1
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Munoz-Pinto MF, Candeias E, Melo-Marques I, Esteves AR, Maranha A, Magalhães JD, Carneiro DR, Sant'Anna M, Pereira-Santos AR, Abreu AE, Nunes-Costa D, Alarico S, Tiago I, Morgadinho A, Lemos J, Figueiredo PN, Januário C, Empadinhas N, Cardoso SM. Gut-first Parkinson's disease is encoded by gut dysbiome. Mol Neurodegener 2024; 19:78. [PMID: 39449004 PMCID: PMC11515425 DOI: 10.1186/s13024-024-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In Parkinson's patients, intestinal dysbiosis can occur years before clinical diagnosis, implicating the gut and its microbiota in the disease. Recent evidence suggests the gut microbiota may trigger body-first Parkinson Disease (PD), yet the underlying mechanisms remain unclear. This study aims to elucidate how a dysbiotic microbiome through intestinal immune alterations triggers PD-related neurodegeneration. METHODS To determine the impact of gut dysbiosis on the development and progression of PD pathology, wild-type male C57BL/6 mice were transplanted with fecal material from PD patients and age-matched healthy donors to challenge the gut-immune-brain axis. RESULTS This study demonstrates that patient-derived intestinal microbiota caused midbrain tyrosine hydroxylase positive (TH +) cell loss and motor dysfunction. Ileum-associated microbiota remodeling correlates with a decrease in Th17 homeostatic cells. This event led to an increase in gut inflammation and intestinal barrier disruption. In this regard, we found a decrease in CD4 + cells and an increase in pro-inflammatory cytokines in the blood of PD transplanted mice that could contribute to an increase in the permeabilization of the blood-brain-barrier, observed by an increase in mesencephalic Ig-G-positive microvascular leaks and by an increase of mesencephalic IL-17 levels, compatible with systemic inflammation. Furthermore, alpha-synuclein aggregates can spread caudo-rostrally, causing fragmentation of neuronal mitochondria. This mitochondrial damage subsequently activates innate immune responses in neurons and triggers microglial activation. CONCLUSIONS We propose that the dysbiotic gut microbiome (dysbiome) in PD can disrupt a healthy microbiome and Th17 homeostatic immunity in the ileum mucosa, leading to a cascade effect that propagates to the brain, ultimately contributing to PD pathophysiology. Our landmark study has successfully identified new peripheral biomarkers that could be used to develop highly effective strategies to prevent the progression of PD into the brain.
Collapse
Affiliation(s)
- Mário F Munoz-Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Present affiliation: Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Emanuel Candeias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Melo-Marques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Maranha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Diogo Reis Carneiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mariana Sant'Anna
- Department of Gastroenterogy, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - A Raquel Pereira-Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - António E Abreu
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Igor Tiago
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Ana Morgadinho
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João Lemos
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro N Figueiredo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Gastroenterogy, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Januário
- Department of Neurology, CHUC - Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Sandra Morais Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Qi Y, Dong Y, Chen J, Xie S, Ma X, Yu X, Yu Y, Wang Y. Lactiplantibacillus plantarum SG5 inhibits neuroinflammation in MPTP-induced PD mice through GLP-1/PGC-1α pathway. Exp Neurol 2024; 383:115001. [PMID: 39406307 DOI: 10.1016/j.expneurol.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mounting evidence suggests that alterations in gut microbial composition play an active role in the pathogenesis of Parkinson's disease (PD). Probiotics are believed to modulate gut microbiota, potentially influencing PD development through the microbiota-gut-brain axis. However, the potential beneficial effects of Lactiplantibacillus plantarum SG5 (formerly known as Lactobacillus plantarum, abbreviated as L. plantarum) on PD and its underlying mechanisms remain unclear. In this study, we employed immunofluorescence, Western blotting, ELISA, and 16S rRNA gene sequencing to investigate the neuroprotective effects of L. plantarum SG5 against neuroinflammation in an MPTP-induced PD model and to explore the underlying mechanisms. Our results demonstrated that L. plantarum SG5 ameliorated MPTP-induced motor deficits, dopaminergic neuron loss, and elevated α-synuclein protein levels. Furthermore, SG5 inhibited MPTP-triggered overactivation of microglia and astrocytes in the substantia nigra (SN), attenuated disruption of both blood-brain and intestinal barriers, and suppressed the release of inflammatory factors in the colon and SN. Notably, SG5 modulated the composition and structure of the gut microbiota in mice. The MPTP-induced decrease in colonic GLP-1 secretion was reversed by SG5 treatment, accompanied by increased expression of GLP-1R and PGC-1α in the SN. Importantly, the GLP-1R antagonist Exendin 9-39 and PGC-1α inhibitor SR18292 attenuated the protective effects of SG5 in PD mice. In conclusion, we demonstrate a neuroprotective role of L. plantarum SG5 in the MPTP-induced PD mouse model, which likely involves modulation of the gut microbiota and, significantly, the GLP-1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Yueyan Qi
