foods 2023; 12:3548. [PMID: 37835201 PMCID: PMC10572299 DOI: 10.3390/foods12193548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The milk's natural flora, or the starter, can preserve cheesemaking and allow for microbial competition. This investigation aimed to improve cheese safety and assess its characteristics using probiotic cell pellets (LCP) or cell-free extracts (CFS). Cheese samples were collected from different areas to investigate the current contamination situation. Six CFSs of probiotics were assessed as antifungal against toxigenic fungi using liquid and solid media and their aflatoxin reduction impact. The most effective CFS was chosen for cheese coating in nanoemulsion. Coated cheese with CFS, LCP, and LCP-CFS was assessed against control for changes in chemical composition, ripening indications, rheological properties, and microbiology. Results showed significant contamination levels in the collected samples, and toxic fungi were present. Lactobacillus rhamnosus CFS has aflatoxins reducibility in liquid media. During cheese ripening, uncoated cheese showed higher fat, protein, salt content, soluble nitrogen, total volatile fatty acids, tyrosine, and tryptophan contents than coated samples, except for LCP-coating treatment. Cheese rheology indicated that coating treatments had the lowest hardness, cohesiveness, gumminess, chewiness, and springiness compared to uncoated cheese. Uncoated cheese had the highest yeast and mold counts compared to the treated ones. The LCP-CFS-coated cheese showed no Aspergillus cells for up to 40 days. Uncoated Ras cheese recorded slightly lower flavor, body, texture, and appearance scores than coated cheeses. In conclusion, coating cheese with L. rhamnosus nanoemulsion has antifungal and antiaflatoxigenic properties, even for LCP, CFS, and CFS-LCP, which could extend cheese shelf life.
Collapse
Affiliation(s)
- Rasha A. Ibrahim
- Dairy Research Department, Food Technology Research Institute, Agricultural Research Centre, Giza 12619, Egypt; (R.A.I.)
| | - Baraka A. Abd El-Salam
- Dairy Research Department, Food Technology Research Institute, Agricultural Research Centre, Giza 12619, Egypt; (R.A.I.)
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem S. Ali
- Food Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Karolina Hoppe
- Chemistry Department, Poznan University of Life Science, ul. Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
15
|
Ma J, Dai H, Liu H, Du W. Effects of harvest stages and lactic acid bacteria additives on the nutritional quality of silage derived from triticale, rye, and oat on the Qinghai-Tibet Plateau. PeerJ 2023; 11:e15772. [PMID: 37551342 PMCID: PMC10404394 DOI: 10.7717/peerj.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Triticale (×Triticosecale Wittmack L.), rye (Secale cereale L.), and oat (Avena sativa L.) are the main forage crops on the Qinghai-Tibet Plateau, but there has been relatively little research on the silage produced from these three species. METHODS Plants were harvested at the heading, flowering, grouting, milky, and dough stages and then used to produce silage with and without additives (Sila-Max and Sila-Mix). The nutritional quality of the resulting silages was analyzed. RESULTS Triticale was revealed to be more suitable than oat or rye for producing silage on the Qinghai-Tibet Plateau. On the basis of the dry matter yield (DMY), triticale and rye should be harvested at the milky stage to optimize silage quality, whereas oat should be harvested at the dough stage. The lactic acid bacteria additives Sila-Max and Sila-Mix had no significant effect on the nutritional quality of the three silages regardless of when the samples were harvested. Overall, triticale produced higher quality silage than oat or rye. More specifically, triticale variety 'Gannong No.2' harvested at the milky stage is ideal for silage production.
Collapse
Affiliation(s)
- Jun Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Hanling Dai
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Hancheng Liu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhua Du
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Teneva D, Denev P. Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives. Microorganisms 2023; 11:1896. [PMID: 37630457 PMCID: PMC10458850 DOI: 10.3390/microorganisms11081896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Ensuring the microbiological safety of food products is a pressing global concern. With the increasing resistance of microorganisms to chemical agents and the declining effectiveness of synthetic preservatives, there is a growing need for alternative sources of natural, bioactive compounds with antimicrobial activity. The incorporation of probiotics and plant extracts into food formulations not only enriches foodstuffs with microorganisms and phytochemicals with biologically active compounds, but also provides a means for product preservation. The current review considers the importance of the process of biological preservation for providing safe foods with high biological value, natural origin and composition, and prolonged shelf life, thereby improving consumers' quality of life. To accomplish this goal, this review presents a series of examples showcasing natural preservatives, including beneficial bacteria, yeasts, and their metabolites, as well as phenolic compounds, terpenoids, and alkaloids from plant extracts. By summarizing numerous studies, identifying research challenges and regulatory barriers for their wider use, and outlining future directions for investigation, this article makes an original contribution to the field of biopreservation.
