1
|
Tazi LA, Benabdesslem Y, Amara S, Hachem K. A survey into the utilization of probiotics and medicinal plants among individuals afflicted with gastrointestinal disorders in healthcare institutions in Saïda, Algeria. Libyan J Med 2024; 19:2317492. [PMID: 38369815 PMCID: PMC10878339 DOI: 10.1080/19932820.2024.2317492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
Aim: Functional gastrointestinal (GI) disorders are recognized as a major public health concern worldwide. These disorders involve persistent digestive symptoms indicative of digestive tract dysfunction.Materials and Methods: A survey examining the utilisation of probiotics and medicinal plants as supplementary treatments was conducted on 160 patients with GI disorders at healthcare institutions in Saïda from March to April 2023 using questionnaires that had been previously adapted and tested for reliability with Cronbach's alpha test. Raw data collected through the questionnaires were transferred to a database and analysed using SPSS software.Results: Overall, 49.38% of participants possessed knowledge of or actively utilised probiotics; such awareness was strongly associated with the participants' educational attainment (p = 0.029). The noteworthy probiotic supplements were Biocharbon (36.09%), Lactocil (15.38%), Smebiocta (13.61%), Ultrabiotic Adult (12.43%), Effidigest (12.43%), and Ultralevure (7.69%). During crisis, individuals tended to consume natural goods rich in probiotics, including yoghurt (13.26%) and fermented milk (8.60%), as well as foods rich in prebiotic fibre, including vegetables (18.99%), fruits (13.26%), wheat (9.67%), bran (7.52%), rye (6.81%), and oat flakes (6.45%). Additionally, 77.56% of patients used medicinal plants during crises, with Mentha spicata (12.2%), Thymus vulgaris (11.3%), Pimpinella anisum (8.5%), Cuminum cyminum (8.0%), Punica granatum (7.8%), Trachyspermum ammi (7.5%), and Senna acutifolia (7.0%) being the more commonly favoured options in phytotherapy. The main focus of these herbs was to alleviate bloating (57%), constipation (30.12%), and diarrhoea (12.87%) (p < 0.001). The most frequently utilised plant parts were leaves (47.30%), seeds (25.21%), and bark (13.21%). Most patients (82.91%) favoured infusion as their preferred consumption method, and approximately 85.43% believed in phytotherapy's ability to extend symptomatic relief.Conclusion: The understanding of probiotics is still in its infancy, whereas phytotherapy is more widely accepted by patients. Nonetheless, patients are open to the exploration of natural alternatives to conventional medicines.
Collapse
Affiliation(s)
- Lamia Abir Tazi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Natural and Life Sciences, University of Saïda - Dr. Tahar Moulay, Saïda, Algeria
| | - Yasmina Benabdesslem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Natural and Life Sciences, University of Saïda - Dr. Tahar Moulay, Saïda, Algeria
- Laboratory of Nutrition, Pathology, Agro-Biotechnology and Health (LAB-NUPABS), University Djillali Liabès, Faculty of Natural Sciences and Life, Sidi-Bel-Abbès, Algeria
| | - Sabrina Amara
- Laboratory of Biology of Microorganisms and Biotechnology (LBMB), University of Oran 1, Oran, Algeria
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Natural and Life Sciences, University of Saïda - Dr. Tahar Moulay, Saïda, Algeria
- Laboratory of Production, Plant and Microbial Valorization (LP2VM), Faculty of Natural and Life Sciences, University of Sciences and Technology of Oran – Mohamed Boudiaf, Oran, Algeria
| |
Collapse
|
2
|
Peyrot des Gachons C, Willis C, Napolitano MP, O’Keefe AJ, Kimball BA, Slade L, Beauchamp GK. Oleocanthal and Oleacein from Privet Leaves: An Alternative Source for High-Value Extra Virgin Olive Oil Bioactives. Int J Mol Sci 2024; 25:12020. [PMID: 39596088 PMCID: PMC11593957 DOI: 10.3390/ijms252212020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Current research strongly suggests that phenolic compounds in extra virgin olive oil (EVOO) are potent preventive and therapeutic agents against metabolic diseases associated with inflammation and oxidative stress. Oleocanthal (OC) and oleacein (OA) are two of the most abundant and promising EVOO phenolics. To fully establish their health-promoting efficacy, additional animal studies and human clinical trials must be conducted, but the sourcing of both compounds at gram scale, reasonable cost, and ease of access remains a challenge. Here, we describe an extraction procedure to obtain OC and OA from the common privet (Ligustrum vulgare), a fast-growing, semi-evergreen shrub. We show that, compared to the olive tree, in addition to its broader geographical distribution, L. vulgare offers the benefit of yielding both OA and OC from its leaves. We also demonstrate the necessity of providing adapted enzymatic conditions during leaf treatment to optimize OC and OA concentrations in the final extracts.