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuxuan Dong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Siyou Xie
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Ma
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Xueping Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yang Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
4
|
Dong Y, Qi Y, Chen J, Han S, Su W, Ma X, Yu Y, Wang Y. Neuroprotective Effects of Bifidobacterium animalis subsp. lactis NJ241 in a Mouse Model of Parkinson's Disease: Implications for Gut Microbiota and PGC-1α. Mol Neurobiol 2024; 61:7534-7548. [PMID: 38409641 DOI: 10.1007/s12035-024-04038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Intestinal dysbiosis plays a critical role in the pathogenesis of Parkinson's disease (PD), and probiotics have emerged as potential modulators of central nervous system function through the microbiota-gut-brain axis. This study aimed to elucidate the anti-inflammatory effects and underlying mechanisms of the probiotic strain Bifidobacterium animalis subsp. lactis NJ241 (NJ241) in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The impact of NJ241 was comprehensively assessed in PD mice through behavioral tests, immunofluorescence, Western blotting, enzyme-linked immunosorbent assay (ELISA), 16S rRNA sequencing, and short-chain fatty acid (SCFA) detection. NJ241 exhibited notable efficacy in mitigating MPTP-induced weight loss, gastrointestinal dysfunction, and behavioral deficits in mice. Furthermore, it demonstrated protected against MPTP-induced dopaminergic neuron death and inhibited the activation of glial cells in the substantia nigra (SN). NJ241 demonstrated the ability to normalized dysbiosis in the intestinal microbiota and elevate SCFA levels in PD mice. Additionally, NJ241 reversed MPTP-induced reductions in colonic GLP-1 levels and the expression of GLP-1R and PGC-1α in the SN. Notably, GLP-1R antagonists partially reversed the inhibitory effects of NJ241 on the activation of glial cells in the SN. In summary, NJ241 exerts a neuroprotective effect against MPTP-induced neuroinflammation by enhancing intestinal GLP-1 levels and activating nigral PGC-1α signaling. These findings provide a rationale for the exploration and development of probiotic-based therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yuxuan Dong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yueyan Qi
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Siyuan Han
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenjing Su
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xin Ma
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yang Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
5
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
6
|
Aktas B, Aslim B, Ozdemir DA. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci Rep 2024; 14:15460. [PMID: 38965287 PMCID: PMC11224381 DOI: 10.1038/s41598-024-65061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, 15200, Turkey.
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06500, Turkey
| | - Deniz Ates Ozdemir
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, 06230, Turkey
| |
Collapse
|
7
|
Benvenuti L, Di Salvo C, Bellini G, Seguella L, Rettura F, Esposito G, Antonioli L, Ceravolo R, Bernardini N, Pellegrini C, Fornai M. Gut-directed therapy in Parkinson's disease. Front Pharmacol 2024; 15:1407925. [PMID: 38974034 PMCID: PMC11224490 DOI: 10.3389/fphar.2024.1407925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Parkinson's disease (PD) is a common and slow-progressing neurodegenerative disorder characterized by motor and non-motor symptoms, including gastrointestinal (GI) dysfunctions. Over the last years, the microbiota-gut-brain (MGB) axis is emerging as a bacterial-neuro-immune ascending pathway that contributes to the progression of PD. Indeed, PD patients are characterized by changes in gut microbiota composition, alterations of intestinal epithelial barrier (IEB) and enteric neurogenic/inflammatory responses that, besides determining intestinal disturbances, contribute to brain pathology. In this context, despite the causal relationship between gut dysbiosis, impaired MGB axis and PD remains to be elucidated, emerging evidence shows that MGB axis modulation can represent a suitable therapeutical strategy for the treatment of PD. This review provides an overview of the available knowledge about the beneficial effects of gut-directed therapies, including dietary interventions, prebiotics, probiotics, synbiotics and fecal microbiota transplantation (FMT), in both PD patients and animal models. In this context, particular attention has been devoted to the mechanisms by which the modulation of MGB axis could halt or slow down PD pathology and, most importantly, how these approaches can be included in the clinical practice.
Collapse
Affiliation(s)
- Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Francesco Rettura
- Unit of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Ayed L, M’hir S, Nuzzolese D, Di Cagno R, Filannino P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024; 13:1538. [PMID: 38790838 PMCID: PMC11120132 DOI: 10.3390/foods13101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions in foods and improve their functional properties. In addition, LABs' role as probiotics is known for their promising effects on gut health, immune system modulation, cholesterol control, and general wellbeing. Despite these advantages, several challenges hinder the effective production and use of probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests avenues for future research.
