1
|
Urrutia-Baca VH, Álvarez-Buylla JR, Gueimonde M, Chuck-Hernández C, Ruas-Madiedo P, González-Iglesias H. Comparative study of the oligosaccharide profile in goat, bovine, sheep, and human milk whey. Food Chem 2025; 463:141123. [PMID: 39260165 DOI: 10.1016/j.foodchem.2024.141123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Milk oligosaccharides are high added value compounds that could be obtained by exploiting cheese whey, a byproduct of dairy industry. The objective was to compare the abundance and diversity of oligosaccharides in whey samples from domestic animals and humans. During fresh cheese making, whey samples were collected and analyzed by untargeted and targeted small molecule analysis using high-resolution mass-spectrometry. A great similarity in the metabolite profile between goat and sheep was observed. Up to 11 oligosaccharides were observed in the sheep whey from those typically found in humans. The concentration of 2'-Fucosyllactose (0.136 ± 0.055 g/L) and 3-Fucosyllactose (0.079 ± 0.009 g/L) were significantly higher (p-value <0.01) in sheep whey, while the concentration of 3'-Sialyllactose (0.826 ± 0.638 g/L) was higher in goat whey. No significant differences were observed between goat and sheep whey for the other oligosaccharides (p-value >0.05). Therefore, sheep and goat whey could become an important source of oligosaccharides through their revalorization.
Collapse
Affiliation(s)
- Víctor Hugo Urrutia-Baca
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Jorge R Álvarez-Buylla
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
2
|
Sadder LS, Brown LS, Roblyer L, Sanghavi R, Ortigoza EB. Antibiotic duration and gastric dysmotility in preterm neonates. J Pediatr Gastroenterol Nutr 2024; 79:533-540. [PMID: 38708837 PMCID: PMC11424269 DOI: 10.1002/jpn3.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES Prolonged antibiotic use after birth is associated with neonatal feeding intolerance and functional gastrointestinal disorders (FGIDs). A gastric dysrhythmia (tachygastria) with frequencies >4-9 cycles per minute, measured by electrogastrography (EGG), is associated with FGIDs. The relationship between prolonged antibiotic use and % time spent in tachygastria is unknown in preterm infants. We aimed to compare weekly changes in % tachygastria between preterm infants receiving long (>48 h) versus short (≤48 h) courses of antibiotics for early onset sepsis evaluation (initiated at <3 days of life). METHODS This was a longitudinal, prospective cohort study of 88 preterm infants (<34 weeks' gestation) with weekly EGG recordings from the first week of life until 40 weeks' post-menstrual age, discharge, or death. We calculated % of EGG recording time in tachygastria and determined the mean across weekly sessions. A mixed effects model assessed variance in % tachygastria between the short- and long-antibiotic exposure groups across all weeks. RESULTS Baseline characteristics were similar between the two groups. There was no difference in % tachygastria between short and long antibiotic exposure groups across nine postnatal weeks (p = 0.08). CONCLUSIONS Early, prolonged antibiotic exposure among preterm infants may not lead to significant gastric dysrhythmia. Future studies including larger sample sizes and a "no antibiotic" exposure arm are essential in elucidating this potential relationship.
Collapse
Affiliation(s)
- Liane Samira Sadder
- Division of Pediatric Gastroenterology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lindsay Roblyer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rinarani Sanghavi
- Division of Pediatric Gastroenterology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Brum Ortigoza
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Du Z, Li Z, Guang C, Zhu Y, Mu W. Recent advances of 3-fucosyllactose in health effects and production. Arch Microbiol 2024; 206:378. [PMID: 39143417 DOI: 10.1007/s00203-024-04104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Human milk oligosaccharides (HMOs) have been recognized as gold standard for infant development. 3-Fucosyllactose (3-FL), being one of the Generally Recognized as Safe HMOs, represents a core trisaccharide within the realm of HMOs; however, it has received comparatively less attention in contrast to extensively studied 2'-fucosyllactose. The objective of this review is to comprehensively summarize the health effects of 3-FL, including its impact on gut microbiota proliferation, antimicrobial effects, immune regulation, antiviral protection, and brain maturation. Additionally, the discussion also covers the commercial application and regulatory approval status of 3-FL. Lastly, an organized presentation of large-scale production methods for 3-FL aims to provide a comprehensive guide that highlights current strategies and challenges in optimization.