Collapse
Affiliation(s)
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
17
|
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023; 12:2709. [PMID: 37509801 PMCID: PMC10379487 DOI: 10.3390/foods12142709] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
While recognizing the gaps in pesticide regulations that impact consumer safety, public health concerns associated with pesticide contamination of foods are pointed out. The strategies and research directions proposed to prevent and/or reduce pesticide adverse effects on human health and the environment are discussed. Special attention is paid to organophosphate pesticides, as widely applied insecticides in agriculture, veterinary practices, and urban areas. Biotic and abiotic strategies for organophosphate pesticide degradation are discussed from a food safety perspective, indicating associated challenges and potential for further improvements. As food systems are endangered globally by unprecedented challenges, there is an urgent need to globally harmonize pesticide regulations and improve methodologies in the area of food safety to protect human health.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Xu X, Chang J, Wang P, Liu C, Zhou T, Yin Q, Yan G. Glycyrrhinic acid and probiotics alleviate deoxynivalenol-induced cytotoxicity in intestinal epithelial cells. AMB Express 2023; 13:52. [PMID: 37249811 DOI: 10.1186/s13568-023-01564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxin contaminants, which posing a serious health threat to animals and humans. Previous studies have found that individually supplemented probiotic or glycyrrhinic acid (GA) could degrade DON and alleviate DON-induced cytotoxicity. The present study investigated the effect of combining GA with Saccharomyces cerevisiae (S. cerevisiae) and Enterococcus faecalis (E. faecalis) using orthogonal design on alleviating IPEC-J2 cell damage induced by DON. The results showed that the optimal counts of S. cerevisiae and E. faecalis significantly promoted cell viability. The optimal combination for increasing cell viability was 400 µg/mL GA, 1 × 106 CFU/mL S. cerevisiae and 1 × 106 CFU/mL E. faecalis to make GAP, which not only significantly alleviated the DON toxicity but also achieved the highest degradation rate of DON (34.7%). Moreover, DON exposure significantly increased IL-8, Caspase3 and NF-κB contents, and upregulated the mRNA expressions of Bax, Caspase 3, NF-κB and the protein expressions of Bax, TNF-α and COX-2. However, GAP addition significantly reduced aforementioned genes and proteins. Furthermore, GAP addition significantly increased the mRNA expressions of Claudin-1, Occludin, GLUT2 and ASCT2, and the protein expressions of ZO-1, Claudin-1 and PePT1. It was inferred that the combination of GA, S. cerevisiae, and E. faecalis had the synergistic effect on enhancing cell viability and DON degradation, which could protect cells from DON-induced damage by reducing DON cytotoxicity, alleviating cell apoptosis and inflammation via inhibiting NF-κB signaling pathway, improving intestinal barrier function, and regulating nutrient absorption and transport. These findings suggest that GAP may have potential as a dietary supplement for livestock or humans exposed to DON-contaminated food or feed.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Guorong Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
19
|
Alsulami T, Shehata MG, Ali HS, Alzahrani AA, Fadol MA, Badr AN. Prevalence of Aflatoxins in Camel Milk from the Arabian Peninsula and North Africa: A Reduction Approach Using Probiotic Strains. Foods 2023; 12:foods12081666. [PMID: 37107461 PMCID: PMC10137860 DOI: 10.3390/foods12081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Camel milk is known as a source of nutritional and health supplements. It is known to be rich in peptides and functional proteins. One main issue facing it is related to its contamination, mainly with aflatoxins. The present study aimed to evaluate camel milk samples from different regions while trying to reduce its toxicity using safe approaches based on probiotic bacteria. Collected samples of camel milk were sourced from two main regions: the Arabic peninsula and North Africa. Samples were tested for their contents of aflatoxins (B1 and M1) using two techniques to ensure desired contamination levels. Additionally, feed materials used in camel foods were evaluated. Applied techniques were also tested for their validation. The antioxidant activity of camel milk samples was determined through total phenolic content and antioxidant activity assays. Two strains of probiotic bacteria (Lactobacillus acidophilus NRC06 and Lactobacillus plantarum NRC21) were investigated for their activity against toxigenic fungi. The result revealed high contamination of aflatoxin M1 for all samples investigated. Furthermore, cross-contamination with aflatoxin B1 was recorded. Investigated bacteria were recorded according to their significant inhibition zones against fungal growth (11 to 40 mm). The antagonistic impacts were between 40% and 70% against toxigenic fungi. Anti-aflatoxigenic properties of bacterial strains in liquid media were recorded according to mycelia inhibition levels between 41 to 52.83% against Aspergillus parasiticus ITEM11 with an ability to reduce aflatoxin production between 84.39% ± 2.59 and 90.4% ± 1.32 from media. Bacteria removed aflatoxins from the spiked camel milk in cases involving individual toxin contamination.
