1
|
Spitler KM, Shetty SK, Davies BSJ. Effects of age and diet on triglyceride metabolism in mice. J Lipid Res 2024; 66:100706. [PMID: 39566846 DOI: 10.1016/j.jlr.2024.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Both age and diet can contribute to alterations in triglyceride metabolism and subsequent metabolic disease. In humans, plasma triglyceride levels increase with age. Diets high in saturated fats can increase triglyceride levels while diets high in omega-3 fatty acids decrease triglyceride levels. Here we asked how age and long-term diet altered triglyceride metabolism in mice. We fed male and female C57Bl/6 mice a low-fat diet, a western diet (WD), or a diet high in polyunsaturated and omega-3 fatty acids (n3D) for up to 2 years. We measured survival, body composition, plasma triglyceride levels, chylomicron clearance, and oral fat, glucose, and insulin tolerance. Triglyceride levels in mice did not increase with age, regardless of diet. Oral fat tolerance increased with age, while chylomicron clearance remained unchanged. Decreased survival was observed in WD-fed mice. Interestingly, n3D-fed mice gained more lean mass and had lower insulin levels than WD-fed or LFD-fed mice. Moreover, triglyceride uptake into the hearts of n3D-fed mice was strikingly higher than in other groups. Our data indicate that in C57Bl/6 mice, age-induced changes in triglyceride metabolism differ from those observed in humans. Mice, like humans, appeared to have decreased fat absorption with age, but in mice plasma triglyceride clearance did not decrease with age, resulting in lower plasma triglyceride levels and improved fat tolerance with age. Although a chronic diet high in omega-3 fatty acids increased insulin sensitivity and triglyceride uptake specifically into the heart, how these observations are connected is unclear.
Collapse
Affiliation(s)
- Kathryn M Spitler
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA
| | - Shwetha K Shetty
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA
| | - Brandon S J Davies
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA.
| |
Collapse
|
2
|
Papikinou MA, Pavlidis K, Cholidis P, Kranas D, Adamantidi T, Anastasiadou C, Tsoupras A. Marine Fungi Bioactives with Anti-Inflammatory, Antithrombotic and Antioxidant Health-Promoting Properties Against Inflammation-Related Chronic Diseases. Mar Drugs 2024; 22:520. [PMID: 39590800 PMCID: PMC11595437 DOI: 10.3390/md22110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Fungi play a fundamental role in the marine environment, being promising producers of bioactive molecules in the pharmacological and industrial fields, which have demonstrated potential health benefits against cardiovascular and other chronic diseases. This review pertains to the analysis of the lipid compositions across various species of marine fungi and their constantly discovered substances, as well as their anti-inflammatory, antioxidant, and antithrombotic effects. The health-promoting aspects of these microorganisms will be explored, through the investigation of several mechanisms of action and interference of their bioactives in biochemical pathways. Despite exceptional results in this field, the potential of marine microorganisms remains largely unexplored due to the limited number of specialists in marine microbiology and mycology, a relatively recent science with significant contributions and potential in biodiversity and biotechnology.
Collapse
Affiliation(s)
- Maria-Aliki Papikinou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Konstantinos Pavlidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Paschalis Cholidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Dimitrios Kranas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| |
Collapse
|
3
|
Zhang X, Liu J. Regulating Lipid Metabolism in Gout: A New Perspective with Therapeutic Potential. Int J Gen Med 2024; 17:5203-5217. [PMID: 39554874 PMCID: PMC11568860 DOI: 10.2147/ijgm.s499413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Gout is a metabolic disease characterized by inflammatory arthritis caused by abnormal uric acid metabolism. It is often complicated with cardio-renal damage and vascular lesions. In recent years, the relationship between lipid metabolism and gout has attracted increasing attention. Changes in blood lipids in gout patients are often clinically detectable and closely related to uric acid metabolism and inflammatory response in gout. With the development of lipidomics, the changes in small lipid molecules and their metabolic pathways have been gradually discovered, yielding a greater understanding of the lipid metabolism changes in gout patients and their potential role in gout development. Through searching the literature on lipid metabolism in gout since 2000 in PubMed and Web of Science, this article reviewed lipid metabolism changes in gout patients and their role in the risk of gout, uric acid metabolism, inflammatory response, and comorbidities. Additionally, the strategies to regulate the abnormal lipid metabolism in gout have also been summarized from the aspects of drugs, diet, and exercise. These will provide a new perspective for understanding gout pathogenesis and its treatment and management.