Collapse
Affiliation(s)
| | - Claudia Willis
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| | - Michael P. Napolitano
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| | - Abigail J. O’Keefe
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
- Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| | - Bruce A. Kimball
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| | - Louise Slade
- Food Polymer Science Consultancy, Morris Plains, NJ 07950, USA
| | - Gary K. Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (C.W.); (M.P.N.); (B.A.K.); (G.K.B.)
| |
Collapse
|
3
|
Iantomasi M, Terzo M, Tsiani E. Anti-Diabetic Effects of Oleuropein. Metabolites 2024; 14:581. [PMID: 39590817 PMCID: PMC11597061 DOI: 10.3390/metabo14110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Oleuropein, a secoiridoid polyphenol found in olive oil as well as the fruit and leaves of the olive tree, has been reported to have antioxidant, cardioprotective, anti-inflammatory, anti-cancer, and anti-diabetic properties. Type 2 diabetes mellitus (TD2M) is a chronic metabolic disease characterized by impaired insulin action, termed insulin resistance. The development of T2DM is closely associated with obesity and chronic low-grade inflammation. In recent years, a rise in sedentary lifestyles and diets rich in refined carbohydrates and saturated fats has contributed to an increase in the prevalence of obesity and TD2M. Currently, the strategies for treating T2DM and its prevention lack efficacy and are associated with adverse side effects. Hence, there is an urgent need for novel treatment strategies, including naturally occurring compounds possessing hypoglycemic and insulin-sensitizing properties. Methods: This review summarizes the evidence of the anti-inflammatory and anti-diabetic properties of oleuropein from in vitro and in vivo animal studies, as well as the available clinical trials. Results: The existing evidence indicates that oleuropein may exert its anti-inflammatory effects by downregulating the levels of pro-inflammatory cytokines in hepatic and adipose tissue. Additionally, the evidence suggests that oleuropein targets skeletal muscle and enhances glucose uptake and its related protein signalling cascades, improving glucose tolerance and insulin sensitivity. Conclusions: Despite the evidence of oleuropein's anti-inflammatory and anti-diabetic potential, more animal and clinical studies are needed to proceed towards its clinical/therapeutic use for metabolic diseases confidently.
Collapse
Affiliation(s)
- Michael Iantomasi
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matthew Terzo
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
4
|
Zhang F, Wang Y, Song X, Wen Y, Wang H, Zhang Y. The hydroxytyrosol-typed phenylpropanoidglycosides: A phenylpropanoid glycoside family with significant biological activity. Fitoterapia 2024; 178:106155. [PMID: 39089596 DOI: 10.1016/j.fitote.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hydroxytyrosol-typed phenylpropanoid glycosides (HPGs), composed of phenylethanol and various complex oligosaccharides, are widespread and abundant in different plant, and have a diverse range of biological activities. All HPGs reported previously have been isolated from natural sources, and most of them showed significant bioactivities, such as anti-inflamatory, anti-cancer, cytoprotection, neuro-protective effects, enzyme-inhibitory, anti-microbial effects, and cardiovascular activity. The goal of this review is to summarize the structures of HPGs reported over the past few decades, as well as to introduce their pharmacological effects. We also introduce the possible relationship between the structures of HPGs and their source plants, as well as the structure-activity relationships of some important activities. This review will serve as a resource for future research into this class of compounds, and demonstrate their potential value.