Collapse
Affiliation(s)
- Lamia Ayed
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
| | - Sana M’hir
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, Beja 9000, Tunisia
| | - Domenico Nuzzolese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, 39100 Bolzano, Italy;
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| |
Collapse
|
9
|
Zhang X, Wang Y, Lv J. STAT4 targets KISS1 to inhibit the oxidative damage, inflammation and neuronal apoptosis in experimental PD models by inactivating the MAPK pathway. Neurochem Int 2024; 175:105683. [PMID: 38341034 DOI: 10.1016/j.neuint.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Oxidative stress and neuroinflammation are proven to play critical roles in the pathogenesis of Parkinson's disease (PD). As reported, patients with PD have lower level of STAT4 compared with healthy subjects. However, the biological functions and mechanisms of STAT4 in PD pathogenesis remain uncertain. This study aimed to investigate the roles and related mechanisms of STAT4 in PD development. METHODS The intraperitoneal injection of MPTP (20 mg/kg) dissolved in physiological saline was performed to mimic PD-like conditions in vivo. MPP + solution was prepared for cell model of PD. Cell viability was measured by CCK-8. Griess reaction was conducted to measure NO concentrations. The mRNA and protein levels were evaluated by RT-qPCR and western blotting. ROS generation was assessed by DCFH-DA. The levels of inflammatory cytokines were measured by ELISA. Cell apoptosis was examined by flow cytometry and western blotting. Moreover, the SH-SY5Y cells were treated with conditioned medium from LPS-stimulated microglia and subjected to CCK-8 assays and ELISA. Mechanistically, CHIP assays and luciferase reporter assays were performed to verify the binding relationship between KISS1 and STAT4. For in vivo analysis, the histological changes of midbrain tissues of mice were determined by hematoxylin and eosin staining. The expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry staining. Iba-1 positive microglial cells in the striatum were assessed by immunofluorescence staining. RESULTS For in vitro analysis, STAT4 level was downregulated after MPP+ treatment, and STAT4 upregulation inhibited the oxidative damage, inflammation and apoptosis in SH-SY5Y cells. STAT4 bound at +215-228 region of KISS1, and KISS1 upregulation counteracted the protection of STAT4 upregulation against cell damage. Moreover, STAT4 upregulation inhibited cell viability loss and inflammation induced by conditioned medium from LPS-treated microglia, whereas KISS1 upregulation had the opposite effect. For in vivo analysis, the protective effects of STAT4 upregulation against inflammatory response, oxidative stress, dopaminergic neuronal loss and microglia activation were attenuated by KISS1 upregulation. Moreover, the inactivation of MAPK pathway caused by STAT4 upregulation was reversed by KISS1 upregulation, and MAPK inhibition attenuated the MPP+-induced inflammation, oxidative stress and apoptosis in SH-SY5Y cells. CONCLUSION STAT4 inhibits KISS1 to attenuate the oxidative damage, inflammation and neuronal apoptosis in PD by inactivating the MAPK pathway.
Collapse
Affiliation(s)
- XiaoLei Zhang
- Department of Neurology, Shanxi People's Hospital, Taiyuan 030012, China.
| | - Yu Wang
- Department of Neurology, Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Jia Lv
- Department of Neurology, Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
10
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
11
|
Panaitescu PȘ, Răzniceanu V, Mocrei-Rebrean ȘM, Neculicioiu VS, Dragoș HM, Costache C, Filip GA. The Effect of Gut Microbiota-Targeted Interventions on Neuroinflammation and Motor Function in Parkinson's Disease Animal Models-A Systematic Review. Curr Issues Mol Biol 2024; 46:3946-3974. [PMID: 38785512 PMCID: PMC11120577 DOI: 10.3390/cimb46050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Gut microbiome-targeted interventions such as fecal transplant, prebiotics, probiotics, synbiotics, and antibiotic gut depletion are speculated to be of potential use in delaying the onset and progression of Parkinson's disease by rebalancing the gut microbiome in the context of the gut-brain axis. Our study aims to organize recent findings regarding these interventions in Parkinson's disease animal models to identify how they affect neuroinflammation and motor outcomes. A systematic literature search was applied in PubMed, Web of Science, Embase, and SCOPUS for gut microbiome-targeted non-dietary interventions. Studies that investigated gut-targeted interventions by using in vivo murine PD models to follow dopaminergic cell loss, motor tests, and neuroinflammatory markers as outcomes were considered to be eligible. A total of 1335 studies were identified in the databases, out of which 29 were found to be eligible. A narrative systematization of the resulting data was performed, and the effect direction for the outcomes was represented. Quality assessment using the SYRCLE risk of bias tool was also performed. Out of the 29 eligible studies, we found that a significant majority report that the intervention reduced the dopaminergic cell loss (82.76%, 95% CI [64.23%, 94.15%]) produced by the induction of the disease model. Also, most studies reported a reduction in microglial (87.5%, 95% CI [61.65%, 98.45%]) and astrocytic activation (84,62%, 95% CI [54.55%, 98.08%]) caused by the induction of the disease model. These results were also mirrored in the majority (96.4% 95% CI [81.65%, 99.91%]) of the studies reporting an increase in performance in behavioral motor tests. A significant limitation of the study was that insufficient information was found in the studies to assess specific causes of the risk of bias. These results show that non-dietary gut microbiome-targeted interventions can improve neuroinflammatory and motor outcomes in acute Parkinson's disease animal models. Further studies are needed to clarify if these benefits transfer to the long-term pathogenesis of the disease, which is not yet fully understood. The study had no funding source, and the protocol was registered in the PROSPERO database with the ID number CRD42023461495.