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Mazzocchi A, Agostoni C. Human milk oligosaccharides and infant growth: a global health approach. Pediatr Res 2024; 96:277-278. [PMID: 38263450 DOI: 10.1038/s41390-024-03037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Pediatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Ramirez-Farias C, Oliver JS, Schlezinger J, Stutts JT. Tolerance of Infants Fed a Hydrolyzed Rice Infant Formula with 2'-Fucosyllactose (2'-FL) Human Milk Oligosaccharide (HMO). Nutrients 2024; 16:1863. [PMID: 38931218 PMCID: PMC11206301 DOI: 10.3390/nu16121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The purpose of this research was to assess the growth, tolerance, and compliance outcomes associated with the consumption of a hydrolyzed rice infant formula (HRF) enriched with 2'-Fucosyllactose (2'-FL) a Human Milk Oligosaccharide (HMO), and nucleotides in an intended population of infants. METHODS This was a non-randomized single-group, multicenter study. The study formula was a hypoallergenic HRF with 2'-FL, Docosahexaenoic acid (DHA), Arachidonic acid (ARA), and nucleotides. Infants 0-90 days of age who were formula fed and experiencing persistent feeding intolerance symptoms, symptoms of suspected food protein (milk and/or soy) allergy, or other conditions where an extensively hydrolyzed infant formula was deemed an appropriate feeding option were recruited by pediatricians from their local populations. The primary outcome was maintenance of weight-for-age z-score. Weight, length, head circumference, formula intake, tolerance measures, clinical symptoms and questionnaires were collected. Thirty-three infants were enrolled, and 27 completed the study, on study product. RESULTS Weight-for-age z-scores of infants showed a statistically significant improvement from Visit 1 to Visit 4 (p = 0.0331). There was an adequate daily volume intake of 762 ± 28 mL/day, average daily number of stools of 2.1 ± 0.3, and mean rank stool consistency of 2.38 ± 0.18. After 28 days of switching to a HRF, 86.8 ± 5.9% of the symptoms resolved or got better by Visit 4 as reported by parents. CONCLUSIONS HRF with 2'-FL HMO was safe, well tolerated, and supported weight gain in infants with suspected cow's milk allergy or persistent feeding intolerance.
Collapse
Affiliation(s)
- Carlett Ramirez-Farias
- Scientific & Medical Affairs, Abbott Nutrition, Columbus, OH 43219, USA; (J.S.O.); (J.T.S.)
| | | | | | | |
Collapse
|
6
|
Patil K, Ayyar BV, Neill FH, Bode L, Estes MK, Atmar RL, Ramani S. 2'-Fucosyllactose Inhibits Human Norovirus Replication in Human Intestinal Enteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596597. [PMID: 38853945 PMCID: PMC11160698 DOI: 10.1101/2024.05.30.596597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains. We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16] HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple adult donors, all segments of the small intestine from an adult organ donor and in two pediatric duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had significantly lower expression of α1-2-fucosylated glycans. 2'FL can be synthesized in large scale, and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the potential to be developed as a therapeutic for HuNoV gastroenteritis.
Collapse
Affiliation(s)
- Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - B. Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Yao Q, Gao Y, Zheng N, Delcenserie V, Wang J. Unlocking the mysteries of milk oligosaccharides: Structure, metabolism, and function. Carbohydr Polym 2024; 332:121911. [PMID: 38431414 DOI: 10.1016/j.carbpol.2024.121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Milk oligosaccharides (MOs), complex carbohydrates prevalent in human breast milk, play a vital role in infant nutrition. Serving as prebiotics, they inhibit pathogen adherence, modulate the immune system, and support newborn brain development. Notably, MOs demonstrate significant variations in concentration and composition, both across different species and within the same species. These characteristics of MOs lead to several compelling questions: (i) What distinct beneficial functions do MOs offer and how do the functions vary along with their structural differences? (ii) In what ways do MOs in human milk differ from those in other mammals, and what factors drive these unique profiles? (iii) What are the emerging applications of MOs, particularly in the context of their incorporation into infant formula? This review delves into the structural characteristics, quantification methods, and species-specific concentration differences of MOs. It highlights the critical role of human MOs in infant growth and their potential applications, providing substantial evidence to enhance infant health and development.
