1
|
King A, Graham CAM, Glaister M, Da Silva Anastacio V, Pilic L, Mavrommatis Y. The efficacy of genotype-based dietary or physical activity advice in changing behavior to reduce the risk of cardiovascular disease, type II diabetes mellitus or obesity: a systematic review and meta-analysis. Nutr Rev 2023; 81:1235-1253. [PMID: 36779907 DOI: 10.1093/nutrit/nuad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
CONTEXT Despite clear evidence that adherence to dietary and physical activity advice can reduce the risk of cardiometabolic disease, a significant proportion of the population do not follow recommendations. Personalized advice based on genetic variation has been proposed for motivating behavior change, although research on its benefits to date has been contradictory. OBJECTIVE To evaluate the efficacy of genotype-based dietary or physical activity advice in changing behavior in the general population and in individuals who are at risk of cardiovascular disease (CVD) or type II diabetes mellitus (T2DM). DATA SOURCES MEDLINE, EMBASE, PsycInfo, and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched up to January 7, 2022. Randomized controlled trials of a genotype-based dietary and/or physical activity advice intervention that aimed to change dietary and/or physical activity behavior were included. DATA EXTRACTION Abstracts of 7899 records were screened, and 14 reports from 11 studies met the inclusion criteria. DATA ANALYSIS Genotype-based dietary or physical activity advice was found to have no effect on dietary behavior in any of the studies (standardized mean difference [SMD] .00 [-.11 to .11], P = .98), even when analyzed by subgroup: "at risk" (SMD .00 [-.16 to .16, P = .99]; general population (SMD .01 [-.14 to .16], P = .87). The physical activity behavior findings were similar for all studies (SMD -.01 [-.10 to .08], P = .88), even when analyzed by subgroup: "at risk" (SMD .07 [-.18 to .31], P = .59); general population (SMD -.02 [-.13 to .10], P = .77). The quality of the evidence for the dietary behavior outcome was low; for the physical activity behavior outcome it was moderate. CONCLUSIONS Genotype-based advice does not affect dietary or physical activity behavior more than general advice or advice based on lifestyle or phenotypic measures. This was consistent in studies that recruited participants from the general population as well as in studies that had recruited participants from populations at risk of CVD or T2DM. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021231147.
Collapse
Affiliation(s)
- Alexandra King
- Faculty of Sport, Allied Health and Performance Science, St Marys University, London, UK
| | - Catherine A-M Graham
- cereneo Foundation, Center for Interdisciplinary Research (CEFIR), Seestrasse 18, 6354 Vitznau, Switzerland
- Lake Lucerne Institute, Seestrasse 18, 6354 Vitznau, Switzerland
| | - Mark Glaister
- Faculty of Sport, Allied Health and Performance Science, St Marys University, London, UK
| | | | - Leta Pilic
- Faculty of Sport, Allied Health and Performance Science, St Marys University, London, UK
| | - Yiannis Mavrommatis
- Faculty of Sport, Allied Health and Performance Science, St Marys University, London, UK
| |
Collapse
|
2
|
Aurich S, Müller L, Kovacs P, Keller M. Implication of DNA methylation during lifestyle mediated weight loss. Front Endocrinol (Lausanne) 2023; 14:1181002. [PMID: 37614712 PMCID: PMC10442821 DOI: 10.3389/fendo.2023.1181002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Over the past 50 years, the number of overweight/obese people increased significantly, making obesity a global public health challenge. Apart from rare monogenic forms, obesity is a multifactorial disease, most likely resulting from a concerted interaction of genetic, epigenetic and environmental factors. Although recent studies opened new avenues in elucidating the complex genetics behind obesity, the biological mechanisms contributing to individual's risk to become obese are not yet fully understood. Non-genetic factors such as eating behaviour or physical activity are strong contributing factors for the onset of obesity. These factors may interact with genetic predispositions most likely via epigenetic mechanisms. Epigenome-wide association studies or methylome-wide association studies are measuring DNA methylation at single CpGs across thousands of genes and capture associations to obesity phenotypes such as BMI. However, they only represent a snapshot in the complex biological network and cannot distinguish between causes and consequences. Intervention studies are therefore a suitable method to control for confounding factors and to avoid possible sources of bias. In particular, intervention studies documenting changes in obesity-associated epigenetic markers during lifestyle driven weight loss, make an important contribution to a better understanding of epigenetic reprogramming in obesity. To investigate the impact of lifestyle in obesity state specific DNA methylation, especially concerning the development of new strategies for prevention and individual therapy, we reviewed 19 most recent human intervention studies. In summary, this review highlights the huge potential of targeted interventions to alter disease-associated epigenetic patterns. However, there is an urgent need for further robust and larger studies to identify the specific DNA methylation biomarkers which influence obesity.