Collapse
Affiliation(s)
- Paul-Ștefan Panaitescu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Vlad Răzniceanu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Ștefania-Maria Mocrei-Rebrean
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Hanna-Maria Dragoș
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (V.S.N.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (P.-Ș.P.); (Ș.-M.M.-R.)
| |
Collapse
|
12
|
Elford JD, Becht N, Garssen J, Kraneveld AD, Perez-Pardo P. Buty and the beast: the complex role of butyrate in Parkinson's disease. Front Pharmacol 2024; 15:1388401. [PMID: 38694925 PMCID: PMC11061429 DOI: 10.3389/fphar.2024.1388401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease which is often associated with gastrointestinal (GI) dysfunction. The GI tract is home to a wide range of microorganisms, among which bacteria, that can influence the host through various mechanisms. Products produced by these bacteria can act in the gut but can also exert effects in the brain via what is now well established to be the microbiota-gut-brain axis. In those with PD the gut-bacteria composition is often found to be different to that of non-PD individuals. In addition to compositional changes, the metabolic activity of the gut-microbiota is also changed in PD. Specifically, it is often reported that key producers of short chain fatty acids (SCFAs) as well as the concentration of SCFAs themselves are altered in the stool and blood of those with PD. These SCFAs, among which butyrate, are essential nutrients for the host and are a major energy source for epithelial cells of the GI tract. Additionally, butyrate plays a key role in regulating various host responses particularly in relation to inflammation. Studies have demonstrated that a reduction in butyrate levels can have a critical role in the onset and progression of PD. Furthermore, it has been shown that restoring butyrate levels in those with PD through methods such as probiotics, prebiotics, sodium butyrate supplementation, and fecal transplantation can have a beneficial effect on both motor and non-motor outcomes of the disease. This review presents an overview of evidence for the altered gut-bacteria composition and corresponding metabolite production in those with PD, with a particular focus on the SCFA butyrate. In addition to presenting current studies regarding SCFA in clinical and preclinical reports, evidence for the possibility to target butyrate production using microbiome based approaches in a therapeutic context is discussed.
Collapse
Affiliation(s)
- Joshua D. Elford
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nanette Becht
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit, Amsterdam, Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Guo H, He X, Yu L, Tian F, Chen W, Zhai Q. Bifidobacterium adolescentis CCFM1285 combined with yeast β-glucan alleviates the gut microbiota and metabolic disturbances in mice with antibiotic-associated diarrhea. Food Funct 2024; 15:3709-3721. [PMID: 38488198 DOI: 10.1039/d3fo05421g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a self-limiting condition that can occur during antibiotic therapy. Our previous studies have found that a combination of Bacteroides uniformis and Bifidobacterium adolescentis can effectively alleviate AAD. However, the use of B. uniformis is still strictly limited. Therefore, this study attempted to use yeast β-glucan to enrich the abundance of B. uniformis in the intestine and supplement Bifidobacterium adolescentis to exert a synergistic effect. The lincomycin hydrochloride-induced AAD model was administered yeast β-glucan or a mixture of B. adolescentis CCFM1285 by gavage for one week. Subsequently, changes in the colonic histopathological structure, inflammatory factors, intestinal epithelial permeability and integrity, metabolites, and gut microbiota diversity were assessed. We found that yeast β-glucan, alone or in combination with B. adolescentis CCFM1285, can help attenuate systemic inflammation, increase the rate of tissue structural recovery, regulate metabolism, and restore the gut microbiota. Specifically, the combination of yeast β-glucan and B. adolescentis CCFM1285 was more effective in decreasing interleukin-6 levels, improving pathological changes in the colon, and upregulating occludin expression. Therefore, our study showed that the combination of yeast β-glucan and B. adolescentis CCFM1285 is an efficacious treatment for AAD.
