1
|
Tahiri M, Gilbert JA. Examining the potential prebiotic effect of almonds. J Appl Microbiol 2025; 136:lxaf078. [PMID: 40156575 DOI: 10.1093/jambio/lxaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Almonds, a nutrient-dense food rich in dietary fiber, polyphenols, and unsaturated fatty acids, exhibit significant potential as a functional food with prebiotic effects. Prebiotics selectively stimulate the growth and activity of beneficial gut microbiota, leading to improved gut and systemic health. This review synthesizes evidence from in vitro studies, clinical trials, and systematic reviews to elucidate the prebiotic effects of almond consumption. Almonds enhance gut microbiota diversity and composition, particularly increasing beneficial bacteria such as Bifidobacterium and Roseburia, while promoting the production of short-chain fatty acids (SCFAs), such as butyrate, which are critical for gut barrier integrity and inflammation modulation. The presence of polyphenols, such as proanthocyanidins, contributes to their antioxidative and antimicrobial properties, further supporting microbiome health. Despite variability in study outcomes, likely due to differences in population health status, study design, and almond preparation methods, the cumulative findings underscore almonds' role as a potential prebiotic food with the potential to improve cardiovascular health. Continued research focusing on individualized responses and standardized methodologies is essential to fully harness the health benefits of almond consumption.
Collapse
Affiliation(s)
- Maha Tahiri
- Nutrition Sustainability Strategies, St Petersburg, FL 33702, United States
- Tufts University, Friedmann School of Nutrition Science and Policy, Boston, MA 02111, United States
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92023, United States
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92023, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92023, United States
| |
Collapse
|
2
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Xie N, Bai J, Hou Y, Liu J, Zhang Y, Meng X, Wang X. hPSCs-derived brain organoids for disease modeling, toxicity testing and drug evaluation. Exp Neurol 2025; 385:115110. [PMID: 39667657 DOI: 10.1016/j.expneurol.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Due to the differences and variances in genetic background, in vitro and animal models cannot meet the modern medical exploration of real human brain structure and function. Recently, brain organoids generated by human pluripotent stem cells (hPSCs) can mimic the structure and physiological function of human brain, being widely used in medical research. Brain organoids generated from normal hPSCs or patient-derived induced pluripotent stem cells offer a more promising approach for the study of diverse human brain diseases. More importantly, the use of the established brain organoid model for drug evaluation is conducive to shorten the clinical transformation period. Herein, we summarize methods for the identification of brain organoids from cellular diversity, morphology and neuronal activity, brain disease modeling, toxicity testing, and drug evaluation. Based on this, it is hoped that this review will provide new insights into the pathogenesis of brain diseases and drug research and development, promoting the rapid development of brain science.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
4
|
Hyży A, Rozenek H, Gondek E, Jaworski M. Effect of Antioxidants on the Gut Microbiome Profile and Brain Functions: A Review of Randomized Controlled Trial Studies. Foods 2025; 14:176. [PMID: 39856843 PMCID: PMC11764720 DOI: 10.3390/foods14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Antioxidants are widely recognized for their potential health benefits, including their impact on cognitive function and gut microbiome modulation. Understanding these effects is essential for exploring their broader clinical applications. OBJECTIVES This review aims to evaluate the effects of antioxidants on the gut microbiome and cognitive function, with a focus on findings from randomized controlled trials (RCTs). METHODS The studies involved human participants across a range of age groups, with interventions encompassing natural antioxidant sources, such as berries, as well as specific antioxidant vitamins. An extensive search across PubMed, SCOPUS, and Web of Science databases identified six relevant RCTs, each evaluated for potential bias. RESULTS These studies focused on a variety of antioxidant-rich products, including both naturally derived sources and supplemental forms. Antioxidants, including vitamins C, B2, and D, along with polyphenols such as xanthohumol, fermented papaya, peanuts, and berry extracts, demonstrate the potential to support cognitive function and promote gut health through mechanisms that modulate microbiome diversity and reduce inflammation. However, observed changes in microbiome diversity were modest and inconsistent across the studies. CONCLUSIONS While preliminary evidence suggests that antioxidants may benefit gut health and cognitive function, the heterogeneity of existing studies limits their immediate clinical applicability. Additionally, more robust RCTs are needed to substantiate these findings and guide future interventions.
Collapse
Affiliation(s)
- Aleksandra Hyży
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, 00-518 Warsaw, Poland;
| | - Hanna Rozenek
- Department of Health Psychology, Medical University of Warsaw, 00-518 Warsaw, Poland; (H.R.); (M.J.)
| | - Ewa Gondek
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Mariusz Jaworski
- Department of Health Psychology, Medical University of Warsaw, 00-518 Warsaw, Poland; (H.R.); (M.J.)
| |
Collapse
|
5
|
Li J, Zhao Z, Deng Y, Li X, Zhu L, Wang X, Li L, Li X. Regulatory Roles of Quercetin in Alleviating Fructose-Induced Hepatic Steatosis: Targeting Gut Microbiota and Inflammatory Metabolites. Food Sci Nutr 2025; 13:e4612. [PMID: 39803241 PMCID: PMC11717000 DOI: 10.1002/fsn3.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
While fructose is a key dietary component, concerns have been raised about its potential risks to the liver. This study aimed to assess quercetin's protective effects against fructose-induced mouse hepatic steatosis. Thirty-two male C57BL/6J mice were randomly allocated into four groups: control, high fructose diet (HFrD), HFrD supplemented with low-dose quercetin (HFrD+LQ), and HFrD supplemented with high-dose quercetin (HFrD+HQ). Biochemical, pathological, immune, and metabolic parameters were assessed. Quercetin treatment significantly reduced liver fat percentages in mice on a high fructose diet, with the most notable reduction observed in the HFrD+HQ group. Histological examination confirmed this reduction, revealing diminished lipid droplets and decreased inflammation and steatosis in hepatocytes. Compared to the high fructose group, interleukin-1 β and tumor necrosis factor alpha were significantly decreased, serum aspartate aminotransferase concentrations were markedly reduced, and blood high-density lipoprotein concentrations were substantially elevated after quercetin intervention (p < 0.05). Total bilirubin and triglyceride levels, which were significantly altered following high fructose intervention and reversed after quercetin intervention. Following the administration of 100 mg/kg quercetin, the Firmicutes/Bacteroidetes ratio was significantly reduced compared to the high fructose group. At the genus level, Erysipelotrichaceae_uncultured, Faecalibaculum, Odoribacter, and Allobaculum were significantly decreased (p < 0.05), Lacnospiraceae NK4A136 group, Parabacteroides, and Alloprevotella significantly increased (p < 0.05). However, the 50 mg/kg quercetin treatment only decreased the abundance of Erysipelotrichaceae_uncultured (p < 0.05). In addition, quercetin significantly enhanced the content of propionic acid and total acid (p < 0.05). Moreover, the intestinal flora showed a significant correlation with the hepatic health-related phenotype in mice. Both 50 and 100 mg/kg quercetin treatments significantly mitigated liver fat deposition in mice with fructose-induced hepatic steatosis. However, the higher dose of quercetin (100 mg/kg) demonstrated a more pronounced effect in reducing liver inflammation, likely due to its impact on gut microbiota regulation. This suggests quercetin's potential as a therapeutic agent for fructose-related hepatic steatosis, emphasizing the importance of dose considerations.