Collapse
Affiliation(s)
- Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed G Shehata
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications(SRTA-City), Borg El Arab 21934, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Hatem S Ali
- Food Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdulhakeem A Alzahrani
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A Fadol
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
20
|
Tagg JR, Harold LK, Jain R, Hale JDF. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front Microbiol 2023; 14:1161155. [PMID: 37056747 PMCID: PMC10086258 DOI: 10.3389/fmicb.2023.1161155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The human oral cavity contains a diversity of microbial habitats that have been adopted and adapted to as homeland by an amazingly heterogeneous population of microorganisms collectively referred to as the oral microbiota. These microbes generally co-habit in harmonious homeostasis. However, under conditions of imposed stress, as with changes to the host’s physiology or nutritional status, or as a response to foreign microbial or antimicrobial incursions, some components of the oral “microbiome” (viz. the in situ microbiota) may enter a dysbiotic state. This microbiome dysbiosis can manifest in a variety of guises including streptococcal sore throats, dental caries, oral thrush, halitosis and periodontal disease. Most of the strategies currently available for the management or treatment of microbial diseases of the oral cavity focus on the repetitive “broad sweep” and short-term culling of oral microbe populations, hopefully including the perceived principal pathogens. Both physical and chemical techniques are used. However, the application of more focused approaches to the harnessing or elimination of key oral cavity pathogens is now feasible through the use of probiotic strains that are naturally adapted for oral cavity colonization and also are equipped to produce anti-competitor molecules such as the bacteriocins and bacteriocin-like inhibitory substances (viz BLIS). Some of these probiotics are capable of suppressing the proliferation of a variety of recognized microbial pathogens of the human mouth, thereby assisting with the restoration of oral microbiome homeostasis. BLIS K12 and BLIS M18, the progenitors of the BLIS-producing oral probiotics, are members of the human oral cavity commensal species Streptococcus salivarius. More recently however, a number of other streptococcal and some non-streptococcal candidate oral probiotics have also been promoted. What is becoming increasingly apparent is that the future for oral probiotic applications will probably extend well beyond the attempted limitation of the direct pathological consequences of oral microbiome dysbiosis to also encompass a plethora of systemic diseases and disorders of the human host. The background to and the evolving prospects for the beneficial modulation of the oral microbiome via the application of BLIS-producing S. salivarius probiotics comprises the principal focus of the present review.
Collapse
|
21
|
Detoxification of Aflatoxins in Fermented Cereal Gruel (Ogi) by Probiotic Lactic Acid Bacteria and Yeasts with Differences in Amino Acid Profiles. Toxins (Basel) 2023; 15:toxins15030210. [PMID: 36977101 PMCID: PMC10053840 DOI: 10.3390/toxins15030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Toxigenic members of Aspergillus flavus contaminate cereal grains, resulting in contamination by aflatoxin, a food safety hazard that causes hepatocellular carcinoma. This study identified probiotic strains as aflatoxin detoxifiers and investigated the changes to the grain amino acid concentrations during fermentation with probiotics in the presence of either A. flavus La 3228 (an aflatoxigenic strain) or A. flavus La 3279 (an atoxigenic strain). Generally, higher concentrations (p < 0.05) of amino acids were detected in the presence of toxigenic A. flavus La 3228 compared to the atoxigenic A. flavus La 3279. Compared to the control, 13/17 amino acids had elevated (p < 0.05) concentrations in the presence of the toxigenic A. flavus compared to the control, whereas in systems with the atoxigenic A. flavus 13/17 amino acids had similar (p > 0.05) concentrations to the control. There were interspecies and intraspecies differences in specific amino acid elevations or reductions among selected LAB and yeasts, respectively. Aflatoxins B1 and B2 were detoxified by Limosilactobacillus fermentum W310 (86% and 75%, respectively), Lactiplantibacillus plantarum M26 (62% and 63%, respectively), Candida tropicalis MY115 (60% and 77%, respectively), and Candida tropicalis YY25, (60% and 31%, respectively). Probiotics were useful detoxifiers; however, the extent of decontamination was species- and strain-dependent. Higher deviations in amino acid concentrations in the presence of toxigenic La 3228 compared to atoxigenic La 3279 suggests that the detoxifiers did not act by decreasing the metabolic activity of the toxigenic strain.