Collapse
Affiliation(s)
- Qianqian Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yanan Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Veronique Delcenserie
- Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
8
|
Pitt J, Bond J, Roper J, Tenning P, Mukherjea R, Evans K, Saarinen MT, Anglenius H, Hirvonen J, Hasselwander O, Lim A. A 21-day safety evaluation of biotechnologically produced 3-fucosyllactose (3-FL) in neonatal farm piglets to support use in infant formulas. Food Chem Toxicol 2024; 187:114592. [PMID: 38493976 DOI: 10.1016/j.fct.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
3-Fucosyllactose (3-FL) is one of the most abundant fucosylated oligosaccharides in human breast milk and is an approved infant formula ingredient world-wide. 3-FL functions as a prebiotic to promote early microbial colonization of the gut, increase pathogen resistance and modulate immune responses. To investigate safety and potential gut microbiota effects, 3-FL was fed for 21-days to farm piglets beginning on Postnatal Day (PND) 2. Fructooligosaccharide (FOS), an approved infant formula ingredient, was used as a reference control. Standard toxicological endpoints were evaluated, and the gut microbiota were assessed. Neither 3-FL (245.77 and 489.72 mg/kg/day for males and 246.57 and 494.18 mg/kg/day for females) nor FOS (489.44 and 496.33 mg/kg/day males and females, respectively) produced any adverse differences in growth, food intake or efficiency, clinical observations, or clinical or anatomic pathology changes. Differences in the gut microbiota after 3-FL consumption (versus control and FOS groups) included the absence of Bifidobacterium species from the piglets, enrichment of Prevotellamassilia timonensis, Blautia species, Mediterranea massiliensis, Lachnospiraceae incertae sedis, and Eubacterium coprostanoligens and lower relative abundance of Allisonella histaminiformans and Roseburia inulinivorans. This study further supports the safe use of 3-FL produced using biotechnology as a nutritional ingredient in foods.
Collapse
Affiliation(s)
- Jeffrey Pitt
- International Flavors & Fragrances, Larkin Laboratory, 1803 Larkin Center Drive, Midland, MI, 48642, USA.
| | - Jennifer Bond
- Charles River (CR-MWN), 54943 N. Main Street, Mattawan, MI, 49071, USA; Labcorp Drug Development, 671 South Meridian Road, Greenfield, IN, 46140, USA
| | - Jason Roper
- DuPont Stine-Haskell, 1090 Elkton Rd, Newark, DE, 19714, USA; Teva Pharmaceuticals, 145 Brandywine Parkway, West Chester, PA, 19380, USA
| | - Paul Tenning
- International Flavors & Fragrances, Leiden Bio Science Park, Galileiweg 8, 2333 BD, Leiden, the Netherlands
| | - Ratna Mukherjea
- DuPont Stine-Haskell, 1090 Elkton Rd, Newark, DE, 19714, USA; Benson Hill, 1001 N Warson Rd, St. Louis, MO, 63132, USA
| | - Kara Evans
- International Flavors & Fragrances, 3329 Agriculture Drive, Madison, WI, 53716, USA
| | - Markku T Saarinen
- International Flavors & Fragrances, Health & Biosciences Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Heli Anglenius
- International Flavors & Fragrances, Health & Biosciences Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Johanna Hirvonen
- International Flavors & Fragrances, Health & Biosciences Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Oliver Hasselwander
- International Flavors & Fragrances, Health & Biosciences, c/o Danisco UK Ltd., Reigate, RH2 9PW, United Kingdom
| | - Angela Lim
- International Flavors & Fragrances, DuPont Experimental Station, Bldg. 353, 200 Powder Mill Rd, Wilmington, DE, 19803, USA
| |
Collapse
|
9
|
Ong ML, Cherkerzian S, Bell KA, Berger PK, Furst A, Sejane K, Bode L, Belfort MB. Human Milk Oligosaccharides, Growth, and Body Composition in Very Preterm Infants. Nutrients 2024; 16:1200. [PMID: 38674890 PMCID: PMC11054505 DOI: 10.3390/nu16081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive factors that benefit neonatal health, but little is known about effects on growth in very preterm infants (<32 weeks' gestation). We aimed to quantify HMO concentrations in human milk fed to very preterm infants during the neonatal hospitalization and investigate associations of HMOs with infant size and body composition at term-equivalent age. In 82 human-milk-fed very preterm infants, we measured HMO concentrations at two time points. We measured anthropometrics and body composition with air displacement plethysmography at term-equivalent age. We calculated means of individual and total HMOs, constructed tertiles of mean HMO concentrations, and assessed differences in outcomes comparing infants in the highest and intermediate tertiles with the lowest tertile using linear mixed effects models, adjusted for potential confounders. The mean (SD) infant gestational age was 28.2 (2.2) weeks, and birthweight was 1063 (386) grams. Exposure to the highest (vs. lowest) tertile of HMO concentrations was not associated with anthropometric or body composition z-scores at term-corrected age. Exposure to the intermediate (vs. lowest) tertile of 3FL was associated with a greater head circumference z-score (0.61, 95% CI 0.15, 1.07). Overall, the results do not support that higher HMO intakes influence growth outcomes in this very preterm cohort.