Collapse
Affiliation(s)
- Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products and Institute of Food SciencesZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of Food Science, Zhejiang Academy of Agricultural SciencesHangzhouChina
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural AffairsHangzhouChina
| | - Zhiqi Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yixuan Deng
- School of MedicineWenzhou Medical University, Chashan University TownWenzhouZhejiangChina
| | - Xinxin Li
- Institute of Food Science, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Liying Zhu
- Institute of Food Science, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Li Li
- Clinical Medical College, Hangzhou Normal UniversityHangzhouChina
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products and Institute of Food SciencesZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of Food Science, Zhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
6
|
Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024; 13:4131. [PMID: 39767073 PMCID: PMC11675957 DOI: 10.3390/foods13244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Though ubiquitous in nature, polyphenols gained scientific prominence only after the pioneering work of researchers like E. Fischer and K. Freudenberg, who demonstrated their potential beyond traditional applications, such as in the leather industry. Today, these bioactive compounds are recognized for their diverse therapeutic roles, including their use as adjuvants in cancer treatment, cancer prevention, and their anti-inflammatory and antioxidant properties. Additionally, polyphenols have demonstrated benefits in managing obesity, cardiovascular diseases, and neuromodulation. Their synthesis is influenced by environmental and genetic factors, with their concentrations varying based on the intensity of these variables, as well as the stage of ripening. This review provides a comprehensive overview of polyphenols, covering their classification, chemical structures, and bioavailability. The mechanisms influencing bioavailability, bioaccessibility, and bioactivity are explored in detail, alongside an introduction to their bioactive effects and associated metabolic pathways. Specific examples, such as the bioavailability of polyphenols in coffee and various types of onions, are analyzed. Despite their promising biological activities, a significant limitation of polyphenols lies in their inherently low oral bioavailability. However, their systemic circulation and the bioactive by-products formed during digestion present exciting opportunities for further research and application.
Collapse
Affiliation(s)
- Daria Ciupei
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Alexandru Colişar
- Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Zorița M. Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| |
Collapse
|
7
|
Zhang Y, Ren J, Zhu S, Guo Z, Pei H, Sun X, Wu J, Yang W, Zuo J, Ma Y. Integrative Analysis of Pharmacology and Transcriptomics Predicts Resveratrol Will Ameliorate Microplastics-Induced Lung Damage by Targeting Ccl2 and Esr1. TOXICS 2024; 12:910. [PMID: 39771125 PMCID: PMC11728634 DOI: 10.3390/toxics12120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Microplastics (MPs) are ubiquitous on earth, posing a growing threat to human health. Previous studies have shown that the lung is a primary organ for MPs exposure. Resveratrol (RES) is a common dietary polyphenol that exhibits anti-inflammatory and antioxidant effects. However, whether RES exerts a protective effect against MPs-induced lung damage is still unknown. METHODS The targets of RES were retrieved from five databases. Differentially expressed genes (DEGs) were identified through comprehensive bioinformatic analysis. Multiple algorithms were employed to screen for the core targets. Ultimately, molecular docking analysis and molecular dynamics (MD) simulations were utilized to confirm the binding affinity between RES and the core targets. RESULTS In total, 1235 DEGs were identified in the transcriptomes. After removing duplicates, a total of 739 RES targets were obtained from five databases, and 66 of these targets intersected with DEGs. The potential core targets (Esr1, Ccl2) were further identified through topological analysis and machine learning. These findings were subsequently verified by molecular docking and MD simulations. CONCLUSIONS This study demonstrated that RES may mitigate lung injury induced by MPs by targeting Esr1 and Ccl2. Our research offers a novel perspective on the prevention and treatment of MPs-induced lung injury.
Collapse
Affiliation(s)
- Yadong Zhang
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Jingyi Ren
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Siqi Zhu
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Zihao Guo
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Huanting Pei
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Xiaoya Sun
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Jiarui Wu
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Weijie Yang
- College of Public Health, Hebei Medical University, Shijiazhuang 050017, China;
| | - Jinshi Zuo
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| | - Yuxia Ma
- Hebei Key Laboratory of Environment and Human Health, Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; (Y.Z.); (J.R.); (S.Z.); (H.P.); (X.S.); (J.W.); (J.Z.)
| |
Collapse
|
8
|
Taherkhani S, Ahmadi P, Nasiraie LR, Janzadeh A, Honardoost M, Sedghi Esfahani S. Flavonoids and the gut microbiome: a powerful duo for brain health. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39632543 DOI: 10.1080/10408398.2024.2435593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Flavonoids, a class of polyphenolic compounds, are widely distributed in plant-based foods and have been recognized for their potential to promote overall health and well-being. Flavonoids in fruits and vegetables offer various beneficial effects such as anti-aging, anticancer, and anti-inflammatory properties. Flavonoids have been extensively studied for their neuroprotective properties, which are attributed to their ability to cross the blood-brain barrier and interact with neural cells. Factors like gut microbiota composition, age, genetics, and diet can impact how well flavonoids are absorbed in the gut. The gut microbiota can enhance the absorption of flavonoids through enzymatic processes, making microbiota composition a key factor influenced by age, genetics, and diet. Flavonoids can modulate the gut microbiota through prebiotic and antimicrobial effects, affecting the production of beneficial microbial metabolites like short-chain fatty acids (SCFAs) such as butyrate, which play a role in brain function and health. The gut microbiome also modulates the immune system, which is critical for preventing neuroinflammation. Additionally, flavonoids can benefit mental and psychological health by influencing anti-inflammatory signaling pathways in brain cells and increasing the absorption of tyrosine and tryptophan, precursors to neurotransmitters like serotonin, dopamine, norepinephrine, adrenaline, and gamma-aminobutyric acid (GABA). The flavonoid-gut microbiome axis is a complex and multifaceted relationship that has significant implications for neurological health. This review will explore how genetic and environmental factors can impact flavonoid absorption and the positive effects of flavonoids on brain health and the gut microbiota network.