Collapse
Affiliation(s)
- Feixun Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yiping Wang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yingming Wen
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Hong Wang
- College of Bioengineering, Beijing Polytechnic, No. 9 Liangshuihe 1st Street, Beijing 100176, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China; Glycobiology and Glycotechnology Research center, College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, China; College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
5
|
Gabbia D. Beneficial Effects of Tyrosol and Oleocanthal from Extra Virgin Olive Oil on Liver Health: Insights into Their Mechanisms of Action. BIOLOGY 2024; 13:760. [PMID: 39452069 PMCID: PMC11504303 DOI: 10.3390/biology13100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The Mediterranean diet and consumption of EVOO are associated with multiple beneficial effects for human health, e.g. reduction in cardiovascular risk and mortality, improvement in the lipid profile, and the prevention of chronic diseases, such as cancers and neurodegenerative diseases. In EVOO, more than 30 different phenolic-derived compounds have been identified, representing one of the most promising bioactive classes in olive oil. This review explores the hepatoprotective properties of two of these compounds, tyrosol and oleocanthal, focusing on their mechanisms of action. Recent studies have shown that these compounds, which share a similar chemical structure with a hydroxyl group attached to an aromatic hydrocarbon ring, can potentially mitigate chronic liver diseases, such as MASLD and liver fibrosis, as well as their progression to liver cancer. Consequently, they deserve attention for future pharmacological drug development. In vitro and in vivo studies have suggested that these compounds exert these effects through the regulation of cellular pathways involved in antioxidant response, lipid metabolism, transcription factor activity, and NF-κB signaling. Understanding the mechanisms underlying the hepatoprotective properties of tyrosol and oleocanthal may provide valuable information for the development of therapeutic agents based on their chemical structures capable of targeting chronic liver diseases.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Barbalace MC, Freschi M, Rinaldi I, Zallocco L, Malaguti M, Manera C, Ortore G, Zuccarini M, Ronci M, Cuffaro D, Macchia M, Hrelia S, Giusti L, Digiacomo M, Angeloni C. Unraveling the Protective Role of Oleocanthal and Its Oxidation Product, Oleocanthalic Acid, against Neuroinflammation. Antioxidants (Basel) 2024; 13:1074. [PMID: 39334733 PMCID: PMC11428454 DOI: 10.3390/antiox13091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroinflammation is a critical aspect of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This study investigates the anti-neuroinflammatory properties of oleocanthal and its oxidation product, oleocanthalic acid, using the BV-2 cell line activated with lipopolysaccharide. Our findings revealed that oleocanthal significantly inhibited the production of pro-inflammatory cytokines and reduced the expression of inflammatory genes, counteracted oxidative stress induced by lipopolysaccharide, and increased cell phagocytic activity. Conversely, oleocanthalic acid was not able to counteract lipopolysaccharide-induced activation. The docking analysis revealed a plausible interaction of oleocanthal, with both CD14 and MD-2 leading to a potential interference with TLR4 signaling. Since our data show that oleocanthal only partially reduces the lipopolysaccharide-induced activation of NF-kB, its action as a TLR4 antagonist alone cannot explain its remarkable effect against neuroinflammation. Proteomic analysis revealed that oleocanthal counteracts the LPS modulation of 31 proteins, including significant targets such as gelsolin, clathrin, ACOD1, and four different isoforms of 14-3-3 protein, indicating new potential molecular targets of the compound. In conclusion, oleocanthal, but not oleocanthalic acid, mitigates neuroinflammation through multiple mechanisms, highlighting a pleiotropic action that is particularly important in the context of neurodegeneration.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | | | | | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- COIIM-Interuniversitary Consortium for Engineering and Medicine, 86100 Campobasso, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
7
|
Reyes-Corral M, Gil-González L, González-Díaz Á, Tovar-Luzón J, Ayuso MI, Lao-Pérez M, Montaner J, de la Puerta R, Fernández-Torres R, Ybot-González P. Pretreatment with oleuropein protects the neonatal brain from hypoxia-ischemia by inhibiting apoptosis and neuroinflammation. J Cereb Blood Flow Metab 2024:271678X241270237. [PMID: 39157939 DOI: 10.1177/0271678x241270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Hypoxic-ischemic (HI) encephalopathy is a cerebrovascular injury caused by oxygen deprivation to the brain and remains a major cause of neonatal mortality and morbidity worldwide. Therapeutic hypothermia is the current standard of care but it does not provide complete neuroprotection. Our aim was to investigate the neuroprotective effect of oleuropein (Ole) in a neonatal (seven-day-old) mouse model of HI. Ole, a secoiridoid found in olive leaves, has previously shown to reduce damage against cerebral and other ischemia/reperfusion injuries. Here, we administered Ole as a pretreatment prior to HI induction at 20 or 100 mg/kg. A week after HI, Ole significantly reduced the infarct area and the histological damage as well as white matter injury, by preserving myelination, microglial activation and the astroglial reactive response. Twenty-four hours after HI, Ole reduced the overexpression of caspase-3 and the proinflammatory cytokines IL-6 and TNF-α. Moreover, using UPLC-MS/MS we found that maternal supplementation with Ole during pregnancy and/or lactation led to the accumulation of its metabolite hydroxytyrosol in the brains of the offspring. Overall, our results indicate that pretreatment with Ole confers neuroprotection and can prevent HI-induced brain damage by modulating apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Laura Gil-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Ángela González-Díaz
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Javier Tovar-Luzón
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - María Irene Ayuso
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Spanish National Research Council (CSIC), Spain
| |
Collapse
|
8
|
Nikou T, Karampetsou KV, Koutsoni OS, Skaltsounis AL, Dotsika E, Halabalaki M. Pharmacokinetics and Metabolism Investigation of Oleocanthal. JOURNAL OF NATURAL PRODUCTS 2024; 87:530-543. [PMID: 37910854 DOI: 10.1021/acs.jnatprod.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Oleocanthal is a secoiridoid found in olive oil, which lately gained great scientific interest due to its important pharmacological spectrum and biological properties. However, limited data exist on the metabolic fate of oleocanthal in vivo, a commonly underestimated aspect in natural products research. Especially, its pharmacokinetic (PK) characteristics have never been described so far. Thus, in the current study, a mouse-based protocol was designed, and oleocanthal was administered intraperitoneally in a standard dose of 5 mg/kg. In order to determine the PK parameters of oleocanthal or its metabolites, plasma samples were collected at 10 time points. Extraction and analysis protocols were developed and applied for the recovery and detection of oleocanthal in plasma, as well as the identification of its metabolites, using LC-HRMS/MS. Oleocanthal was not detected, proving the short lifetime of the compound in vivo, and 13 metabolites were identified. Among them, oleocanthalic acid and tyrosol sulfate were proposed as oleocanthal's biomarkers, in vivo. This is the first report associating oleocanthalic acid with oleocanthal administration in vivo, while its PK parameters, Tmax (T0) and Cmax (926 μg/mL), were also determined. The current study enlightens bioavailability and metabolism aspects of oleocanthal and suggests the association of specific metabolites with the biological effects attributed to oleocanthal administration. More studies are needed to give better insights into the metabolism and the mechanism of action of secoiridoids as well as to respond to identification challenges related to secoiridoid in vivo setups.