Collapse
|
22
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
23
|
Tang J, Yin L, Zhao Z, Ge L, Hou L, Liu Y, Chen X, Huang K, Gan F. Isolation, identification and safety evaluation of OTA-detoxification strain Pediococcus acidilactici NJB421 and its effects on OTA-induced toxicity in mice. Food Chem Toxicol 2023; 172:113604. [PMID: 36623685 DOI: 10.1016/j.fct.2023.113604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Ochratoxin A (OTA) is a potent mycotoxin found in foods and feeds, posing a health risk to animals and humans. Biological detoxification of OTA is considered a promising method, and some bacteria and fungi which can degrade OTA are isolated. However, research on safety and alleviating toxic effects are scarce. This study aims to isolate OTA-detoxification probiotics from natural samples and evaluate their safety and protective effects in mice. Here, a new OTA-detoxification strain named Pediococcus acidilactici NJB421 (P. acidilactici NJB421) was isolated from cow manure, which exhibited a removal rate of OTA at 48.53% for 48 h. P. acidilactici NJB421 exhibited high temperature resistance, acid tolerance, 0.3% bile salt and 1.4% trypsin resistance. The safety evaluation showed that P. acidilactici NJB421 at 2 × 108 CFU/per mouse had no abnormalities in body weight, organ indices, ALT, AST and ALP activities, BUN, CRE and TP contents. And P. acidilactici NJB421 alleviated the decreases in body weight, organ indices and small intestinal length, and alleviated intestinal injury, liver injury and kidney injury. These results suggest P. acidilactici NJB421 is safe and has protection against OTA poisoning, which provides a new OTA-detoxification strain for livestock and food industries.
Collapse
Affiliation(s)
- Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liuwen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
24
|
Evaluation of the Adsorption Efficacy of Bentonite on Aflatoxin M 1 Levels in Contaminated Milk. Toxins (Basel) 2023; 15:toxins15020107. [PMID: 36828421 PMCID: PMC9966358 DOI: 10.3390/toxins15020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The existence of aflatoxin M1 (AFM1) in raw milk results in economic losses and public health risks. This research aims to examine the capability of bentonite to adsorb and/or eliminate AFM1 from various raw milk types. In addition, the effects of numerous bentonites (HAFR 1, 2, 3 and 4) on the nutritional characteristics of the milk were studied. Our findings revealed that goat milk had the highest value of AFM1 (490.30 ng/L) in comparison to other milks. AFM1 adsorption was influenced by applying bentonite (0.5 and 1 g) in a concentration-dependent manner for different time intervals (from 0 to 12 h). The percentage of AFM1 reached the maximum adsorption level after 12 h to 100, 98.5 and 98% for bentonites HAFR 3, 1 and 2, respectively. HAFR 3 (1 g bentonite) presented higher adsorption efficiency than other bentonites used in the phosphate buffer saline (PBS) and milk. Residual levels of AFM1 reached their lowest values of 0 and 1.5 ng/L while using HAFR 3 in PBS and milk, respectively. With regard to the influence of bentonite on the nutritional characteristics of milk, there was an increase in fat, protein and solid non-fat ratio while using HAFR 3 and 4, yet decreased lactose in comparison with the control. Scanning Electron Microscopy and Fourier Transform-Infrared Spectroscopy both identified bentonites as superior AFM1 binders. The results demonstrated that bentonite, particularly HAFR 3, was the most effective adsorbent and could thus be a promising candidate for the decontamination of AFM1 in milk.