Collapse
Affiliation(s)
- Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Roozbeh Nasiraie
- Department of Food Science and Technology, Islamic Azad University, Nour Branch, Nour, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Sedghi Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
9
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
10
|
Riegelman E, Xue K, Wang JS, Tang L. Therapeutic potential of green tea catechins on the development of Parkinson's disease symptoms in a transgenic A53T mouse model. Nutr Neurosci 2024:1-17. [PMID: 39612295 DOI: 10.1080/1028415x.2024.2427753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Objectives: This study aimed to evaluate the effects of green tea catechins on the prevention of Parkinson's disease neurobehavioral symptoms and α-synuclein blood plasma concentration in a hemizygous transgenic A53T mouse model.Methods: Thirty 6-month-old male mice were randomly assigned to three groups (n = 10/group): control, low-dose, and high-dose, receiving green tea polyphenol (GTP) treatment in their drinking water at 0%, 0.5%, and 1.5%, respectively, over a 90-day period. The efficacy of ad libitum dosing was assessed by analyzing the bioaccumulation of tea catechins in urine samples collected from metabolic cages on days 0, 30, 60, and 90, using LC/Q-TOF analysis. PD-related behavioral impairments were measured with open field and rotarod performance tests on days 0, 45, and 90. On day 90, plasma α-synuclein levels were analyzed via enzyme-linked immunosorbent assay (ELISA) to assess treatment effects.Results: Circulating tea catechin metabolites were detected in treated groups by day 30, with levels progressively increasing through day 90. By day 90, control mice exhibited significant deficits in rotarod performance, while both low- and high-dose groups maintained or improved their maximum time on the rotarod. Open field testing indicated reduced anxiety-related behavior in control mice compared to treated groups. ELISA analysis revealed significantly lower circulating α-synuclein levels in high-dose mice compared to controls.Conclusion: Our findings indicate that sustained administration of tea catechins significantly reduces circulating α-synuclein levels in blood plasma, improves motor coordination in a dose-dependent manner, and modulates anxiety-related behaviors in a PD mouse model.
Collapse
Affiliation(s)
- Elizabeth Riegelman
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| | - Kathy Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| |
Collapse
|
11
|
Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, Dwaraka VB. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Front Nutr 2024; 11:1474597. [PMID: 39628466 PMCID: PMC11612904 DOI: 10.3389/fnut.2024.1474597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Age-related alterations in immune function are believed to increase risk for a host of age-related diseases leading to premature death and disability. Programming of the immune system by diet, lifestyle, and environmental factors occurs across the lifespan and influences both makeup and function of the immune system, including immunometabolism. This programming is believed to act in large part through epigenetic modification. Among dietary components that affect this process, polyphenols may play an outsized role. Polyphenols are a widely distributed group of plant nutrients consumed by humans. Certain foods possess distinctive and relatively higher levels of these compounds. One such food is Tartary buckwheat (fagopyrum tataricum), an ancient seed historically prized for its health benefits. It is suggested that the specific composition of polyphenols found in foods like Tartary buckwheat may lead to a unique impact on immunometabolic physiological pathways that could be interrogated through epigenetic analyses. The objective of this study was to investigate the epigenetic effects on peripheral immune cells in healthy individuals of a standardized polyphenol concentrate based on naturally occurring nutrients in Tartary buckwheat. This pilot clinical trial tested the effects of consuming 90 days of this concentrate in 50 healthy male (40%) and female (60%) participants aged 18-85 years using epigenetic age clocks and deconvolution methods. Analysis revealed significant intervention-related changes in multiple epigenetic age clocks and immune markers as well as population-wide alterations in gene ontology (GO) pathways related to longevity and immunity. This study provides previously unidentified insights into the immune, longevity and epigenetic effects of consumption of polyphenol-rich plants and generates additional support for health interventions built around historically consumed plants like Tartary buckwheat while offering compelling opportunities for additional research. Clinical trial registration ClinicalTrials.gov, Identifier: NCT05234203.