Collapse
Affiliation(s)
- Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771, Athens, Greece
| | - Kalliopi V Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Olga S Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771, Athens, Greece
| |
Collapse
|
9
|
Filardo S, Roberto M, Di Risola D, Mosca L, Di Pietro M, Sessa R. Olea europaea L-derived secoiridoids: Beneficial health effects and potential therapeutic approaches. Pharmacol Ther 2024; 254:108595. [PMID: 38301769 DOI: 10.1016/j.pharmthera.2024.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Mattioli Roberto
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Daniel Di Risola
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
10
|
García-Gavilán JF, Babio N, Toledo E, Semnani-Azad Z, Razquin C, Dennis C, Deik A, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Lapetra J, Lamuela-Raventos R, Clish C, Ruiz-Canela M, Martínez-González MÁ, Hu F, Salas-Salvadó J, Guasch-Ferré M. Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol 2023; 22:340. [PMID: 38093289 PMCID: PMC10720204 DOI: 10.1186/s12933-023-02066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Olive oil consumption has been inversely associated with the risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, the impact of olive oil consumption on plasma metabolites remains poorly understood. This study aims to identify plasma metabolites related to total and specific types of olive oil consumption, and to assess the prospective associations of the identified multi-metabolite profiles with the risk of T2D and CVD. METHODS The discovery population included 1837 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) trial with available metabolomics data at baseline. Olive oil consumption was determined through food-frequency questionnaires (FFQ) and adjusted for total energy. A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation sample. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known candidate metabolites and olive oil consumption were assessed using elastic net regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite-weighted models and FFQ-derived olive oil consumption in each pair of training-validation data sets within the discovery sample. We further estimated the prospective associations of the identified plasma multi-metabolite profile with incident T2D and CVD using multivariable Cox regression models. RESULTS We identified a metabolomic signature for the consumption of total olive oil (with 74 metabolites), VOO (with 78 metabolites), and COO (with 17 metabolites), including several lipids, acylcarnitines, and amino acids. 10-CV Pearson correlation coefficients between total olive oil consumption derived from FFQs and the multi-metabolite profile were 0.40 (95% CI 0.37, 0.44) and 0.27 (95% CI 0.22, 0.31) for the discovery and validation sample, respectively. We identified several overlapping and distinct metabolites according to the type of olive oil consumed. The baseline metabolite profiles of total and extra virgin olive oil were inversely associated with CVD incidence (HR per 1SD: 0.79; 95% CI 0.67, 0.92 for total olive oil and 0.70; 0.59, 0.83 for extra virgin olive oil) after adjustment for confounders. However, no significant associations were observed between these metabolite profiles and T2D incidence. CONCLUSIONS This study reveals a panel of plasma metabolites linked to the consumption of total and specific types of olive oil. The metabolite profiles of total olive oil consumption and extra virgin olive oil were associated with a decreased risk of incident CVD in a high cardiovascular-risk Mediterranean population, though no associations were observed with T2D incidence. TRIAL REGISTRATION The PREDIMED trial was registered at ISRCTN ( http://www.isrctn.com/ , ISRCTN35739639).