Collapse
Affiliation(s)
- Samantha Aurich
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Jaskulski S, Nuszbaum C, Michels KB. Components, prospects and challenges of personalized prevention. Front Public Health 2023; 11:1075076. [PMID: 36875367 PMCID: PMC9978387 DOI: 10.3389/fpubh.2023.1075076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Effective preventive strategies are urgently needed to address the rising burden of non-communicable diseases such as cardiovascular disease and cancer. To date, most prevention efforts to reduce disease incidence have primarily targeted populations using "one size fits all" public health recommendations and strategies. However, the risk for complex heterogeneous diseases is based on a multitude of clinical, genetic, and environmental factors, which translate into individual sets of component causes for every person. Recent advances in genetics and multi-omics enable the use of new technologies to stratify disease risks at an individual level fostering personalized prevention. In this article, we review the main components of personalized prevention, provide examples, and discuss both emerging opportunities and remaining challenges for its implementation. We encourage physicians, health policy makers, and public health professionals to consider and apply the key elements and examples of personalized prevention laid out in this article while overcoming challenges and potential barriers to their implementation.
Collapse
Affiliation(s)
- Stefanie Jaskulski
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Competence Network Preventive Medicine Baden-Württemberg, Competence Area of Personalized Prevention, Freiburg, Germany
| | - Cosima Nuszbaum
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Competence Network Preventive Medicine Baden-Württemberg, Competence Area of Personalized Prevention, Freiburg, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Competence Network Preventive Medicine Baden-Württemberg, Competence Area of Personalized Prevention, Freiburg, Germany.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Shyam S, Lee KX, Tan ASW, Khoo TA, Harikrishnan S, Lalani SA, Ramadas A. Effect of Personalized Nutrition on Dietary, Physical Activity, and Health Outcomes: A Systematic Review of Randomized Trials. Nutrients 2022; 14:4104. [PMID: 36235756 PMCID: PMC9570623 DOI: 10.3390/nu14194104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Personalized nutrition is an approach that tailors nutrition advice to individuals based on an individual's genetic information. Despite interest among scholars, the impact of this approach on lifestyle habits and health has not been adequately explored. Hence, a systematic review of randomized trials reporting on the effects of personalized nutrition on dietary, physical activity, and health outcomes was conducted. A systematic search of seven electronic databases and a manual search resulted in identifying nine relevant trials. Cochrane's Risk of Bias was used to determine the trials' methodological quality. Although the trials were of moderate to high quality, the findings did not show consistent benefits of personalized nutrition in improving dietary, behavioral, or health outcomes. There was also a lack of evidence from regions other than North America and Europe or among individuals with diseases, affecting the generalizability of the results. Furthermore, the complex relationship between genes, interventions, and outcomes may also have contributed to the scarcity of positive findings. We have suggested several areas for improvement for future trials regarding personalized nutrition.
Collapse
Affiliation(s)
- Sangeetha Shyam
- Centre for Translational Research, IMU Institute for Research and Development (IRDI), International Medical University (IMU), Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Sant Joan University Hospital in Reus, 43204 Reus, Spain
- Consorcio CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ke Xin Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Angeline Shu Wei Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Tien An Khoo
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | | | - Shehzeen Alnoor Lalani
- Dalhousie Medicine DMNS, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4R2, Canada
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
5
|
Jinnette R, Narita A, Manning B, McNaughton SA, Mathers JC, Livingstone KM. Does Personalized Nutrition Advice Improve Dietary Intake in Healthy Adults? A Systematic Review of Randomized Controlled Trials. Adv Nutr 2021; 12:657-669. [PMID: 33313795 PMCID: PMC8166555 DOI: 10.1093/advances/nmaa144] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/03/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Personalized nutrition (PN) behavior-change interventions are being used increasingly in attempts to improve dietary intake; however, the impact of PN advice on improvements in dietary intake has not been reviewed systematically. The aim of this systematic review was to evaluate the effect of PN advice on changes in dietary intake compared with generalized advice in healthy adults. Three databases (EMBASE, PubMed, and CINAHL) were searched between 2009 and 2020 for randomized controlled trials (RCTs) that tested the effect of PN and tailored advice based on diet, phenotype, or genetic information. The Evidence Analysis Library Quality Criteria checklist was used to conduct a risk-of-bias assessment. Information on intervention design and changes in nutrients, foods, and dietary patterns was extracted from the 11 studies meeting the inclusion criteria. Studies were conducted in the United States, Canada, or Europe; reported outcomes on 57 to 1488 participants; and varied in follow-up duration from 1 to 12 mo. Five studies incorporated behavior-change techniques. The risk of bias for included studies was low. Overall, the available evidence suggests that dietary intake is improved to a greater extent in participants randomly assigned to receive PN advice compared with generalized dietary advice. Additional well-designed PN RCTs are needed that incorporate behavior-change techniques, a broader range of dietary outcomes, and comparisons between personalization based on dietary, biological, and/or lifestyle information.