Collapse
Affiliation(s)
- Hang Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingfei He
- Rehabilitation Hospital of Huishan District, Wuxi, Jiangsu 214181, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
16
|
Pan J, Lu D, Yu L, Ye Z, Duan H, Narbad A, Zhao J, Zhai Q, Tian F, Chen W. Nonylphenol induces depressive behavior in rats and affects gut microbiota: A dose-dependent effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123357. [PMID: 38228262 DOI: 10.1016/j.envpol.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor absorbed through food intake, was investigated in this study for its potential dose-response relationship with the manifestation of depression-like behavior in rats. Based on this, the mechanisms of NP-induced depressive behavior, encompassing neurotransmitters, gut barrier function, inflammatory response, gut microbiota composition and metabolites were further explored. At medium and high NP doses, both mRNA and protein levels of zonula occludens protein-1 and claudin-1 were considerably downregulated, concomitant with an elevation in tumor necrosis factor-α and interleukin-1β expression in a dose-dependent effect, resulting in damage to the gut mucosa. Despite a minimal impact on behavior and gut barriers at low NP doses, alterations in gut microbiota composition were observed. During NP exposure, dose-dependent changes in the gut microbiota revealed a decline in microbial diversity linked to the synthesis of short-chain fatty acids. NP not only adversely affected the gut microbiota structure but also exacerbated central nervous system damage through the gut-brain axis. The accumulation of NP may cause neurotransmitter disturbances and inflammatory responses in the hippocampus, which also exacerbate depressed behavior in rats. Therefore, NP could exacerbate the inflammatory response in the hippocampus and colon by compromising intestinal barrier integrity, facilitating the proliferation of pathogenic bacteria, impairing butyrate metabolism, and perturbing neurotransmitter homeostasis, thus aggravating the depressive behavior of rats. It is noteworthy that the changes in these indicators were related to the NP exposure dose.
Collapse
Affiliation(s)
- Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dezhi Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
17
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
18
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
19
|
Yan Z, Zhao G. The Associations Among Gut Microbiota, Branched Chain Amino Acids, and Parkinson's Disease: Mendelian Randomization Study. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1129-1138. [PMID: 39177611 PMCID: PMC11380289 DOI: 10.3233/jpd-240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background In experimental and observational studies, the characteristics of gut microbiota have been associated with Parkinson's disease (PD), among which metabolic pathways played an important role. However, the causality remained unclear. Objective Herein, we aimed to determine the potential impact of gut microbiota and gut microbiota-derived metabolites on PD risk using a Mendelian randomization (MR) approach. Methods We included as exposures gut microbial taxa abundance and gut-derived metabolites (branched chain amino acids [BCAAs]), with PD as the outcome. In addition, we explored whether BCAAs act as a mediating factor in the pathway from gut microbiota to PD. Results We found evidence of a causality of 15 microbial taxa and PD before and after sensitivity analyses, but not after multiple testing correction. There was significant association between BCAAs levels and the risk of PD, especially isoleucine (OR = 0.995, 95% CI 0.992-0.999, p = 0.004, pFDR = 0.012). In addition, the causality of gut microbiota and BCAAs was also explored that the increased g_Coprococcus abundance can result in the decrease in isoleucine level (OR = 1.046; 95% CI, 1.009-1.085; p = 0.016). Conclusions Our findings indicated suggestive association between gut microbiota and its metabolites and PD. Furthermore, higher BCAAs levels were associated with the decreased PD risk. This study may provide new targets for PD treatment, such as dietary BCAAs supplementation.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
21
|
Hor JW, Toh TS, Lim SY, Tan AH. Advice to People with Parkinson's in My Clinic: Probiotics and Prebiotics. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1507-1518. [PMID: 39213091 PMCID: PMC11492197 DOI: 10.3233/jpd-240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
There is increasing evidence that microbial-based therapies can be useful in people with Parkinson's disease (PD). In this viewpoint, we provide a state-of-the-art review of the clinical and pre-clinical evidence for probiotics and prebiotics in PD. Currently, short-term clinical studies, including double-blind placebo-controlled randomized clinical trials, have demonstrated safety, and efficacy primarily in improving constipation-related symptoms. Pre-clinical studies consistently reported improvements in a range of biological markers and outcomes, including evidence for attenuation of gut dysfunction and neuroprotection. Bacteria from the genus Lactobacillus and Bifidobacterium have been the most frequently studied both in clinical and pre-clinical probiotics studies, while research into prebiotics is still limited and primarily involved resistant starch and fructooligosaccharides. We provide practical suggestions for clinicians on how to advise patients in the clinic regarding these popular treatments, and important caveats to be aware of. Finally, areas for further advancements are highlighted. It is envisaged that in the future, microbial-based therapies may benefit from personalization based on an enhanced understanding of a whole range of host factors and host-microbiome interactions.