Collapse
Affiliation(s)
| | | | - Arti Chandra
- Big Bold Health PBC, Bainbridge Island, WA, United States
| | | | - Ryan Smith
- TruDiagnostic Inc., Lexington, KY, United States
| | | | | |
Collapse
|
12
|
Inoue Y, Inokuchi R, Nakano H, Masuda Y, Nishida O, Doi K. Reduction Rate of Uric Acid in Blood during Continuous Renal Replacement Therapy for Acute Kidney Injury: A Multicenter Retrospective Observational Study. Blood Purif 2024; 54:83-92. [PMID: 39471783 PMCID: PMC11854975 DOI: 10.1159/000542329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION Continuous renal replacement therapy (CRRT) eliminates these small solutes with equal efficacy under the same conditions. However, variations in the reduction rates of these solutes observed in patients with CRRT are likely influenced by factors other than removal through CRRT. This study evaluated the reduction rates of these small solutes during CRRT and their possible association with mortality. METHODS This study used the data of limited patients registered in the CHANGE study, which is a large retrospective observational study on CRRT management across 18 Japanese ICUs. Reduction rates of three solutes in blood, calculated on the 1st and 2nd days, were compared in patients with acute kidney injury (AKI) treated by CRRT. The potential association between solute reduction rates and mortality during CRRT or within 7 days after the termination of CRRT was evaluated. RESULTS In total, 163 patients with AKI were included in the analysis. The reduction rates of uric acid (UA) were significantly higher than those of urea and creatinine for the 1st and 2nd tests in the entire cohort. Receiver operating characteristic (ROC) curve analysis revealed that lower UA reduction rates were significantly associated with mortality during CRRT or within 7 days after CRRT termination {area under the ROC curve: 0.62 [95% confidence interval (CI): 0.52-0.71] for the 1st test and 0.63 [95% CI: 0.54-0.72] for the 2nd test}. After adjusting for age and SOFA score, a significant association was observed between lower UA reduction rates and hospital mortality for both tests. CONCLUSION Among the small solutes, UA reduction rates in patients with AKI treated with CRRT were notably higher than those of creatinine and urea. Furthermore, the significant association between lower UA reduction rates and mortality suggests that UA reduction rate may serve as a valuable indicator of insufficient removal of uremic solutes by CRRT, although the decline in UA production must be taken into account. INTRODUCTION Continuous renal replacement therapy (CRRT) eliminates these small solutes with equal efficacy under the same conditions. However, variations in the reduction rates of these solutes observed in patients with CRRT are likely influenced by factors other than removal through CRRT. This study evaluated the reduction rates of these small solutes during CRRT and their possible association with mortality. METHODS This study used the data of limited patients registered in the CHANGE study, which is a large retrospective observational study on CRRT management across 18 Japanese ICUs. Reduction rates of three solutes in blood, calculated on the 1st and 2nd days, were compared in patients with acute kidney injury (AKI) treated by CRRT. The potential association between solute reduction rates and mortality during CRRT or within 7 days after the termination of CRRT was evaluated. RESULTS In total, 163 patients with AKI were included in the analysis. The reduction rates of uric acid (UA) were significantly higher than those of urea and creatinine for the 1st and 2nd tests in the entire cohort. Receiver operating characteristic (ROC) curve analysis revealed that lower UA reduction rates were significantly associated with mortality during CRRT or within 7 days after CRRT termination {area under the ROC curve: 0.62 [95% confidence interval (CI): 0.52-0.71] for the 1st test and 0.63 [95% CI: 0.54-0.72] for the 2nd test}. After adjusting for age and SOFA score, a significant association was observed between lower UA reduction rates and hospital mortality for both tests. CONCLUSION Among the small solutes, UA reduction rates in patients with AKI treated with CRRT were notably higher than those of creatinine and urea. Furthermore, the significant association between lower UA reduction rates and mortality suggests that UA reduction rate may serve as a valuable indicator of insufficient removal of uremic solutes by CRRT, although the decline in UA production must be taken into account.
Collapse
Affiliation(s)
- Yutaro Inoue
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Inokuchi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiko Nakano
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - on behalf of the CHANGE Study Group
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
13
|
Mihaylova D, Desseva I, Tumbarski Y, Popova A, Pandova S, Lante A. Evaluation of the Enzyme Inhibition, Antioxidant, and Antimicrobial Activities of Apricots, Plums, and Their Hybrid Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2936. [PMID: 39458883 PMCID: PMC11511154 DOI: 10.3390/plants13202936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
The current study focuses on evaluating the enzyme inhibition (acetylcholinesterase, α-amylase, α-glucosidase, pancreatin lipase), antioxidant, and antimicrobial activities of the "Modesto" apricot, "Stanley" plum, and their hybrid the "Stendesto" plum-apricot. The "Stendesto" is the only successful plum-apricot hybrid in Bulgaria. A spectrophotometric approach was used to evaluate the antioxidant activity following four complementary assays (DPPH, ABTS, FRAP, and CUPRAC). The "Stendesto" plum-apricot revealed its enhanced antioxidant potential compared to its parental lines. Apart from the free phenolics extraction, two other techniques (alkaline and acid hydrolysis) were applied to reveal the biological potential of the studied fruit. Not only free but also bound phenolic extracts were able to inhibit α-glucosidase and acetylcholinesterase, while none of the extracts inhibited lipase or α-amylase. None of the apricot extracts had antimicrobial activity, while the other fruit had limited antimicrobial activity. The proposed results undoubtedly reveal that hybrid fruits possess enhanced biological activity compared to their parents. This is a first comprehensive evaluation of hybrid fruits with reference to parental lines. This makes them an interesting research topic that should be better explored.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Ivelina Desseva
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Aneta Popova
- Department of Biochemistry and Nutrition, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Svetla Pandova
- Department of Breeding and Genetic Resources, Fruit Growing Institute, Agricultural Academy, 4000 Plovdiv, Bulgaria
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
14
|
Hamilton AM, Krout IN, White AC, Sampson TR. Microbiome-based therapeutics for Parkinson's disease. Neurotherapeutics 2024; 21:e00462. [PMID: 39393983 PMCID: PMC11585879 DOI: 10.1016/j.neurot.2024.e00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Recent experimental and clinical data demonstrate a significant dysregulation of the gut microbiome in individuals with Parkinson's disease (PD). With an immense influence on all aspects of physiology, this dysregulation has potential to directly or indirectly contribute to disease pathology. Experimental models have bridged these associations toward defined contributions, identifying various microbiome-dependent impacts to PD pathology. These studies have laid the foundation for human translation, examining whether certain members of the microbiome and/or whole restoration of the gut microbiome community can provide therapeutic benefit for people living with PD. Here, we review recent and ongoing clinically-focused studies that use microbiome-targeted therapies to limit the severity and progression of PD. Fecal microbiome transplants, prebiotic interventions, and probiotic supplementation are each emerging as viable methodologies to augment the gut microbiome and potentially limit PD symptoms. While still early, the data in the field to date support continued cross-talk between experimental systems and human studies to identify key microbial factors that contribute to PD pathologies.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Ian N Krout
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Alexandria C White
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA.