Collapse
Affiliation(s)
- Rachael Jinnette
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Ai Narita
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Byron Manning
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah A McNaughton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Horne JR, Gilliland JA, Vohl MC, Madill J. Exploring Attitudes, Subjective Norms and Perceived Behavioural Control in a Genetic-Based and a Population-Based Weight Management Intervention: A One-Year Randomized Controlled Trial. Nutrients 2020; 12:E3768. [PMID: 33302460 PMCID: PMC7764748 DOI: 10.3390/nu12123768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several studies demonstrate that the provision of personalized lifestyle advice, based on genetics, can help motivate individuals to engage in greater nutrition and physical activity changes compared to the provision of population-based advice. The theoretical mechanism behind this phenomenon is poorly understood. The objective of this study was to determine the impact of providing genetically tailored and population-based lifestyle advice on key constructs of the Theory of Planned Behaviour (TPB). MATERIALS AND METHODS A pragmatic, cluster randomized controlled trial (n = 140) took place at the East Elgin Family Health Team, in Aylmer, Ontario, Canada. Participants were primarily Caucasian females enrolled in a weight management program (BMI ≥ 25.0 kg/m2). Weight management program groups were randomized (1:1) to receive a population-based lifestyle intervention for weight management (Group Lifestyle Balance™ (GLB)) or a lifestyle genomics (LGx)-based lifestyle intervention for weight management (GLB+LGx). Attitudes, subjective norms and perceived behavioural control were measured at baseline, immediately after receiving a report of population-based or genetic-based recommendations and after 3-, 6- and 12-month follow-ups. Linear mixed models were conducted, controlling for measures of actual behavioural control. All analyses were intention-to-treat by originally assigned groups. RESULTS Significant changes (p < 0.05) in attitudes, subjective norms, and perceived behavioural control tended to be short-term in the GLB group and long-term for the GLB+LGx group. Short-term and long-term between-group differences in measures of subjective norms were discovered, favouring the GLB+LGx group. CONCLUSIONS The TPB can help provide a theoretical explanation for studies demonstrating enhanced behaviour change with genetic-based lifestyle interventions. CLINICAL TRIAL REGISTRATION NCT03015012.
Collapse
Affiliation(s)
- Justine R. Horne
- Health and Rehabilitation Sciences, The University of Western Ontario, London, ON N6A 3K7, Canada
- The East Elgin Family Health Team, Aylmer, ON N5H 1K9, Canada
- Human Environments Analysis Laboratory, The University of Western Ontario, London, ON N6A 3K7, Canada;
- Centre Nutrition, Santé et Société (NUTRISS) and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 0A6, Canada;
| | - Jason A. Gilliland
- Human Environments Analysis Laboratory, The University of Western Ontario, London, ON N6A 3K7, Canada;
- Department of Geography, Western University, London, ON N6A 3K7, Canada
- School of Health Studies, Western University, London, ON N6A 3K7, Canada
- Department of Paediatrics, Western University, London, ON N6A 3K7, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 3K7, Canada;
| | - Marie-Claude Vohl
- Centre Nutrition, Santé et Société (NUTRISS) and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 0A6, Canada;
| | - Janet Madill
- Lawson Health Research Institute, London, ON N6A 3K7, Canada;
- School of Food and Nutritional Sciences, Brescia University College, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
7
|
Zec MM, Stojković L, Zeković M, Pokimica B, Zivkovic M, Stankovic A, Glibetic M. FADS2 polymorphisms are associated with plasma arachidonic acid and estimated desaturase-5 activity in a cross-sectional study. Nutr Res 2020; 83:49-62. [PMID: 33011673 DOI: 10.1016/j.nutres.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Polymorphisms in FADS genes are associated with plasma long-chain polyunsaturated fatty acids (LC-PUFA) and modulate omega-6/omega-3 balance. We hypothesized that the FADS2 gene variants will be associated with lower product-to-precursor ratio in the fatty acid metabolic pathways. Thus, we explored FADS2 rs174593, rs174616, and rs174576 effects on plasma phospholipid fatty acid profile, markers of desaturase activities, and risk factors in a sample of apparently healthy Serbian adults. Food and nutrient intake data were compiled through 24 h recalls. Plasma phospholipid fatty acid content was assessed by gas-chromatography. Estimated desaturase activities were calculated as conversion rates towards LC-PUFA in omega-6 pathway. During the selection of FADS2 polymorphisms, we accounted for their positional and functional aspect. Genotyping was performed by Real-Time PCR. Multivariable-adjusted general linear and hierarchical regression models were applied. Study subjects (mean age = 40 ± 7 years, 70% who were overweight) had a median dietary omega-6/omega-3 ratio of 16.29. Alternative allele frequencies were 33%, 36%, and 51% for rs174593, rs174576, and rs174616, respectively. Addition of FADS2 alternative alleles was associated with lower plasma arachidonic acid (AA, C20:4 n-6, P < .001) and estimated desaturase-5 activity (P < .001), irrespective of gender, age, daily polyunsaturated/saturated fatty acid intake, and obesity. The rs174576 association with AA withstood multiple testing and additional adjustments for other variants (multivariable-adjusted β = -1.14 [95% CI: -2.25, -0.43]). None of the variants was associated with dietary intake, serum lipids, or obesity. We observed inverse associations between FADS2 variants and plasma AA but not omega-3 fatty acids in Serbian subjects, with rs174576 exhibiting the strongest relation.