Collapse
Affiliation(s)
- Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Zhila Semnani-Azad
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cristina Razquin
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | | | - Amy Deik
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut de Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Lipid Clinic, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Fernando Arós
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009, Vitoria-Gasteiz, Spain
| | - Miquel Fiol
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Plataforma de Ensayos Clínicos, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120, Palma, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Seville, Spain
| | - Rosa Lamuela-Raventos
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
- Polyphenol Research Group, Departament de Nutrició, Ciències de L'Alimentació I Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028, Barcelona, Spain
| | - Clary Clish
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark.
| |
Collapse
|
11
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
12
|
Mermigka G, Vavouraki AI, Nikolaou C, Cheiladaki I, Vourexakis M, Goumas D, Ververidis F, Trantas E. An Engineered Plant Metabolic Pathway Results in High Yields of Hydroxytyrosol Due to a Modified Whole-Cell Biocatalysis in Bioreactor. Metabolites 2023; 13:1126. [PMID: 37999222 PMCID: PMC10672836 DOI: 10.3390/metabo13111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hydroxytyrosol (HT) is a phenolic substance primarily present in olive leaves and olive oil. Numerous studies have shown its advantages for human health, making HT a potentially active natural component with significant added value. Determining strategies for its low-cost manufacturing by metabolic engineering in microbial factories is hence still of interest. The objective of our study was to assess and improve HT production in a one-liter bioreactor utilizing genetically modified Escherichia coli strains that had previously undergone fed-batch testing. Firstly, we compared the induction temperatures in small-scale whole-cell biocatalysis studies and then examined the optimal temperature in a large volume bioreactor. By lowering the induction temperature, we were able to double the yield of HT produced thereby, reaching 82% when utilizing tyrosine or L-DOPA as substrates. Hence, without the need to further modify our original strains, we were able to increase the HT yield.
Collapse
Affiliation(s)
- Glykeria Mermigka
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Aikaterini I. Vavouraki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Chrysoula Nikolaou
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Ioanna Cheiladaki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Michail Vourexakis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Dimitrios Goumas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Emmanouil Trantas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| |
Collapse
|
13
|
Leri M, Vasarri M, Barletta E, Schiavone N, Bergonzi MC, Bucciantini M, Degl’Innocenti D. The Protective Role of Oleuropein Aglycone against Pesticide-Induced Toxicity in a Human Keratinocytes Cell Model. Int J Mol Sci 2023; 24:14553. [PMID: 37834001 PMCID: PMC10572371 DOI: 10.3390/ijms241914553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| |
Collapse
|
14
|
Charoenwoodhipong P, Holt RR, Keen CL, Hedayati N, Sato T, Sone T, Hackman RM. The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study. Nutrients 2023; 15:4054. [PMID: 37764837 PMCID: PMC10535196 DOI: 10.3390/nu15184054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Moderate red wine intake has been associated with lower cardiovascular mortality, due in part to the intake of polyphenols and anthocyanins, whose content can vary from varietal and year of harvest. This study assessed the vascular effects in response to a single intake of 2015 and 2018 Zweigelt red wines from Hokkaido, Japan. Healthy men were randomly assigned to consume 240 mL each of a red wine, or a sparkling white grape juice as a control in a randomized three-arm cross-over design with a 7 day washout between arms. The augmentation index (AI; a measure of arterial stiffness) and AI at 75 beats/min (AI75), reactive hyperemia index, systolic and diastolic blood pressure (SBP and DBP, respectively), and platelet reactivity were assessed at baseline and two and four hours after each beverage intake. Changes from the baseline were analyzed using a linear mixed model. Significant treatment effects (p = 0.02) were observed, with AI 13% lower after the intake of the 2015 or 2018 vintages compared to the control. Intake of the 2018 vintage reduced SBP and DBP (-4.1 mmHg and -5.6 mmHg, respectively; p = 0.02) compared to the 2015 wine and the control drink. The amount of hydroxytyrosol in the 2018 wine was almost twice the amount as in the 2015 wine, which may help explain the variable blood pressure results. Future studies exploring the vascular effects of the same red wine from different vintage years and different phenolic profiles are warranted.
Collapse
Affiliation(s)
| | - Roberta R. Holt
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (P.C.)
| | - Carl L. Keen
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (P.C.)
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nasim Hedayati
- Division of Vascular Surgery, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Tomoyuki Sato
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| | - Robert M. Hackman
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (P.C.)