| |
Collapse
|
15
|
Zamanian MY, Nazifi M, Khachatryan LG, Taheri N, Ivraghi MS, Menon SV, Husseen B, Prasad KDV, Petkov I, Nikbakht N. The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms. Inflammation 2024:10.1007/s10753-024-02139-7. [PMID: 39225914 DOI: 10.1007/s10753-024-02139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), N.F, Moscow, Russia
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - K D V Prasad
- Symbiosis Institute of Business Management, Hyderabad, India
- Symbiosis International (Deemed University), Pune, India
| | - Iliya Petkov
- Department of Neurology, Medical University - Sofia, Sofia, Bulgaria
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
16
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
17
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
18
|
Munteanu C, Galaction AI, Turnea M, Blendea CD, Rotariu M, Poștaru M. Redox Homeostasis, Gut Microbiota, and Epigenetics in Neurodegenerative Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:1062. [PMID: 39334720 PMCID: PMC11429174 DOI: 10.3390/antiox13091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases encompass a spectrum of disorders marked by the progressive degeneration of the structure and function of the nervous system. These conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Multiple sclerosis (MS), often lead to severe cognitive and motor deficits. A critical component of neurodegenerative disease pathologies is the imbalance between pro-oxidant and antioxidant mechanisms, culminating in oxidative stress. The brain's high oxygen consumption and lipid-rich environment make it particularly vulnerable to oxidative damage. Pro-oxidants such as reactive nitrogen species (RNS) and reactive oxygen species (ROS) are continuously generated during normal metabolism, counteracted by enzymatic and non-enzymatic antioxidant defenses. In neurodegenerative diseases, this balance is disrupted, leading to neuronal damage. This systematic review explores the roles of oxidative stress, gut microbiota, and epigenetic modifications in neurodegenerative diseases, aiming to elucidate the interplay between these factors and identify potential therapeutic strategies. We conducted a comprehensive search of articles published in 2024 across major databases, focusing on studies examining the relationships between redox homeostasis, gut microbiota, and epigenetic changes in neurodegeneration. A total of 161 studies were included, comprising clinical trials, observational studies, and experimental research. Our findings reveal that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, with gut microbiota composition and epigenetic modifications significantly influencing redox balance. Specific bacterial taxa and epigenetic markers were identified as potential modulators of oxidative stress, suggesting novel avenues for therapeutic intervention. Moreover, recent evidence from human and animal studies supports the emerging concept of targeting redox homeostasis through microbiota and epigenetic therapies. Future research should focus on validating these targets in clinical settings and exploring the potential for personalized medicine strategies based on individual microbiota and epigenetic profiles.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| |
Collapse
|
19
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
20
|
Stepaniak U, Grosso G, Polak M, Gradowicz-Prajsnar B, Kozela M, Bobak M, Sanchez-Niubo A, Stefler D, Haro JM, Pająk A. Association between dietary (poly)phenol intake and the ATHLOS Healthy Ageing Scale in the Polish arm of the HAPIEE study. GeroScience 2024:10.1007/s11357-024-01275-0. [PMID: 38985401 DOI: 10.1007/s11357-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Inverse association between (poly)phenol intake and age-related disorders has been demonstrated; however, little is known whether they affect comprehensively assessed healthy aging. The aim of this study was to evaluate the associations between the intake of (poly)phenol (including selected classes and subclasses) and healthy aging scores related to biopsychosocial aspects of health and functioning. A cross-sectional study was performed using data on 9774 randomly selected citizens of Krakow (Poland) who were 45-69 years of age. Dietary (poly)phenol intake was evaluated using a food frequency questionnaire and matching food consumption data with the Phenol-Explorer database. The healthy aging scores were estimated from the ATHLOS Healthy Ageing Scale (HAS) developed by the Ageing Trajectories of Health-Longitudinal Opportunities and Synergies (ATHLOS) consortium. Beta coefficients were calculated using multivariable linear regression models. In multivariable adjusted models, there were significant positive associations between the ATHLOS HAS score and intake of total (poly)phenols (b per increase of 100 mg/day = 0.081; 95% CI, 0.050; 0.112) and among main classes of (poly)phenols with phenolic acids (b = 0.139; 95% CI, 0.098; 0.180). Intake of remaining classes of (poly)phenols (flavonoids, lignans, stilbenes, and others) was not related to the ATHLOS HAS score. Among individual classes studied, hydroxycinnamic acids, flavonols, flavones, and dihydrochalcones were associated with better healthy aging. The findings suggest the beneficial effect of total dietary (poly)phenol and some classes and subclasses of (poly)phenol intake in terms of healthy aging in Poland. These findings should be confirmed in other settings and with prospective data.
Collapse
Affiliation(s)
- Urszula Stepaniak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland.
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Barbara Gradowicz-Prajsnar
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Magdalena Kozela
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Martin Bobak
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Albert Sanchez-Niubo
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Denes Stefler
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Josep Maria Haro
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Andrzej Pająk
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| |
Collapse
|
21
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
22
|
Vasilakopoulou PB, Yanni AE, Fanarioti E, Dermon CR, Karathanos VT, Chiou A. Determination of Flavonoids and Phenolic Acids in the Liver of Wistar Rats after a Dietary Enrichment with Corinthian Currant ( Vitis vinifera L., var. Apyrena): A Liquid Chromatography-Tandem Mass Spectrometry Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11549-11560. [PMID: 38718199 DOI: 10.1021/acs.jafc.4c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Corinthian currants are dried fruits produced from Vitis vinifera L. var. Apyrena grape. This study investigated the distribution of phenolic compounds in male Wistar rat livers following two distinct Corinthian currant long-term dietary intake protocols (3 and 10% w/w). Method optimization, comparing fresh and lyophilized tissues, achieved satisfactory recoveries (>70%) for most analytes. Enzymatic hydrolysis conditions (37 °C, pH 5.0) minimally affected phenolics, but enzyme addition showed diverse effects. Hydrolyzed lyophilized liver tissue from rats consuming Corinthian currants (3 and 10% w/w) exhibited elevated levels of isorhamnetin (20.62 ± 2.27 ng/g tissue and 33.80 ± 1.38 ng/g tissue, respectively), along with similar effects for kaempferol, quercetin, and chrysin after prolonged Corinthian currant intake. This suggests their presence as phase II metabolites in the fasting-state liver. This study is the first to explore phenolic accumulation in rat liver, simulating real conditions of dried fruit consumption, as seen herein with Corinthian currant.