Collapse
Affiliation(s)
- Jia Wei Hor
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Xie Z, Zhang M, Luo Y, Jin D, Guo X, Yang W, Zheng J, Zhang H, Zhang L, Deng C, Zheng W, Tan EK, Jin K, Zhu S, Wang Q. Healthy Human Fecal Microbiota Transplantation into Mice Attenuates MPTP-Induced Neurotoxicity via AMPK/SOD2 Pathway. Aging Dis 2023; 14:2193-2214. [PMID: 37199590 PMCID: PMC10676800 DOI: 10.14336/ad.2023.0309] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Increasing evidence has shown that gut dysbacteriosis may play a crucial role in neuroinflammation in Parkinson's disease (PD). However, the specific mechanisms that link gut microbiota to PD remain unexplored. Given the critical roles of blood-brain barrier (BBB) dysfunction and mitochondrial dysfunction in the development of PD, we aimed to evaluate the interactions among the gut microbiota, BBB, and mitochondrial resistance to oxidation and inflammation in PD. We investigated the effects of fecal microbiota transplantation (FMT) on the physiopathology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. The aim was to explore the role of fecal microbiota from PD patients and healthy human controls in neuroinflammation, BBB components, and mitochondrial antioxidative capacity via the AMPK/SOD2 pathway. Compared to control mice, MPTP-treated mice exhibited elevated levels of Desulfovibrio, whereas mice given FMT from PD patients exhibited enriched levels of Akkermansia and mice given FMT from healthy humans showed no significant alterations in gut microbiota. Strikingly, FMT from PD patients to MPTP-treated mice significantly aggravated motor impairments, dopaminergic neurodegeneration, nigrostriatal glial activation and colonic inflammation, and inhibited the AMPK/SOD2 signaling pathway. However, FMT from healthy human controls greatly improved the aforementioned MPTP-caused effects. Surprisingly, the MPTP-treated mice displayed a significant loss in nigrostriatal pericytes, which was restored by FMT from healthy human controls. Our findings demonstrate that FMT from healthy human controls can correct gut dysbacteriosis and ameliorate neurodegeneration in the MPTP-induced PD mouse model by suppressing microgliosis and astrogliosis, ameliorating mitochondrial impairments via the AMPK/SOD2 pathway, and restoring the loss of nigrostriatal pericytes and BBB integrity. These findings raise the possibility that the alteration in the human gut microbiota may be a risk factor for PD and provide evidence for potential application of FMT in PD preclinical treatment.
Collapse
Affiliation(s)
- Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Mahui Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Dana Jin
- College of Biological Science, University of California, Davis, CA 95616, USA.
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongfei Zhang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangdong, China.
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau, China.
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Thomasi B, Valdetaro L, Ricciardi MC, Gonçalves de Carvalho M, Fialho Tavares I, Tavares-Gomes AL. Enteric glia as a player of gut-brain interactions during Parkinson's disease. Front Neurosci 2023; 17:1281710. [PMID: 38027511 PMCID: PMC10644407 DOI: 10.3389/fnins.2023.1281710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The enteric glia has been shown as a potential component of neuroimmune interactions that signal in the gut-brain axis during Parkinson's disease (PD). Enteric glia are a peripheral glial type found in the enteric nervous system (ENS) that, associated with enteric neurons, command various gastrointestinal (GI) functions. They are a unique cell type, with distinct phenotypes and distribution in the gut layers, which establish relevant neuroimmune modulation and regulate neuronal function. Comprehension of enteric glial roles during prodromal and symptomatic phases of PD should be a priority in neurogastroenterology research, as the reactive enteric glial profile, gastrointestinal dysfunction, and colonic inflammation have been verified during the prodromal phase of PD-a moment that may be interesting for interventions. In this review, we explore the mechanisms that should govern enteric glial signaling through the gut-brain axis to understand pathological events and verify the possible windows and pathways for therapeutic intervention. Enteric glia directly modulate several functional aspects of the intestine, such as motility, visceral sensory signaling, and immune polarization, key GI processes found deregulated in patients with PD. The search for glial biomarkers, the investigation of temporal-spatial events involving glial reactivity/signaling, and the proposal of enteric glia-based therapies are clearly demanded for innovative and intestine-related management of PD.