Collapse
Affiliation(s)
- Margaret L. Ong
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sara Cherkerzian
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Katherine A. Bell
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Paige K. Berger
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Mandy B. Belfort
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
10
|
van der Woude H, Pelgrom SMJG, Buskens C, Hoffmans R, Krajcs N, Delsing DJ. Pre-clinical safety assessment of biotechnologically produced lacto-N-tetraose (LNT). Regul Toxicol Pharmacol 2024; 148:105580. [PMID: 38316330 DOI: 10.1016/j.yrtph.2024.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Lacto-N-tetraose (LNT) is a human milk oligosaccharide with average concentrations ranging from 0.74 to 1.07 g/L in breastmilk, depending on the lactation stage. In this study, the preclinical safety of LNT produced by the Escherichia coli K-12 E2083 production strain was assessed. LNT was negative in both the bacterial reverse mutation assay and the in vitro micronucleus assay, demonstrating the absence of genotoxic potential for this substance. In the OECD 408 guideline compliant 90-day oral toxicity study rat, LNT did not induce any adverse effects in any treatment group up to and including the highest dose tested, and no LOAEL could be determined. Therefore, the no-observed-adverse effect level (NOAEL) is set at the highest dose level tested, i.e. a dietary level of 5 % (w/w), corresponding to ≥2856 mg/kg bw/day and ≥3253 mg/kg bw/day for males and females, respectively. This might be an underestimation of the NOAEL, caused by the range of dose levels tested. The results obtained in the current study are in good agreement with available data generated using other biotechnologically produced LNT batches and therefore support its safe use as a food ingredient.
Collapse
Affiliation(s)
- Hester van der Woude
- Charles River Laboratories, Hambakenwetering 7, 5231 DD, 's-Hertogenbosch, the Netherlands.
| | - Sylvia M J G Pelgrom
- Charles River Laboratories, Hambakenwetering 7, 5231 DD, 's-Hertogenbosch, the Netherlands
| | - Carin Buskens
- Charles River Laboratories, Hambakenwetering 7, 5231 DD, 's-Hertogenbosch, the Netherlands
| | - Roy Hoffmans
- Charles River Laboratories, Hambakenwetering 7, 5231 DD, 's-Hertogenbosch, the Netherlands
| | - Nora Krajcs
- Charles River Laboratories, Veszprém, Szabadságpuszta, 8200, Hungary
| | - Dianne J Delsing
- FrieslandCampina, Stationsplein 4, 3818 LE, Amersfoort, the Netherlands
| |
Collapse
|
11
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
12
|
Monaco MH, Wang M, Hauser J, Yan J, Dilger RN, Donovan SM. Formula supplementation with human and bovine milk oligosaccharides modulates blood IgG and T-helper cell populations, and ex vivo LPS-stimulated cytokine production in a neonatal preclinical model. Front Immunol 2023; 14:1327853. [PMID: 38179055 PMCID: PMC10765566 DOI: 10.3389/fimmu.2023.1327853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Human milk contains structurally diverse oligosaccharides (HMO), which are multifunctional modulators of neonatal immune development. Our objective was to investigate formula supplemented with fucosylated (2'FL) + neutral (lacto-N-neotetraose, LNnt) oligosaccharides and/or sialylated bovine milk oligosaccharides (BMOS) on immunological outcomes. Methods Pigs (n=46) were randomized at 48h of age to four diets: sow milk replacer formula (CON), BMOS (CON + 6.5 g/L BMOS), HMO (CON + 1.0 g/L 2'FL + 0.5 g/L LNnT), or BMOS+HMO (CON + 6.5 g/L BMOS + 1.0 g/L 2'FL + 0.5 g/L LNnT). Blood and tissues were collected on postnatal day 33 for measurement of cytokines and IgG, phenotypic identification of immune cells, and ex vivo lipopolysaccharide (LPS)-stimulation of immune cells. Results Serum IgG was significantly lower in the HMO group than BMOS+HMO but did not differ from CON or BMOS. The percentage of PBMC T-helper cells was lower in BMOS+HMO than the other groups. Splenocytes from the BMOS group secreted more IL-1β when stimulated ex vivo with LPS compared to CON or HMO groups. For PBMCs, a statistical interaction of BMOS*HMO was observed for IL-10 secretion (p=0.037), with BMOS+HMO and HMO groups differing at p=0.1. Discussion The addition of a mix of fucosylated and sialylated oligosaccharides to infant formula provides specific activities in the immune system that differ from formulations supplemented with one oligosaccharide structure.