Collapse
Affiliation(s)
- Paraskevi B Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Eleni Fanarioti
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26500 Patras, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26500 Patras, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
- Agricultural Cooperatives' Union of Aeghion, Corinthou 201, 25100 Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| |
Collapse
|
23
|
Láng L, McArthur S, Lazar AS, Pourtau L, Gaudout D, Pontifex MG, Müller M, Vauzour D. Dietary (Poly)phenols and the Gut-Brain Axis in Ageing. Nutrients 2024; 16:1500. [PMID: 38794738 PMCID: PMC11124177 DOI: 10.3390/nu16101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
As the population ages, the incidence of age-related neurodegenerative diseases is rapidly increasing, and novel approaches to mitigate this soaring prevalence are sorely needed. Recent studies have highlighted the importance of gut microbial homeostasis and its impact on brain functions, commonly referred to as the gut-brain axis, in maintaining overall health and wellbeing. Nonetheless, the mechanisms by which this system acts remains poorly defined. In this review, we will explore how (poly)phenols, a class of natural compounds found in many plant-based foods and beverages, can modulate the gut-brain axis, and thereby promote neural health. While evidence indicates a beneficial role of (poly)phenol consumption as part of a balanced diet, human studies are scarce and mechanistic insight is still lacking. In this regard, we make the case that dietary (poly)phenols should be further explored to establish their therapeutic efficacy on brain health through modulation of the gut-brain axis, with much greater emphasis on carefully designed human interventions.
Collapse
Affiliation(s)
- Léonie Láng
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - Simon McArthur
- Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London E1 2AT, UK;
| | - Alpar S. Lazar
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Line Pourtau
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - David Gaudout
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| |
Collapse
|
24
|
Binda S, Tremblay A, Iqbal UH, Kassem O, Le Barz M, Thomas V, Bronner S, Perrot T, Ismail N, Parker J. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024; 12:634. [PMID: 38674579 PMCID: PMC11052108 DOI: 10.3390/microorganisms12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.
Collapse
Affiliation(s)
- Sylvie Binda
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Ola Kassem
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Mélanie Le Barz
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Vincent Thomas
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Tara Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - J.Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
25
|
Xue Y, Zhang YN, Wang M, Fu HY, Mao YC, Hu M, Sun MT, Guo HG, Cao L, Feng CZ. Prolonged oral intake of green tea polyphenols attenuates delirium-like behaviors in mice induced by anesthesia/surgery. Heliyon 2024; 10:e26200. [PMID: 38495146 PMCID: PMC10943306 DOI: 10.1016/j.heliyon.2024.e26200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
Postoperative delirium (POD) is a severe postoperative complication characterized by delirium-like symptoms. So far, no effective preventable strategy for POD prevention has been identified. Reports show that the consumption of green tea polyphenols (GTP) is associated with better cognitive function by modulating the composition of gut microbiota. Whether GTP also play a role in alleviating POD through gut microbiota is unknown. Herein, we studied the effect of prolonged (eight weeks) GTP intake on postoperative delirium in C57BL/6 mice with laparotomies under isoflurane anesthesia (anesthesia/surgery). We subsequently investigated anesthesia/surgery caused behavioral changes and increased the expression of malondialdehyde (MAD), an oxidative stress marker, and the activities of superoxide dismutase (SOD), an antioxidant marker, in the mice at 6 h after anesthesia/surgery. However, GTP administration reversed these changes and alleviated anesthesia/surgery-induced decrease in the abundance of gut bacterial genera, Roseburia. Further, fecal microbiota transplant demonstrated that compared with mice in the control group, treatment of C57BL/6 mice with feces from GTP-treated mice had a slight effect on the behavioral changes of mice. These data suggest that daily consumption of GTP could protect against anesthesia/surgery-induced behavioral changes, which is closely associated with gut microbiota modification by GTP.
Collapse
Affiliation(s)
- Yao Xue
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yan-Na Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Man Wang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Hui-Yuan Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ying-Chao Mao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Min Hu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Mei-Tao Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hong-Gang Guo
- Center of Animal Research, Hangzhou Medical College, Hangzhou, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen-Zhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Touati I, Abdalla M, Ali NH, AlRuwaili R, Alruwaili M, Britel MR, Maurady A. Constituents of Stachys plants as potential dual inhibitors of AChE and NMDAR for the treatment of Alzheimer's disease: a molecular docking and dynamic simulation study. J Biomol Struct Dyn 2024; 42:2586-2602. [PMID: 37325873 DOI: 10.1080/07391102.2023.2217925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative condition characterized by progressive cognitive impairment. While the formation of β-amyloid plaques and neurofibrillary tangles are the hallmarks features of AD, the downstream consequence of these byproducts is the disruption of the cholinergic and glutamatergic neural systems. Growing evidence for the existence of interplay between AChE and NMDARs has opened up new venues for the discovery of novel ligands endowed with anticholinesterase and NMDAR-blocking activity. Plants belonging to the stachys genus have been extensively explored for having a broad range of therapeutic applications and have been used traditionally for millennia, to treat various CNS-related disorders, which makes them the ideal source of novel therapeutics. The present study was designed to identify natural dual-target inhibitors for AChE and NMDAR deriving from stachys genus for their potential use in AD. Using molecular docking, drug-likeness-profiling, MD simulation and MMGBSA calculations, an in-house database of biomolecules pertaining to the stachys genus was shortlisted based on their binding affinity, overall stability and critical ADMET parameters. Pre- and post-MD analysis revealed that Isoorientin effectively binds to AChE and NMDAR with various vital interactions, exhibits a stable behavior with minor fluctuations relative to two clinical drugs used as positive control, and displays strong and consistent interactions that lasted for the majority of the simulation. Findings from this study have elucidated the rationale behind the traditional use of Stachys plants for the treatment of AD and could provide new impetus for the development of novel dual-target therapeutics for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
27
|
Mall UP, Patel VH. Effect of in vitro Digestion on the Bioaccessibility of Polyphenols and Potential Prebiotic Properties of Potato Peel. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:228-240. [PMID: 38318834 DOI: 10.2174/012772574x287665240118053142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Potato peel is a byproduct of the potato processing industry and a potential source of functional ingredients such as dietary fiber, polyphenols, and prebiotics. However, the bioaccessibility of polyphenols and antioxidants during in vitro digestion as well as prebiotic potential after in vitro digestion of potato peel flour has not been reported. OBJECTIVE The study was designed to assess the bioaccessibility of polyphenols and the prebiotic potential of potato peel flour. METHODS In this study, the changes in polyphenol content and antioxidant capacity during different phases of in vitro digestion, including salivary, gastric and intestinal phases were studied. Additionally, an investigation was conducted to evaluate the prebiotic properties of potato peel flour by in vitro fermentation with Lactobacillus acidophilus. RESULTS The findings revealed a significant increase in the recovery index for total phenolic content during both gastric (106.90%) and intestinal (102.71%) digestive phases. Furthermore, polyphenols in potato peel flour exhibited high residual intestinal digestibility index values (>90%). The antioxidant capacity increased by >50% during various phases of in vitro digestion. Regarding prebiotic properties, potato peel flour significantly increased L. acidophilus counts and promoted the production of short-chain fatty acids, specifically propionate and butyrate. CONCLUSION This study suggests that potato peel flour has the potential to serve as a functional ingredient or nutraceutical that can enhance health and may help in reducing environmental problems.