Collapse
Affiliation(s)
- Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230031, People’s Republic of China
- Anhui University of Chinese Medicine, Hefei, Anhui Province, 230012, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230031, People’s Republic of China
- Institute of Rheumatology, Anhui Academy of Traditional Chinese Medicine, Hefei, Anhui Province, 230009, People’s Republic of China
| |
Collapse
|
4
|
Obeng-Gyasi E, Ford YR. Combined Effects of Environmental Metals and Physiological Stress on Lipid Dysregulation. Med Sci (Basel) 2024; 12:51. [PMID: 39449407 PMCID: PMC11503437 DOI: 10.3390/medsci12040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) are a leading cause of mortality worldwide, influenced by genetic, environmental, and behavioral factors. This study examines the relationship between heavy metal exposure, chronic physiological stress (allostatic load), and lipid profiles, which are markers of CVD risk, using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. METHODS We utilized structural equation modeling (SEM) to explore the associations between blood levels of lead, cadmium, allostatic load (AL), and lipid measures (low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides). The AL index was derived from cardiovascular, inflammatory, and metabolic biomarkers and categorized into quartiles to identify high-risk individuals, with an index out of 10 subsequently developed. RESULTS The SEM analysis revealed that both heavy metal exposure and allostatic load are significantly associated with lipid profiles. Higher levels of lead and cadmium were associated with increased LDL and triglycerides, while higher AL scores were linked to increased LDL and triglycerides and decreased HDL levels. Age was also a significant factor, showing positive correlations with LDL and triglycerides, and a negative correlation with HDL. CONCLUSIONS This study underscores the multifactorial nature of CVD, highlighting the combined impact of environmental pollutants and physiological stress on lipid dysregulation. These findings suggest the need for integrated public health strategies that address both environmental exposures and chronic stress to mitigate cardiovascular risk. Further research is warranted to explore the underlying mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Yvonne R. Ford
- School of Nursing, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Fan Y, Bao X, Lv X, He W, Yue J, Zou H. Predictive value of early postoperative blood lipid metabolism for anastomotic leakage after esophageal cancer surgery. Am J Transl Res 2024; 16:3794-3800. [PMID: 39262761 PMCID: PMC11384402 DOI: 10.62347/vnwx7009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To explore the clinical value of assessing early postoperative blood lipid metabolism levels in predicting anastomotic leakage (AL) after esophageal cancer (EC) surgery. METHODS The clinical data of EC patients who underwent surgery at the Northern Jiangsu People's Hospital from May 2021 to May 2023 were retrospectively studied. Totally, 28 patients who developed AL were included in the AL group, while 110 patients who did not develop AL were included in the non-AL group. Outcomes compared between the two groups included clinical baseline data, total cholesterol (TC), triglycerides, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels. Logistic regression analysis was performed to identify independent risk factors for postoperative AL. The predictive value of early postoperative blood lipid metabolism levels for AL was evaluated using Receiver Operating Characteristic (ROC) curves. RESULTS The AL group exhibited significantly elevated levels of TC and LDL-C but significantly reduced HDL-C levels compared to the non-AL group (all P<0.05). However, there was no significant difference in triglyceride levels between the two groups (P>0.05). Logistic regression analysis revealed that low BMI (P=0.012; OR: 4.409; 95% CI: 1.391-13.976), comorbid hypertension (P=0.011; OR: 5.891; 95% CI: 1.492-23.259), comorbid diabetes (P=0.022; OR: 4.522; 95% CI: 1.238-16.521), low HDL-C (P=0.007; OR: 19.965; 95% CI: 2.293-173.809), and high LDL-C (P=0.012; OR: 4.321; 95% CI: 1.388-13.449) were independent risk factors for developing AL after EC surgery. The combined prediction model using TC, HDL-C, and LDL-C yielded an area under the curve (AUC) of 0.876, with a sensitivity of 79.09%, specificity of 85.71%, and overall accuracy of 80.44%, significantly outperforming individual lipid measurements. CONCLUSION The combined assessment of TC, HDL-C, and LDL-C can effectively predict the occurrence of AL after EC surgery. For EC patients with relatively low BMI, hypertension, diabetes, relatively low HDL-C, and relatively high LDL-C, prioritizing weight management, hypertension and diabetes control, and lipid management can significantly reduce the risk of AL post-surgery.