Collapse
Affiliation(s)
- Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, Vevey, Switzerland
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Selvamani S, Kapoor N, Ajmera A, El Enshasy HA, Dailin DJ, Sukmawati D, Abomoelak M, Nurjayadi M, Abomoelak B. Prebiotics in New-Born and Children's Health. Microorganisms 2023; 11:2453. [PMID: 37894112 PMCID: PMC10608801 DOI: 10.3390/microorganisms11102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
At present, prebiotics, like probiotics, are receiving more attention as a promising tool for health maintenance. Many studies have recognized the role of prebiotics in preventing and treating various illnesses including metabolic disorders, gastrointestinal disorders, and allergies. Naturally, prebiotics are introduced to the human body in the first few hours of life as the mother breastfeeds the newborn. Prebiotic human milk oligosaccharides (HMOs) are the third largest constituent of human breastmilk. Studies have proven that HMOs modulate an infant's microbial composition and assist in the development of the immune system. Due to some health conditions of the mother or beyond the recommended age for breastfeeding, infants are fed with formula. Few types of prebiotics have been incorporated into formula to yield similar beneficial impacts similar to breastfeeding. Synthetic HMOs have successfully mimicked the bifidogenic effects of breastmilk. However, studies on the effectiveness and safety of consumption of these synthetic HMOs are highly needed before massive commercial production. With the introduction of solid foods after breastfeeding or formula feeding, children are exposed to a range of prebiotics that contribute to further shaping and maturing their gut microbiomes and gastrointestinal function. Therefore, this review evaluates the functional role of prebiotic interventions in improving microbial compositions, allergies, and functional gastrointestinal disorders in children.
Collapse
Affiliation(s)
- Shanmugaprakasham Selvamani
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia; (S.S.); (H.A.E.E.); (D.J.D.)
- Nutrition Technologies SDN. BHD., No 1 & No 3, Jalan SiLC 2, Kawasan Perindustrian SiLC, Iskandar Puteri, Johor Bahru 80150, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia
| | - Nidhi Kapoor
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA (A.A.)
| | - Arun Ajmera
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA (A.A.)
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia; (S.S.); (H.A.E.E.); (D.J.D.)
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21500, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia; (S.S.); (H.A.E.E.); (D.J.D.)
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia
| | - Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur 13530, Indonesia; (D.S.); (M.N.)
| | | | - Muktiningsih Nurjayadi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur 13530, Indonesia; (D.S.); (M.N.)
| | - Bassam Abomoelak
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA (A.A.)
- Specialty Diagnostic Laboratory, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| |
Collapse
|
15
|
Liu S, Mao Y, Wang J, Tian F, Hill DR, Xiong X, Li X, Zhao Y, Wang S. Lactational and geographical variation in the concentration of six oligosaccharides in Chinese breast milk: a multicenter study over 13 months postpartum. Front Nutr 2023; 10:1267287. [PMID: 37731395 PMCID: PMC10508235 DOI: 10.3389/fnut.2023.1267287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Understanding the variations of oligosaccharide in breast milk contribute to better study how human milk oligosaccharides (HMOs) play a role in health-promoting benefits in infants. Methods Six abundant HMOs, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), in breast milk collected at 0-5 days, 10-15 days, 40-45 days, 200-240 days, and 300-400 days postpartum from six locations across China were analyzed using high-performance anion-exchange chromatography-pulsed amperometric detector. Results The concentration of individual HMO fluctuated dynamically during lactational stages. The median ranges of 2'-FL, 3-FL, LNT, LNnT, 3'-SL, and 6'-SL across the five lactational stages were 935-2865 mg/L, 206-1325 mg/L, 300-1473 mg/L, 32-317 mg/L, 106-228 mg/L, and 20-616 mg/L, respectively. The prominent variation was observed in the content of 6'-SL, which demonstrates a pattern of initial increase followed by a subsequent decrease. Among the five lactational stages, the transitional milk has the highest concentration, which was 31 times greater than the concentration in mature milk at 300-400 days postpartum, where the content is the lowest. Geographical location also influenced the content of HMOs. LNT and LNnT were the highest in mature milk of mothers from Lanzhou among the six sites at 40-240 days postpartum. Breast milks were categorized into two groups base on the abundance of 2'-FL (high and low). There was no significant difference in the proportions of high and low 2'-FL phenotypes among the six sites, and the percentages of high and low 2'-FL phenotypes were 79% and 21%, respectively, across all sites in China. Discussion This study provided a comprehensive dataset on 6 HMOs concentrations in Chinese breast milk during the extended postpartum period across a wide geographic range and stratified by high and low 2'-FL phenotypes.