Collapse
Affiliation(s)
- Urvashi P Mall
- Laboratory of Foods and Nutrition, P. G. Department of Home Science, Sardar Patel University, Vallabh Vidyanagar- 388120, Gujarat, India
| | - Vinayak H Patel
- Laboratory of Foods and Nutrition, P. G. Department of Home Science, Sardar Patel University, Vallabh Vidyanagar- 388120, Gujarat, India
| |
Collapse
|
28
|
Ballini A, Zhurakivska K, Troiano G, Lo Muzio L, Caponio VCA, Spirito F, Porro R, Rella M, Cantore S, Arrigoni R, Dioguardi M. Dietary Polyphenols against Oxidative Stress in Head and Neck Cancer: What's New, What's Next. J Cancer 2024; 15:293-308. [PMID: 38169656 PMCID: PMC10758035 DOI: 10.7150/jca.90545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024] Open
Abstract
Head and neck cancers (HNC) are a worldwide health problem, accounting for over 5% of all types of cancers. Their varied nature makes it sometimes difficult to find clear explanations for the molecular mechanisms that underline their onset and development. While chemio- and radiotherapy are clearly not to be dismissed, we cannot undervalue the effect that polyphenols - especially dietary polyphenols - can have in helping us to cope with this medical emergency. By influencing several different proteins involved in numerous different metabolic pathways, polyphenols can have a broad spectrum of biological action and can hopefully act synergistically to tackle down head and neck cancer. Moreover, being natural molecules, polyphenols does not present any side effects and can even enhance drugs efficacy, making our clinical therapy against head and neck cancer more and more effective. Certainly, oxidative stress plays an important role, altering several molecular pathways, lowering the body's defenses, and ultimately helping to create a microenvironment conducive to the appearance and development of the tumor. In this regard, the regular and constant intake of foods rich in polyphenols can help counteract the onset of oxidative stress, improving the health of the general population. In this review, we highlight the role of polyphenols in managing oxidative stress, with such positive effects that they can be considered new tools to use in our anti-head and neck cancer strategy.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosa Porro
- Department of Informatics, University of Bari “Aldo Moro”, Bari, Italy
| | - Martina Rella
- AULSS4 - Veneto Orientale - Portogruaro, Venice, Italy
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Munir MU, Ali SA, Chung KHK, Kakinen A, Javed I, Davis TP. Reverse engineering the Gut-Brain Axis and microbiome-metabolomics for symbiotic/pathogenic balance in neurodegenerative diseases. Gut Microbes 2024; 16:2422468. [PMID: 39523450 PMCID: PMC11556280 DOI: 10.1080/19490976.2024.2422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the molecular communications along the gut-brain axis can help in understanding the pathophysiology of neurodegenerative diseases and exploiting the gut microbiome for therapeutics. However, gut microbes and their metabolites have a multifaceted role in mediating both brain physiology and neurodegenerative pathology. There is a lack of understanding of how and when this role is tipped in neurodegenerative diseases and what are those contributing factors, both at local (gut) and distal (neuronal) levels, that drive this imbalance. Here we have reviewed the gut microbiome and its metabolites in the context of the gut-brain axis and summarized how different factors such as gut-microbial diversity, their metabolites, the role of the native immune system and the integrity of gut epithelial and blood-brain barriers are interconnected and collectively define the involvement of gut-microbiome in neurodegenerative pathologies. It also underlines the need for multidisciplinary tools and animal models to simultaneously reflect on many of these factors and to better correlate with clinical observations and data obtained from human biopsies and fecal samples. Harnessing the gut-brain axis will herald a paradigm shift in medicine for neurodegenerative diseases and aging, emphasizing the significance of the microbiome in the broader spectrum of health and disease.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Syed Aoun Ali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
- Clinical and Health Sciences,University of South Australia, Adelaide, SA, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
30
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023; 65:382-405. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
31
|
Ayan E, DeMirci H, Serdar MA, Palermo F, Baykal AT. Bridging the Gap between Gut Microbiota and Alzheimer's Disease: A Metaproteomic Approach for Biomarker Discovery in Transgenic Mice. Int J Mol Sci 2023; 24:12819. [PMID: 37629000 PMCID: PMC10454110 DOI: 10.3390/ijms241612819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressively debilitating form of dementia that affects millions of individuals worldwide. Although a vast amount of research has investigated the complex interplay between gut microbiota and neurodegeneration, the metaproteomic effects of microbiota on AD pathogenesis remain largely uncharted territory. This study aims to reveal the role of gut microbiota in AD pathogenesis, particularly regarding changes in the proteome and molecular pathways that are intricately linked to disease progression. We operated state-of-the-art Nano-Liquid Chromatography Mass Spectrometry (nLC-MS/MS) to compare the metaproteomic shifts of 3-month-old transgenic (3M-ALZ) and control (3M-ALM, Alzheimer's Littermate) mice, depicting the early onset of AD with those of 12-month-old ALZ and ALM mice displaying the late stage of AD. Combined with computational analysis, the outcomes of the gut-brain axis-focused inquiry furnish priceless knowledge regarding the intersection of gut microbiota and AD. Accordingly, our data indicate that the microbiota, proteome, and molecular changes in the intestine arise long before the manifestation of disease symptoms. Moreover, disparities exist between the normal-aged flora and the gut microbiota of late-stage AD mice, underscoring that the identified vital phyla, proteins, and pathways hold immense potential as markers for the early and late stages of AD. Our research endeavors to offer a comprehensive inquiry into the intricate interplay between gut microbiota and Alzheimer's Disease utilizing metaproteomic approaches, which have not been widely adopted in this domain. This highlights the exigency for further scientific exploration to elucidate the underlying mechanisms that govern this complex and multifaceted linkage.