Collapse
Affiliation(s)
- Yiwei Fan
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou 225001, Jinagsu, P. R. China
| | - Xiang Bao
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou 225001, Jinagsu, P. R. China
| | - Xiaoxia Lv
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou 225001, Jinagsu, P. R. China
| | - Wenbo He
- Clinical Medical College of Yangzhou University Yangzhou 225001, Jinagsu, P. R. China
| | - Jiarui Yue
- Clinical Medical College of Yangzhou University Yangzhou 225001, Jinagsu, P. R. China
| | - Hui Zou
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou 225001, Jinagsu, P. R. China
| |
Collapse
|
6
|
Liu C, Pan X, Hao Z, Wang X, Wang C, Song G. Resveratrol suppresses hepatic fatty acid synthesis and increases fatty acid β-oxidation via the microRNA-33/SIRT6 signaling pathway. Exp Ther Med 2024; 28:326. [PMID: 38979023 PMCID: PMC11229395 DOI: 10.3892/etm.2024.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/23/2024] [Indexed: 07/10/2024] Open
Abstract
Hyperlipidemia is a strong risk factor for numerous diseases. Resveratrol (Res) is a non-flavonoid polyphenol organic compound with multiple biological functions. However, the specific molecular mechanism and its role in hepatic lipid metabolism remain unclear. Therefore, the aim of the present study was to elucidate the mechanism underlying how Res improves hepatic lipid metabolism by decreasing microRNA-33 (miR-33) levels. First, blood miR-33 expression in participants with hyperlipidemia was detected by reverse transcription-quantitative PCR, and the results revealed significant upregulation of miR-33 expression in hyperlipidemia. Additionally, after transfection of HepG2 cells with miR-33 mimics or inhibitor, western blot analysis indicated downregulation and upregulation, respectively, of the mRNA and protein expression levels of sirtuin 6 (SIRT6). Luciferase reporter analysis provided further evidence for binding of miR-33 with the SIRT6 3'-untranslated region. Furthermore, the levels of peroxisome proliferator-activated receptor-γ (PPARγ), PPARγ-coactivator 1α and carnitine palmitoyl transferase 1 were increased, while the concentration levels of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element-binding protein 1 were decreased when SIRT6 was overexpressed. Notably, Res improved the basic metabolic parameters of mice fed a high-fat diet by regulating the miR-33/SIRT6 signaling pathway. Thus, it was demonstrated that the dysregulation of miR-33 could lead to lipid metabolism disorders, while Res improved lipid metabolism by regulating the expression of miR-33 and its target gene, SIRT6. Thus, Res can be used to prevent or treat hyperlipidemia and associated diseases clinically by suppressing hepatic fatty acid synthesis and increasing fatty acid β-oxidation.
Collapse
Affiliation(s)
- Chunqiao Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinyan Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhihua Hao
- Department of Health Care, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
7
|
Spitler KM, Shetty SK, Davies BS. Effects of Age and Diet on Triglyceride Metabolism in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.602944. [PMID: 39091783 PMCID: PMC11291025 DOI: 10.1101/2024.07.19.602944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Both age and diet can contribute to alterations in triglyceride metabolism and subsequent metabolic disease. In humans, plasma triglyceride levels increase with age. Diets high in saturated fats can increase triglyceride levels while diets high in omega-3 fatty acids decrease triglyceride levels. Here we asked how age and long-term diet effected triglyceride metabolism in mice. Methods We fed male and female mice a low-fat diet, a western diet, or a diet high in polyunsaturated and omega-3 (n-3) fatty acids for up to 2 years. We measured survival, body composition, plasma triglyceride levels, chylomicron clearance, and oral fat, glucose, and insulin tolerance. Results Triglyceride levels in mice did not increase with age, regardless of diet. Oral fat tolerance increased with age, while chylomicron clearance remained unchanged. Mice fed western diet had decreased survival. Interestingly, mice fed the n-3 diet gained more lean mass, and had lower insulin levels than mice fed either low-fat or western diet. Moreover, triglyceride uptake into the hearts of mice fed the n-3 diet was strikingly higher than in other groups. Conclusions In mice, age-induced changes in triglyceride metabolism did not match those in humans. Our data suggested that mice, like humans, had decreased fat absorption with age, but plasma triglyceride clearance did not decrease with age in mice, resulting in lower plasma triglyceride levels and improved oral fat tolerance with age. A chronic diet high in n-3 fatty acids increased insulin sensitivity and uptake of triglycerides specifically into the heart but how these observations are connected is unclear.