Collapse
Affiliation(s)
- Beatriz Thomasi
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Luisa Valdetaro
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Maria Carolina Ricciardi
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Isabela Fialho Tavares
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana Lucia Tavares-Gomes
- Neuroglial Interaction Lab, Neuroscience Program, Universidade Federal Fluminense, Niterói, Brazil
- Neuroglial Interaction Lab, Neurobiology Department, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
24
|
Jiang L, Li JC, Tang BS, Guo JF. Associations between gut microbiota and Parkinson disease: A bidirectional Mendelian randomization analysis. Eur J Neurol 2023; 30:3471-3477. [PMID: 37159496 DOI: 10.1111/ene.15848] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND PURPOSE Parkinson disease (PD)-associated alterations in the gut microbiome have been observed in clinical and animal studies. However, it remains unclear whether this association reflects a causal effect in humans. METHODS We performed two-sample bidirectional Mendelian randomization using summary statistics from the international consortium MiBioGen (N = 18,340), the Framingham Heart Study (N = 2076), and the International Parkinson's Disease Genomics Consortium for PD (33,674 cases and 449,056 controls) and PD age at onset (17,996 cases). RESULTS Twelve microbiota features presented suggestive associations with PD risk or age at onset. Genetically increased Bifidobacterium levels correlated with decreased PD risk (odds ratio = 0.77, 95% confidence interval [CI] = 0.60-0.99, p = 0.040). Conversely, high levels of five short-chain fatty acid (SCFA)-producing bacteria (LachnospiraceaeUCG010, RuminococcaceaeUCG002, Clostridium sensustricto1, Eubacterium hallii group, and Bacillales) correlated with increased PD risk, and three SCFA-producing bacteria (Roseburia, RuminococcaceaeUCG002, and Erysipelatoclostridium) correlated with an earlier age at PD onset. Gut production of serotonin was associated with an earlier age at PD onset (beta = -0.64, 95% CI = -1.15 to -0.13, p = 0.013). In the reverse direction, genetic predisposition to PD was related to altered gut microbiota composition. CONCLUSIONS These results support a bidirectional relationship between gut microbiome dysbiosis and PD, and highlight the role of elevated endogenous SCFAs and serotonin in PD pathogenesis. Future clinical studies and experimental evidence are needed to explain the observed associations and to suggest new therapeutic approaches, such as dietary probiotic supplementation.
Collapse
Affiliation(s)
- Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Bioinformatics Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Abstract
The multifaceted microbiota characterizing our gut plays a crucial role in maintaining immune, metabolic and tissue homeostasis of the intestine as well as of distal organs, including the central nervous system. Microbial dysbiosis is reported in several inflammatory intestinal diseases characterized by the impairment of the gut epithelial and vascular barriers, defined as leaky gut, and it is reported as a potential danger condition associated with the development of metabolic, inflammatory and neurodegenerative diseases. Recently, we pointed out the strict connection between the gut and the brain via a novel vascular axis. Here we want to deepen our knowledge on the gut-brain axis, with particular emphasis on the connection between microbial dysbiosis, leaky gut, cerebral and gut vascular barriers, and neurodegenerative diseases. The firm association between microbial dysbiosis and impairment of the vascular gut-brain axis will be summarized in the context of protection, amelioration or boosting of Alzheimer, Parkinson, Major depressive and Anxiety disorders. Understanding the relationship between disease pathophysiology, mucosal barrier function and host-microbe interaction will foster the use of the microbiome as biomarker for health and disease as well as a target for therapeutic and nutritional advances.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy.
| |
Collapse
|
26
|
Sun J, Zhu Z, Lin Q, Qi S, Li Q, Zhou Y, Li R. Metabolic Engineering of Escherichia coli for the Biosynthesis of 3-Phenylpropionic Acid and 3-Phenylpropyl Acetate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4646-4655. [PMID: 37146254 DOI: 10.1021/acs.jafc.3c00652] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
3-Phenylpropionic acid (3PPA) and its derivative 3-phenylpropyl acetate (3PPAAc) are important aromatic compounds with broad applications in the cosmetics and food industries. In this study, we constructed a plasmid-free 3PPA-producing Escherichia coli strain and designed a novel 3PPAAc biosynthetic pathway. A module containing tyrosine ammonia lyase and enoate reductase, evaluated under the control of different promoters, was combined with phenylalanine-overproducing strain E. coli ATCC31884, enabling the plasmid-free de novo production of 218.16 ± 43.62 mg L-1 3PPA. The feasibility of the pathway was proved by screening four heterologous alcohol acetyltransferases, which catalyzed the transformation of 3-phenylpropyl alcohol into 3PPAAc. Afterward, 94.59 ± 16.25 mg L-1 3PPAAc was achieved in the engineered E. coli strain. Overall, we have not only demonstrated the potential of de novo synthesis of 3PPAAc in microbes for the first time but also provided a platform for the future of biosynthesis of other aromatic compounds.