Collapse
Affiliation(s)
- Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yingyi Mao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - David R. Hill
- Abbott Nutrition Research & Development Center, Columbus, OH, United States
| | - Xiaoying Xiong
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Yanrong Zhao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Fan Y, McMath AL, Donovan SM. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients 2023; 15:3743. [PMID: 37686775 PMCID: PMC10490528 DOI: 10.3390/nu15173743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Milk Oligosaccharides (MOS), a group of complex carbohydrates found in human and bovine milk, have emerged as potential modulators of optimal brain development for early life. This review provides a comprehensive investigation of the impact of milk oligosaccharides on brain and neurocognitive development of early life by synthesizing current literature from preclinical models and human observational studies. The literature search was conducted in the PubMed search engine, and the inclusion eligibility was evaluated by three reviewers. Overall, we identified 26 articles for analysis. While the literature supports the crucial roles of fucosylated and sialylated milk oligosaccharides in learning, memory, executive functioning, and brain structural development, limitations were identified. In preclinical models, the supplementation of only the most abundant MOS might overlook the complexity of naturally occurring MOS compositions. Similarly, accurately quantifying MOS intake in human studies is challenging due to potential confounding effects such as formula feeding. Mechanistically, MOS is thought to impact neurodevelopment through modulation of the microbiota and enhancement of neuronal signaling. However, further advancement in our understanding necessitates clinical randomized-controlled trials to elucidate the specific mechanisms and long-term implications of milk oligosaccharides exposure. Understanding the interplay between milk oligosaccharides and cognition may contribute to early nutrition strategies for optimal cognitive outcomes in children.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
17
|
Schönknecht YB, Moreno Tovar MV, Jensen SR, Parschat K. Clinical Studies on the Supplementation of Manufactured Human Milk Oligosaccharides: A Systematic Review. Nutrients 2023; 15:3622. [PMID: 37630811 PMCID: PMC10458772 DOI: 10.3390/nu15163622] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are a major component of human milk. They are associated with multiple health benefits and are manufactured on a large scale for their addition to different food products. In this systematic review, we evaluate the health outcomes of published clinical trials involving the supplementation of manufactured HMOs. We screened the PubMed database and Cochrane Library, identifying 26 relevant clinical trials and five publications describing follow-up studies. The clinical trials varied in study populations, including healthy term infants, infants with medical indications, children, and adults. They tested eight different HMO structures individually or as blends in varying doses. All trials included safety and tolerance assessments, and some also assessed growth, stool characteristics, infections, gut microbiome composition, microbial metabolites, and biomarkers. The studies consistently found that HMO supplementation was safe and well tolerated. Infant studies reported a shift in outcomes towards those observed in breastfed infants, including stool characteristics, gut microbiome composition, and intestinal immune markers. Beneficial gut health and immune system effects have also been observed in other populations following HMO supplementation. Further clinical trials are needed to substantiate the effects of HMO supplementation on human health and to understand their structure and dose dependency.
Collapse
|
18
|
Holst AQ, Myers P, Rodríguez-García P, Hermes GDA, Melsaether C, Baker A, Jensen SR, Parschat K. Infant Formula Supplemented with Five Human Milk Oligosaccharides Shifts the Fecal Microbiome of Formula-Fed Infants Closer to That of Breastfed Infants. Nutrients 2023; 15:3087. [PMID: 37513505 PMCID: PMC10383262 DOI: 10.3390/nu15143087] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Breastmilk is the optimal source of infant nutrition, with short-term and long-term health benefits. Some of these benefits are mediated by human milk oligosaccharides (HMOs), a unique group of carbohydrates representing the third most abundant solid component of human milk. We performed the first clinical study on infant formula supplemented with five different HMOs (5HMO-mix), comprising 2'-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose and 6'-sialyllactose at a natural total concentration of 5.75 g/L, and here report the analysis of the infant fecal microbiome. We found an increase in the relative abundance of bifidobacteria in the 5HMO-mix cohort compared with the formula-fed control, specifically affecting bifidobacteria that can produce aromatic lactic acids. 5HMO-mix influenced the microbial composition as early as Week 1, and the observed changes persisted to at least Week 16, including a relative decrease in species with opportunistic pathogenic strains down to the level observed in breastfed infants during the first 4 weeks. We further analyzed the functional potential of the microbiome and observed features shared between 5HMO-mix-supplemented and breastfed infants, such as a relative enrichment in mucus and tyrosine degradation, with the latter possibly being linked to the aromatic lactic acids. The 5HMO-mix supplement, therefore, shifts the infant fecal microbiome closer to that of breastfed infants.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Baker
- Chr. Hansen A/S, 2970 Hoersholm, Denmark
| | | | | |
Collapse
|
19
|
Salli K, Hirvonen J, Anglenius H, Hibberd AA, Ahonen I, Saarinen MT, Maukonen J, Ouwehand AC. The Effect of Human Milk Oligosaccharides and Bifidobacterium longum subspecies infantis Bi-26 on Simulated Infant Gut Microbiome and Metabolites. Microorganisms 2023; 11:1553. [PMID: 37375055 DOI: 10.3390/microorganisms11061553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Human milk oligosaccharides (HMOs) shape the developing infant gut microbiota. In this study, a semi-continuous colon simulator was used to evaluate the effect of 2 HMOs-2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL)-on the composition of infant faecal microbiota and microbial metabolites. The simulations were performed with and without a probiotic Bifidobacterium longum subspecies infantis Bi-26 (Bi-26) and compared with a control that lacked an additional carbon source. The treatments with HMOs decreased α-diversity and increased Bifidobacterium species versus the control, but the Bifidobacterium species differed between simulations. The levels of acetic acid and the sum of all short-chain fatty acids (SCFAs) trended toward an increase with 2'-FL, as did lactic acid with 2'-FL and 3-FL, compared with control. A clear correlation was seen between the consumption of HMOs and the increase in SCFAs (-0.72) and SCFAs + lactic acid (-0.77), whereas the correlation between HMO consumption and higher total bifidobacterial numbers was moderate (-0.46). Bi-26 decreased propionic acid levels with 2'-FL. In conclusion, whereas infant faecal microbiota varied between infant donors, the addition of 2'-FL and 3-FL, alone or in combination, increased the relative abundance and numbers Bifidobacterium species in the semi-continuous colon simulation model, correlating with the production of microbial metabolites. These findings may suggest that HMOs and probiotics benefit the developing infant gut microbiota.