| |
Collapse
|
15
|
Vasilopoulou K, Papadopoulos GA, Lioliopoulou S, Pyrka I, Nenadis N, Savvidou S, Symeon G, Dotas V, Panitsidis I, Arsenos G, Giannenas I. Effects of Dietary Supplementation of a Resin-Purified Aqueous-Isopropanol Olive Leaf Extract on Meat and Liver Antioxidant Parameters in Broilers. Antioxidants (Basel) 2023; 12:1723. [PMID: 37760026 PMCID: PMC10525201 DOI: 10.3390/antiox12091723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Olive leaves are byproducts οf the agro-industrial sector and are rich in bioactive compounds with antioxidant properties. They could be supplemented in poultry diets powdered or less frequently as extracts to improve performance, health and product quality. The objective of this study was to investigate the possible beneficial effects of an aqueous isopropanol olive leaf extract-purified through filtration (250-25 µm) and a resin (XAD-4)-when supplemented in broiler chickens' diets, on meat quality parameters, focusing mainly on antioxidant parameters as there is limited published information. For this purpose, four-hundred-and-eighty-day-old broilers were randomly assigned to four dietary treatments: T1 (control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (positive control: 0.1% encapsulated oregano oil commercially used as feed additive). At the end of the experimental period (day 42), the birds were slaughtered, and samples from breast, thigh meat and liver were collected for antioxidant parameters evaluation. On day 1, after slaughter, in thigh meat, Malondialdehyde (MDA) was lower in T2 compared to T3, and total phenolic content (TPC) was higher in T2 compared to T3 and T4. Total antioxidant capacity (TAC) was increased in T2 and T4 breast meat compared to the control. In liver, T4 treatment resulted in higher TPC. The lack of dose-dependent effect for olive leaf extract may be attributed to the pro-oxidant effects of some bioactive compounds found in olive leaves, such as oleuropein, when supplemented at higher levels. In summary, it can be inferred that the inclusion of 1% olive leaf extract in the feed of broilers has the potential to mitigate oxidation in broiler meat and maybe enhance its quality.
Collapse
Affiliation(s)
- Konstantina Vasilopoulou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, 54124 Thessaloniki, Greece
| | - Soumela Savvidou
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - George Symeon
- Institute of Animal Science, Hellenic Agricultural Organisation-DEMETER, 58100 Giannitsa, Greece
| | - Vassilios Dotas
- Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Panitsidis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Pojero F, Gervasi F, Fiore SD, Aiello A, Bonacci S, Caldarella R, Attanzio A, Candore G, Caruso C, Ligotti ME, Procopio A, Restivo I, Tesoriere L, Allegra M, Accardi G. Anti-Inflammatory Effects of Nutritionally Relevant Concentrations of Oleuropein and Hydroxytyrosol on Peripheral Blood Mononuclear Cells: An Age-Related Analysis. Int J Mol Sci 2023; 24:11029. [PMID: 37446206 DOI: 10.3390/ijms241311029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Immunosenescence and inflammaging facilitate the insurgence of chronic diseases. The Mediterranean diet is a non-invasive intervention to improve the chronic low-grade inflammatory status associated with aging. Olive oil oleuropein (OLE) and hydroxytyrosol (HT) demonstrated a controversial modulatory action on inflammation in vitro when tested at concentrations exceeding those detectable in human plasma. We studied the potential anti-inflammatory effects of OLE and HT at nutritionally relevant concentrations on peripheral blood mononuclear cells (PBMCs) as regards cell viability, frequency of leukocyte subsets, and cytokine release, performing an age-focused analysis on two groups of subjects: Adult (age 18-64 years) and Senior (age ≥ 65 years). OLE and HT were used alone or as a pre-treatment before challenging PBMCs with lipopolysaccharide (LPS). Both polyphenols had no effect on cell viability irrespective of LPS, but 5 µM HT had an LPS-like effect on monocytes, reducing the intermediate subset in Adult subjects. OLE and HT had no effect on LPS-triggered release of TNF-α, IL-6 and IL-8, but 5 µM HT reduced IL-10 secretion by PBMCs from Adult vs. Senior group. In summary, nutritionally relevant concentrations of OLE and HT elicit no anti-inflammatory effect and influence the frequency of immune cell subsets with age-related different outcomes.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy
| | - Salvatore Davide Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, 90127 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
17
|
Wang R, Ganbold M, Ferdousi F, Tominaga K, Isoda H. A Rare Olive Compound Oleacein Improves Lipid and Glucose Metabolism, and Inflammatory Functions: A Comprehensive Whole-Genome Transcriptomics Analysis in Adipocytes Differentiated from Healthy and Diabetic Adipose Stem Cells. Int J Mol Sci 2023; 24:10419. [PMID: 37445596 DOI: 10.3390/ijms241310419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Oleacein (OLE), a rare natural compound found in unfiltered extra virgin olive oil, has been shown to have anti-inflammatory and anti-obesity properties. However, little is known regarding the mechanisms by which OLE influences metabolic processes linked to disease targets, particularly in the context of lipid metabolism. In the present study, we conducted whole-genome DNA microarray analyses in adipocytes differentiated from human adipose-derived stem cells (hASCs) and diabetic hASCs (d-hASCs) to examine the effects of OLE on modulating metabolic pathways. We found that OLE significantly inhibited lipid formation in adipocytes differentiated from both sources. In addition, microarray analysis demonstrated that OLE treatment could significantly downregulate lipid-metabolism-related genes and modulate glucose metabolism in both adipocyte groups. Transcription factor enrichment and protein-protein interaction (PPI) analyses identified potential regulatory gene targets. We also found that OLE treatment enhanced the anti-inflammatory properties in adipocytes. Our study findings suggest that OLE exhibits potential benefits in improving lipid and glucose metabolism, thus holding promise for its application in the management of metabolic disorders.