Collapse
Affiliation(s)
- Esra Ayan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul 34450, Turkey;
- Koç University Isbank Center for Infectious Diseases (KUISCID), Koç University, Istanbul 34450, Turkey
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94305, USA
| | - Muhittin Abdulkadir Serdar
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
| | | | - Ahmet Tarık Baykal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
- Acıbadem Labmed Clinical Laboratories, R&D Center, İstanbul 34450, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| |
Collapse
|
32
|
Ciccone L, Nencetti S, Rossello A, Orlandini E. Pomegranate: A Source of Multifunctional Bioactive Compounds Potentially Beneficial in Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1036. [PMID: 37513947 PMCID: PMC10385237 DOI: 10.3390/ph16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate fruit (PF) is a fruit rich in nutraceuticals. Nonedible parts of the fruit, especially peels, contain high amounts of bioactive components that have been largely used in traditional medicine, such as the Chinese, Unani, and Ayurvedic ones, for treating several diseases. Polyphenols such as anthocyanins, tannins, flavonoids, phenolic acids, and lignans are the major bioactive molecules present in PF. Therefore, PF is considered a source of natural multifunctional agents that exert simultaneously antioxidant, anti-inflammatory, antitumor, antidiabetic, cardiovascular, and neuroprotective activities. Recently, several studies have reported that the nutraceuticals contained in PF (seed, peel, and juice) have a potential beneficial role in Alzheimer's disease (AD). Research suggests that the neuroprotective effect of PF is mostly due to its potent antioxidant and anti-inflammatory activities which contribute to attenuate the neuroinflammation associated with AD. Despite the numerous works conducted on PF, to date the mechanism by which PF acts in combatting AD is not completely known. Here, we summarize all the recent findings (in vitro and in vivo studies) related to the positive effects that PF and its bioactive components can have in the neurodegeneration processes occurring during AD. Moreover, considering the high biotransformation characteristics of the nutraceuticals present in PF, we propose to consider the chemical structure of its active metabolites as a source of inspiration to design new molecules with the same beneficial effects but less prone to be affected by the metabolic degradation process.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
33
|
Tambe MA, de Rus Jacquet A, Strathearn KE, Hensel JA, Colón BD, Chandran A, Yousef GG, Grace MH, Ferruzzi MG, Wu Q, Simon JE, Lila MA, Rochet JC. Protective Effects of Polyphenol-Rich Extracts against Neurotoxicity Elicited by Paraquat or Rotenone in Cellular Models of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1463. [PMID: 37508001 PMCID: PMC10376534 DOI: 10.3390/antiox12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving motor symptoms caused by a loss of dopaminergic neurons in the substantia nigra region of the brain. Epidemiological evidence suggests that anthocyanin (ANC) intake is associated with a low risk of PD. Previously, we reported that extracts enriched with ANC and proanthocyanidins (PAC) suppressed dopaminergic neuron death elicited by the PD-related toxin rotenone in a primary midbrain culture model. Here, we characterized botanical extracts enriched with a mixed profile of polyphenols, as well as a set of purified polyphenolic standards, in terms of their ability to mitigate dopaminergic cell death in midbrain cultures exposed to another PD-related toxicant, paraquat (PQ), and we examined underlying neuroprotective mechanisms. Extracts prepared from blueberries, black currants, grape seeds, grape skin, mulberries, and plums, as well as several ANC, were found to rescue dopaminergic neuron loss in PQ-treated cultures. Comparison of a subset of ANC-rich extracts for the ability to mitigate neurotoxicity elicited by PQ versus rotenone revealed that a hibiscus or plum extract was only neuroprotective in cultures exposed to rotenone or PQ, respectively. Several extracts or compounds with the ability to protect against PQ neurotoxicity increased the activity of the antioxidant transcription factor Nrf2 in cultured astrocytes, and PQ-induced dopaminergic cell death was attenuated in Nrf2-expressing midbrain cultures. In other studies, we found that extracts prepared from hibiscus, grape skin, or purple basil (but not plums) rescued defects in O2 consumption in neuronal cells treated with rotenone. Collectively, these findings suggest that extracts enriched with certain combinations of ANC, PAC, stilbenes, and other polyphenols could potentially slow neurodegeneration in the brains of individuals exposed to PQ or rotenone by activating cellular antioxidant mechanisms and/or alleviating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mitali A Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Katherine E Strathearn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Jennifer A Hensel
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Bryce D Colón
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Gad G Yousef
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Mary H Grace
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Mario G Ferruzzi
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Qingli Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - James E Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mary Ann Lila
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
35
|
Liang S, Jin F, Jia C. Editorial: The effect of gut microbiota on the brain structure and function. Front Integr Neurosci 2023; 17:1226664. [PMID: 37483652 PMCID: PMC10356552 DOI: 10.3389/fnint.2023.1226664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Shan Liang
- Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Feng Jin
- Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
36
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park-III, Greater Noida 201308, India
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park-I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | | | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| |
Collapse
|
37
|
Wang J, Yu Z, Peng Y, Xu B. Insights into prevention mechanisms of bioactive components from healthy diets against Alzheimer's disease. J Nutr Biochem 2023:109397. [PMID: 37301484 DOI: 10.1016/j.jnutbio.2023.109397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease in which senile plaques, neurofibrillary tangles, insulin resistance, oxidative stress, chronic neuroinflammation, and abnormal neurotransmission are the potential mechanisms involved in its onset and development. Although it is still an intractable disorder, diet intervention has been developed as an innovative strategy for AD prevention. Some bioactive compounds and micronutrients from food, including soy isoflavones, rutin, vitamin B1, etc., have exhibited numerous neuronal health-promoting effects in both in vivo and in vitro studies. It is well known that their antiapoptotic, antioxidative, and anti-inflammatory properties prevent the neuronal or glial cells from injury or death, minimize oxidative damage, inhibit the production of proinflammatory cytokines by modulating typical signaling pathways of MAPK, NF-kβ, and TLR, and further reduce Aβ genesis and tau hyperphosphorylation. However, parts of the dietary components trigger AD-related proteins productions and inflammasome as well as inflammatory gene upregulation. This review summarized the neuroprotective or nerve damage-promoting role and underlying molecular mechanisms of flavonoids, vitamins, and fatty acids via the data from library databases, PubMed, and journal websites, which provides a comprehensive analysis of the prevention potential of these dietary components against AD.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
38
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|