Collapse
Affiliation(s)
- Krista Salli
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Johanna Hirvonen
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Heli Anglenius
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Ashley A Hibberd
- Genomics & Microbiome Science, IFF Health, Madison, WI 53716, USA
| | | | - Markku T Saarinen
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Johanna Maukonen
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| | - Arthur C Ouwehand
- Global Health & Nutrition Science, IFF Health, 02460 Kantvik, Finland
| |
Collapse
|
20
|
Morissette R, Mihalov J, Carlson SJ, Kaneko KJ. Trends in ingredients added to infant formula: FDA's experiences in the GRAS notification program. Food Chem Toxicol 2023:113876. [PMID: 37286029 DOI: 10.1016/j.fct.2023.113876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
While human milk is considered the optimal source of nutrition for infants for the first six and twelve months of age, with continued benefit of breastfeeding with complementary foods, a safe alternative, nutritionally adequate to support infant growth and development, is necessary. In the United States, the Food and Drug Administration (FDA) establishes the requirements necessary to demonstrate the safety of infant formula within the framework of the Federal Food, Drug, and Cosmetic Act. FDA's Center for Food Safety and Applied Nutrition/Office of Food Additive Safety evaluates the safety and lawfulness of individual ingredients used in infant formula, whereas the Office of Nutrition and Food Labeling oversees the safety of infant formula. Most infant formula ingredients are either from sources with history of safe consumption by infants or are like components in human milk. Information demonstrating the regulatory status of all ingredients is required in submissions for new infant formulas, and ingredient manufacturers often use the Generally Recognized as Safe (GRAS) Notification program to establish ingredient regulatory status. We provide an overview of ingredients used in infant formula evaluated through the GRAS Notification program to highlight trends and discuss the data and information used to reach these GRAS conclusions.
Collapse
Affiliation(s)
- Rachel Morissette
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Jeremy Mihalov
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Susan J Carlson
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Kotaro J Kaneko
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA.
| |
Collapse
|
21
|
Cool R, Vandenplas Y. The Link between Different Types of Prebiotics in Infant Formula and Infection Rates: A Review. Nutrients 2023; 15:1942. [PMID: 37111161 PMCID: PMC10140947 DOI: 10.3390/nu15081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Breastfeeding plays a protective role against infections, partially through the prebiotic effect of human milk oligosaccharides (HMOs). Aiming to mimic these beneficial capacities, there is an ongoing search to make infant formula closer to human milk, including by adding oligosaccharides. Over the past two decades, multiple studies have been published on different types of prebiotics and their role in reducing infection rates in infants. This review aims to answer the question of whether there is evidence that the addition of oligosaccharides to infant formula decreases the prevalence of infection, and whether the effect is influenced by the kind of oligosaccharide added. The review of the literature reveals an important heterogeneity, including different types and dosages of prebiotics, different intervention periods and inclusion criteria, etc., making it impossible to formulate a consensus about the efficacy of adding prebiotics to infant formula. We would cautiously suggest that supplementation with galactooligosaccharides (GOSs)/fructooligosaccharides (FOSs) seems to have a beneficial effect on infection rates. For HMOs, more studies about the different types of HMOs are necessary to make any deductions. GOSs alone, inulin, and MOSs (bovine-milk-derived oligosaccharides) do not reduce the incidence of infections. The combination of GOSs and PDX (polydextrose) was found to play a protective role in one study. The evidence of the effect of prebiotics in reducing the use of antibiotics is low. The many lacunas in the direction of study uniformity offer many opportunities for further research.