Collapse
|
25
|
Ferreira TH, Maximiano P, Ureta M, Gomez-Zavaglia A, Simões PN. Molecular Simulation: a remarkable tool to study mechanisms of cell membrane preservation in probiotic bacteria. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Binding and Detoxification of Insecticides by Potentially Probiotic Lactic Acid Bacteria Isolated from Honeybee ( Apis mellifera L.) Environment-An In Vitro Study. Cells 2022; 11:cells11233743. [PMID: 36496999 PMCID: PMC9740702 DOI: 10.3390/cells11233743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabiting the digestive tract of honeybees are known for their ability to detoxify xenobiotics. The effect of chlorpyrifos, coumaphos, and imidacloprid on the growth of LAB strains was tested. All strains showed high resistance to these insecticides. Subsequently, the insecticide binding ability of LAB was investigated. Coumaphos and chlorpyrifos were bound to the greatest extent (up to approx. 64%), and imidacloprid to a much weaker extent (up to approx. 36%). The insecticides were detected in extra- and intracellular extracts of the bacterial cell wall. The ability of selected LAB to reduce the cyto- and genotoxicity of insecticides was tested on two normal (ovarian insect Sf-9 and rat intestinal IEC-6) cell lines and one cancer (human intestinal Caco-2) cell line. All strains exhibited various levels of reduction in the cyto- and genotoxicity of tested insecticides. It seems that coumaphos was detoxified most potently. The detoxification abilities depended on the insecticide, LAB strain, and cell line. The detoxification of insecticides in the organisms of honeybees may reduce the likelihood of the penetration of these toxins into honeybee products consumed by humans and may contribute to the improvement of the condition in apiaries and honeybee health.
Collapse
|
27
|
Yu DY, Oh SH, Kim IS, Kim GI, Kim JA, Moon YS, Jang JC, Lee SS, Jung JH, Park J, Cho KK. Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1184-1198. [PMID: 36812041 PMCID: PMC9890339 DOI: 10.5187/jast.2022.e89] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.
Collapse
Affiliation(s)
- Da Yoon Yu
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Gwang Il Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Jeong A Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience &
Integrated Biotechnology, Gyeongsang National University,
Jinju 52725, Korea
| | - Jae Cheol Jang
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang Suk Lee
- Department of Animal Science and
Technology, Sunchon National University, Sunchon 57922,
Korea
| | | | - Jun Park
- Department of Animal Biotechnology,
Jeonbok National University, Jeonju 54896, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea,Corresponding author: Kwang Keun Cho
Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea.
Tel: +82-55-772-3286 E-mail:
| |
Collapse
|
28
|
Yang D, Ye Y, Sun J, Wang JS, Huang C, Sun X. Occurrence, transformation, and toxicity of fumonisins and their covert products during food processing. Crit Rev Food Sci Nutr 2022; 64:3660-3673. [PMID: 36239314 DOI: 10.1080/10408398.2022.2134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fumonisins comprise structurally related metabolites mainly produced by Fusarium verticillioides and Fusarium proliferatum. Contamination with fumonisins causes incalculable damage to the economy and poses a great risk to animal and human health. Fumonisins and their covert products are found in cereals and cereal products. Food processing significantly affects the degradation of toxins and the formation of covert toxins. However, studies on fumonisins and their covert mycotoxins remain inadequate. This review aims to summarize changes in fumonisins and the generation of covert fumonisins during processing. It also investigates the toxicity and determination methods of fumonisins and covert fumonisins, and elucidates the factors affecting fumonisins and their covert forms during processing. In addition to the metabolic production by plants and fungi, covert fumonisins are mainly produced by covalent or noncovalent binding, complexation, or physical entrapment of fumonisins with other substances. The toxicity of covert fumonisins is similar to that of free fumonisins and is a non-negligible hazard. Covert fumonisins are commonly found in food matrices, and methods to analyze them have yet to be improved. Food processing significantly affects the conversion of fumonisins to their covert toxins.
Collapse
Affiliation(s)
- Diaodiao Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Caihong Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
29
|
Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int J Mol Sci 2022; 23:ijms231710062. [PMID: 36077456 PMCID: PMC9455991 DOI: 10.3390/ijms231710062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.
Collapse
|