Collapse
Affiliation(s)
- Jing Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingfang Lin
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Shilian Qi
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qianqian Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
27
|
Chu C, Yu L, Li Y, Guo H, Zhai Q, Chen W, Tian F. Lactobacillus plantarum CCFM405 against Rotenone-Induced Parkinson’s Disease Mice via Regulating Gut Microbiota and Branched-Chain Amino Acids Biosynthesis. Nutrients 2023; 15:nu15071737. [PMID: 37049578 PMCID: PMC10096885 DOI: 10.3390/nu15071737] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Recent studies have demonstrated that disturbances in the gut microbiota and microbiota -derived metabolites contribute to the pathogenesis of Parkinson’s disease (PD), suggesting that probiotic treatments that restore them may delay disease progression. This study aimed to examine the attenuating efficacy of L. plantarum CCFM405 and the potential mechanisms in mice with rotenone-induced PD. Our results indicate that L. plantarum CCFM405 ameliorated rotenone-induced motor deficits and constipation, decreased dopaminergic neuronal death, reduced intestinal inflammation and neuroinflammation, and raised dopamine levels, 5-HT, and associated metabolites in the striatal region of the brain in mice with PD. Sequencing of 16S rRNA from fecal microbiota revealed that L. plantarum CCFM405 normalized the gut bacterial composition in mice with PD, as evidenced by the increased relative abundance of the following genus, Bifidobacterium, Turicibacter, and Faecalibaculum, and decreased relative abundance of Alistipes, Bilophila, Akkermansia, and Escherichia-Shigella. The PICRUSt-predicted gut microbiota function revealed that L. plantarum CCFM405 enhanced the biosynthesis of amino acid pathways, particularly valine, leucine, and isoleucine (branched-chain amino acids, BCAAs). A non-metabolomic analysis of the serum and feces showed that L. plantarum CCFM405 markedly increased the levels of BCAAs. Pathway enrichment analysis based on the KEGG database further suggested that L. plantarum CCFM405 supplementation can promote BCAAs biosynthesis. Collectively, L. plantarum CCFM405 can help to prevent rotenone-induced PD by modulating the gut microbiota–metabolite axis. BCAAs may play a dominant role in L. plantarum CCFM405-associated neuroprotection in PD mice. This probiotic could be utilized as a potential food supplement in the management of PD.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Hang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Ghalandari N, Assarzadegan F, Habibi SAH, Esmaily H, Malekpour H. Efficacy of Probiotics in Improving Motor Function and Alleviating Constipation in Parkinson's Disease: A Randomized Controlled Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e137840. [PMID: 38116573 PMCID: PMC10728848 DOI: 10.5812/ijpr-137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 12/21/2023]
Abstract
Background Parkinson's disease (PD) is one of the common neurodegenerative diseases, and there has been an increasing interest in the potential role of intestinal dysbiosis in its pathogenesis and related gastrointestinal complications such as constipation. Objectives This study aims to evaluate the effects of multi-strain probiotics on constipation and motor function in PD patients. Methods This study was a blinded, randomized controlled trial (RCT) that involved 27 PD patients who were diagnosed with constipation according to the ROME IV criteria for functional constipation. The primary outcome measured before and after the intervention in both the placebo and probiotic groups was the frequency of defecation. Secondary outcomes evaluated were laxative use, sense of complete evacuation, Bristol Stool Scale for consistency, and Unified Parkinson's Disease Rating Scale (UPDRS) scale. The study lasted for eight weeks. Both groups also were educated about lifestyle modification. Results Of 30 included patients (15 in each group), 13 were women, and 17 were men. Three patients dropped out of the study. Between-group analysis showed that the frequency of bowel movements significantly increased in the probiotic group 4 [3 - 5] in comparison with 2 [2 - 3] in placebo (P = 0.02). Stool consistency also improved in the probiotic group (P = 0.04). However, there were no significant differences in other outcomes. The within-group analysis showed improvement in stool consistency in both probiotics and placebo groups (P = 0.01 and P = 0.007, respectively), while stool frequency and sense of complete evacuation significantly improved only in the probiotic group (P < 0.05). Conclusions This study demonstrated that multi-strain probiotics could improve frequency, consistency, and sense of complete evacuation in PD patients, while there was no significant effect on motor functions in 8 weeks. It is suggested that additional studies be conducted on longer-term effects.
Collapse
Affiliation(s)
- Nasibeh Ghalandari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Assarzadegan
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hassan Habibi
- Department of Gastroenterology and Liver Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaily
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Department of Gastroenterology and Liver Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|