Collapse
Affiliation(s)
- Rui Wang
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Munkhzul Ganbold
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
18
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
19
|
Vazquez-Aguilar A, Sanchez-Rodriguez E, Rodriguez-Perez C, Rangel-Huerta OD, Mesa MD. Metabolomic-Based Studies of the Intake of Virgin Olive Oil: A Comprehensive Review. Metabolites 2023; 13:metabo13040472. [PMID: 37110130 PMCID: PMC10142154 DOI: 10.3390/metabo13040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Virgin olive oil (VOO) is a high-value product from the Mediterranean diet. Some health and nutritional benefits have been associated with its consumption, not only because of its monounsaturated-rich triacylglycerols but also due to its minor bioactive components. The search for specific metabolites related to VOO consumption may provide valuable information to identify the specific bioactive components and to understand possible molecular and metabolic mechanisms implicated in those health effects. In this regard, metabolomics, considered a key analytical tool in nutritional studies, offers a better understanding of the regulatory functions of food components on human nutrition, well-being, and health. For that reason, the aim of the present review is to summarize the available scientific evidence related to the metabolic effects of VOO or its minor bioactive compounds in human, animal, and in vitro studies using metabolomics approaches.
Collapse
Affiliation(s)
- Alejandra Vazquez-Aguilar
- Department of Biochemistry and Molecular Biology II, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Estefania Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada ibs, 18012 Granada, Spain
- Correspondence:
| | - Celia Rodriguez-Perez
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada ibs, 18012 Granada, Spain
- Department of Nutrition and Food Science, University of Granada, Campus Melilla C/Santander, 52005 Melilla, Spain
| | | | - Maria D. Mesa
- Department of Biochemistry and Molecular Biology II, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada ibs, 18012 Granada, Spain
- Primary Care Promotion of Maternal, Child and Women’s Health for Prevention of Adult Chronic Diseases Network (RD21/0012/0008), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Simos YV, Zerikiotis S, Lekkas P, Athinodorou AM, Zachariou C, Tzima C, Assariotakis A, Peschos D, Tsamis K, Halabalaki M, Ververidis F, Trantas EA, Economou G, Tarantilis P, Vontzalidou A, Vallianatou I, Angelidis C, Vezyraki P. Oral Supplementation with Hydroxytyrosol Synthesized Using Genetically Modified Escherichia coli Strains and Essential Oils Mixture: A Pilot Study on the Safety and Biological Activity. Microorganisms 2023; 11:microorganisms11030770. [PMID: 36985343 PMCID: PMC10051181 DOI: 10.3390/microorganisms11030770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Several natural compounds have been explored as immune-boosting, antioxidant and anti-inflammatory dietary supplements. Amongst them, hydroxytyrosol, a natural antioxidant found in olive products, and endemic medicinal plants have attracted the scientific community’s and industry’s interest. We investigated the safety and biological activity of a standardised supplement containing 10 mg of hydroxytyrosol synthesized using genetically modified Escherichia coli strains and equal amounts (8.33 μL) of essential oils from Origanum vulgare subsp. hirtum, Salvia fruticosa and Crithmum maritimum in an open-label, single-arm, prospective clinical study. The supplement was given to 12 healthy subjects, aged 26–52, once a day for 8 weeks. Fasting blood was collected at three-time points (weeks 0, 8 and follow-up at 12) for analysis, which included full blood count and biochemical determination of lipid profile, glucose homeostasis and liver function panel. Specific biomarkers, namely homocysteine, oxLDL, catalase and total glutathione (GSH) were also studied. The supplement induced a significant reduction in glucose, homocysteine and oxLDL levels and was tolerated by the subjects who reported no side effects. Cholesterol, triglyceride levels and liver enzymes remained unaffected except for LDH. These data indicate the supplement’s safety and its potential health-beneficial effects against pathologic conditions linked to cardiovascular disease.