Collapse
Affiliation(s)
| | - Yvan Vandenplas
- Vrije Universiteit Brussel (VUB), UZ Brussel, KidZ Health Castle, 1090 Brussels, Belgium
| |
Collapse
|
22
|
Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and Postbiotics in Infant Formulas: What Are the Immune Benefits for Infants? Nutrients 2023; 15:1231. [PMID: 36904230 PMCID: PMC10004767 DOI: 10.3390/nu15051231] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The first objective of infant formulas is to ensure the healthy growth of neonates and infants, as the sole complete food source during the first months of life when a child cannot be breastfed. Beyond this nutritional aspect, infant nutrition companies also try to mimic breast milk in its unique immuno-modulating properties. Numerous studies have demonstrated that the intestinal microbiota under the influence of diet shapes the maturation of the immune system and influences the risk of atopic diseases in infants. A new challenge for dairy industries is, therefore, to develop infant formulas inducing the maturation of immunity and the microbiota that can be observed in breastfed delivered vaginally, representing reference infants. Streptococcus thermophilus, Lactobacillus reuteri DSM 17938, Bifidobacterium breve (BC50), Bifidobacterium lactis Bb12, Lactobacillus fermentum (CECT5716), and Lactobacillus rhamnosus GG (LGG) are some of the probiotics added to infant formula, according to a literature review of the past 10 years. The most frequently used prebiotics in published clinical trials are fructo-oligosaccharides (FOSs), galacto-oligosaccharides (GOSs), and human milk oligosaccharides (HMOs). This review sums up the expected benefits and effects for infants of pre-, pro-, syn-, and postbiotics added to infant formula regarding the microbiota, immunity, and allergies.
Collapse
Affiliation(s)
- Anaïs Lemoine
- Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Assistance Publique—Hôpitaux de Paris, Sorbonne Université, F-75012 Paris, France
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, F-75571 Paris, France
| | - Patrick Tounian
- Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Assistance Publique—Hôpitaux de Paris, Sorbonne Université, F-75012 Paris, France
| | - Karine Adel-Patient
- Département Médicaments et Technologies pour la Santé (DMTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAe, F-91190 Gif-sur-Yvette, France
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, F-75571 Paris, France
| |
Collapse
|
23
|
Abstract
Human milk oligosaccharides (HMOs) are the third most important solid component in human milk and act in tandem with other bioactive components. Individual HMO levels and distribution vary greatly between mothers by multiple variables, such as secretor status, race, geographic region, environmental conditions, season, maternal diet, and weight, gestational age and mode of delivery. HMOs improve the gastrointestinal barrier and also promote a bifidobacterium-rich gut microbiome, which protects against infection, strengthens the epithelial barrier, and creates immunomodulatory metabolites. HMOs fulfil a variety of physiologic functions including potential support to the immune system, brain development, and cognitive function. Supplementing infant formula with HMOs is safe and promotes a healthy development of the infant revealing benefits for microbiota composition and infection prevention. Because of limited data comparing the effect of non-human oligosaccharides to HMOs, it is not known if HMOs offer an additional clinical benefit over non-human oligosaccharides. Better knowledge of the factors influencing HMO composition and their functions will help to understand their short- and long-term benefits.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Jana Barbieur
- UZ Brussel, KidZ Health Castle, Vrije Unversiteit Brussel, Brussels, Belgium
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Yvan Vandenplas
- UZ Brussel, KidZ Health Castle, Vrije Unversiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Donovan SM, Abrams SA, Azad MB, Belfort MB, Bode L, Carlson SE, Dallas DC, Hettinga K, Järvinen K, Kim JH, Lebrilla CB, McGuire MK, Sela DA, Neu J. Summary of the joint National Institutes of Health and the Food and Drug Administration workshop titled "exploring the science surrounding the safe use of bioactive ingredients in infant formula: Considerations for an assessment framework". J Pediatr 2022; 255:30-41.e1. [PMID: 36463938 PMCID: PMC10121942 DOI: 10.1016/j.jpeds.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Steven A Abrams
- Department of Pediatrics Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, Kansas University Medical Center and The University of Kansas, Kansas City, KS
| | - David C Dallas
- Department of Nutrition, Oregon State University, Corvallis, OR
| | - Kasper Hettinga
- Department of Food Sciences and Agrotechnology, Wageningen University, Wageningen, Netherlands
| | - Kirsi Järvinen
- Department of Pediatrics, Golisano Children's Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Jae H Kim
- Perinatal Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Amherst, MA
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL.
| |
Collapse
|