Collapse
Affiliation(s)
- Kathryn M. Spitler
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242
| | - Shwetha K. Shetty
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242
| | - Brandon S.J. Davies
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
8
|
Shen X, Li M, Li Y, Jiang Y, Niu K, Zhang S, Lu X, Zhang R, Zhao Z, Zhou L, Guo Z, Wang S, Wei C, Chang L, Hou Y, Wu Y. Bazi Bushen ameliorates age-related energy metabolism dysregulation by targeting the IL-17/TNF inflammatory pathway associated with SASP. Chin Med 2024; 19:61. [PMID: 38594761 PMCID: PMC11005220 DOI: 10.1186/s13020-024-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or β-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.
Collapse
Affiliation(s)
- Xiaogang Shen
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Mengnan Li
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
| | - Yawen Li
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Yuning Jiang
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Kunxu Niu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Shixiong Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xuan Lu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Runtao Zhang
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Zhiqin Zhao
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Liangxing Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Zhifang Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
| | - Siwei Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, People's Republic of China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Hebei Yiling Hospital, Shijiazhuang, 050091, Hebei Province, People's Republic of China
- Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, 050035, People's Republic of China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
- Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, 050035, People's Republic of China
| | - Yunlong Hou
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China.
| | - Yiling Wu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
9
|
Kruglov V, Jang IH, Camell CD. Inflammaging and fatty acid oxidation in monocytes and macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00038. [PMID: 38249577 PMCID: PMC10798594 DOI: 10.1097/in9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Fatty acid oxidation (FAO), primarily known as β-oxidation, plays a crucial role in breaking down fatty acids within mitochondria and peroxisomes to produce cellular energy and preventing metabolic dysfunction. Myeloid cells, including macrophages, microglia, and monocytes, rely on FAO to perform essential cellular functions and uphold tissue homeostasis. As individuals age, these cells show signs of inflammaging, a condition that includes a chronic onset of low-grade inflammation and a decline in metabolic function. These lead to changes in fatty acid metabolism and a decline in FAO pathways. Recent studies have shed light on metabolic shifts occurring in macrophages and monocytes during aging, correlating with an altered tissue environment and the onset of inflammaging. This review aims to provide insights into the connection of inflammatory pathways and altered FAO in macrophages and monocytes from older organisms. We describe a model in which there is an extended activation of receptor for advanced glycation end products, nuclear factor-κB (NF-κB) and the nod-like receptor family pyrin domain containing 3 inflammasome within macrophages and monocytes. This leads to an increased level of glycolysis, and also promotes pro-inflammatory cytokine production and signaling. As a result, FAO-related enzymes such as 5' AMP-activated protein kinase and peroxisome proliferator-activated receptor-α are reduced, adding to the escalation of inflammation, accumulation of lipids, and heightened cellular stress. We examine the existing body of literature focused on changes in FAO signaling within macrophages and monocytes and their contribution to the process of inflammaging.
Collapse
Affiliation(s)
- Victor Kruglov
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Wang X, Song R, Clinchamps M, Dutheil F. New Insights into High-Fat Diet with Chronic Diseases. Nutrients 2023; 15:4031. [PMID: 37764814 PMCID: PMC10535879 DOI: 10.3390/nu15184031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic diseases, encompassing conditions such as heart disease, cancer, and diabetes, represent a significant global health challenge and are the leading causes of mortality worldwide [...].
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Maëlys Clinchamps
- CNRS, LaPSCo, Physiological and Psychosocial Stress, University Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.C.); (F.D.)
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, University Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.C.); (F.D.)
| |
Collapse
|