Collapse
Affiliation(s)
- Yannis V. Simos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (Y.V.S.); (P.V.); Tel.: +30-2651-007-602 (Y.V.S.); +30-2651-007-575 (P.V.)
| | - Stelios Zerikiotis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Antrea-Maria Athinodorou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christianna Zachariou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Tzima
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros Assariotakis
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsamis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Halabalaki
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 11527 Athens, Greece
| | - Filippos Ververidis
- Laboratory of Biological & Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
- Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Emmanouil A. Trantas
- Laboratory of Biological & Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
- Institute of Agri-Food and Life Sciences, Research Center of the Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Garyfalia Economou
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Petros Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | | | | | - Charalambos Angelidis
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: (Y.V.S.); (P.V.); Tel.: +30-2651-007-602 (Y.V.S.); +30-2651-007-575 (P.V.)
| |
Collapse
|
21
|
Treatment with the Olive Secoiridoid Oleacein Protects against the Intestinal Alterations Associated with EAE. Int J Mol Sci 2023; 24:ijms24054977. [PMID: 36902407 PMCID: PMC10003427 DOI: 10.3390/ijms24054977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1β and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.
Collapse
|
22
|
Alimenti C, Lianza M, Antognoni F, Giusti L, Bistoni O, Liotta L, Angeloni C, Lupidi G, Beghelli D. Characterization and Biological Activities of In Vitro Digested Olive Pomace Polyphenols Evaluated on Ex Vivo Human Immune Blood Cells. Molecules 2023; 28:molecules28052122. [PMID: 36903372 PMCID: PMC10004623 DOI: 10.3390/molecules28052122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Olive pomace (OP) represents one of the main by-products of olive oil production, which still contains high quantities of health-promoting bioactive compounds. In the present study, three batches of sun-dried OP were characterized for their profile in phenolic compounds (by HPLC-DAD) and in vitro antioxidant properties (ABTS, FRAP and DPPH assays) before (methanolic extracts) and after (aqueous extracts) their simulated in vitro digestion and dialysis. Phenolic profiles, and, accordingly, the antioxidant activities, showed significant differences among the three OP batches, and most compounds showed good bioaccessibility after simulated digestion. Based on these preliminary screenings, the best OP aqueous extract (OP-W) was further characterized for its peptide composition and subdivided into seven fractions (OP-F). The most promising OP-F (characterized for its metabolome) and OP-W samples were then assessed for their potential anti-inflammatory properties in ex vivo human peripheral mononuclear cells (PBMCs) triggered or not with lipopolysaccharide (LPS). The levels of 16 pro-and anti-inflammatory cytokines were measured in PBMC culture media by multiplex ELISA assay, whereas the gene expressions of interleukin-6 (IL-6), IL-10 and TNF-α were measured by real time RT-qPCR. Interestingly, OP-W and PO-F samples had a similar effect in reducing the expressions of IL-6 and TNF-α, but only OP-W was able to reduce the release of these inflammatory mediators, suggesting that the anti-inflammatory activity of OP-W is different from that of OP-F.
Collapse
Affiliation(s)
- Claudio Alimenti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Mariacaterina Lianza
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Fabiana Antognoni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06126 Perugia, Italy
| | - Luigi Liotta
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence:
| |
Collapse
|
23
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
24
|
Zygouri P, Athinodorou AM, Spyrou K, Simos YV, Subrati M, Asimakopoulos G, Vasilopoulos KC, Vezyraki P, Peschos D, Tsamis K, Gournis DP. Oxidized-Multiwalled Carbon Nanotubes as Non-Toxic Nanocarriers for Hydroxytyrosol Delivery in Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:714. [PMID: 36839082 PMCID: PMC9965370 DOI: 10.3390/nano13040714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.
Collapse
Affiliation(s)
- Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Antrea M. Athinodorou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V. Simos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Asimakopoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsamis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios P. Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
25
|
Antioxidant and DNA-Protective Activity of an Extract Originated from Kalamon Olives Debittering. Antioxidants (Basel) 2023; 12:antiox12020333. [PMID: 36829892 PMCID: PMC9952268 DOI: 10.3390/antiox12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Table olives are a major component of the Mediterranean diet and are associated with many beneficial biological activities, which are mainly related to their phenolic compounds. Olive fruit debittering process defines the quantitative and qualitative composition of table olives in biophenols. The aim of the present study was to evaluate the in vitro antioxidant capacity and DNA-protective activity of an extract originated from brine samples, according to the Greek style debbitering process of Kalamon olive fruits. The main phenolic components determined in the brine extract were hydroxytyrosol (HT), verbascoside (VERB) and tyrosol (T). The in vitro cell-free assays showed strong radical scavenging capacity from the extract, therefore antioxidant potential. At cellular level, human endothelial cells (EA.hy296) and murine myoblasts (C2C12) were treated with non-cytotoxic concentrations of the brine extract and the redox status was assessed by measuring glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation levels (TBARS). Our results show cell type specific response, exerting a hormetic reflection at endothelial cells. Finally, in both cell lines, pre-treatment with brine extract protected from H2O2-induced DNA damage. In conclusion, this is the first holistic approach highlighted table olive wastewaters from Kalamon- Greek style debittering process, as valuable source of bioactive compounds, which could have interesting implications for the development of new products in food or other industries.
Collapse
|