Collapse
Affiliation(s)
- Manja M Zec
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia.
| | - Ljiljana Stojković
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Zeković
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Biljana Pokimica
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
| | - Maria Glibetic
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
8
|
Braakhuis A, Monnard CR, Ellis A, Rozga M. Consensus Report of the Academy of Nutrition and Dietetics: Incorporating Genetic Testing into Nutrition Care. J Acad Nutr Diet 2020; 121:545-552. [PMID: 32624395 DOI: 10.1016/j.jand.2020.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Personalization of nutrition advice is a process already familiar to registered dietitian nutritionists, but it is not yet clear whether incorporating genetic results as an added layer of precision improves nutrition-related outcomes. Therefore, an independent workgroup of experts, supported by the Academy's Evidence Analysis Center staff, conducted a systematic review to examine the level of evidence measuring the effect of incorporating genetic testing results into nutrition counseling and care, compared to an alternative intervention or control group, on nutrition-related outcomes. This systematic review revealed that only weak quality evidence is available in the scientific literature and observed that this field is still maturing. Therefore, at present, there is insufficient scientific evidence to determine whether there are effects of incorporating genetic testing into nutrition practice. The workgroup prepared this Consensus Report based on this systematic review to provide considerations for the practical application of incorporating genetic testing into the nutrition care process.
Collapse
Affiliation(s)
- Andrea Braakhuis
- Faculty of Medical and Health Science, Discipline of Nutrition, The University of Auckland, Grafton, Auckland, New Zealand
| | | | - Amy Ellis
- University of Alabama, Tuscaloosa, AL
| | - Mary Rozga
- Academy of Nutrition and Dietetics Evidence Analysis Center, Chicago, IL.
| |
Collapse
|
9
|
Ellis A, Rozga M, Braakhuis A, Monnard CR, Robinson K, Sinley R, Wanner A, Vargas AJ. Effect of Incorporating Genetic Testing Results into Nutrition Counseling and Care on Health Outcomes: An Evidence Analysis Center Systematic Review-Part II. J Acad Nutr Diet 2020; 121:582-605.e17. [PMID: 32624396 DOI: 10.1016/j.jand.2020.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 02/06/2023]
Abstract
In recent years, literature examining implementation of nutritional genomics into clinical practice has increased, including publication of several randomized controlled trials (RCTs). This systematic review addressed the following question: In children and adults, what is the effect of incorporating results of genetic testing into nutrition counseling and care compared with an alternative intervention or control group, on nutrition-related health outcomes? A literature search of MEDLINE, Embase, PsycINFO, CINAHL, and other databases was conducted for peer-reviewed RCTs published from January 2008 until December 2018. An international workgroup consisting of registered dietitian nutritionists, systematic review methodologists, and evidence analysts screened and reviewed articles, summarized data, conducted meta-analyses, and graded conclusion statements. The second in a two-part series, this article specifically summarizes evidence from RCTs that examined health outcomes (ie, quality of life, disease incidence and prevention of disease progression, or mortality), intermediate health outcomes (ie, anthropometric measures, body composition, or relevant laboratory measures routinely collected in practice), and adverse events as reported by study authors. Analysis of 11 articles from nine RCTs resulted in 16 graded conclusion statements. Among participants with nonalcoholic fatty liver disease, a diet tailored to genotype resulted in a greater reduction of percent body fat compared with a customary diet for nonalcoholic fatty liver disease. However, meta-analyses for the outcomes of total cholesterol, low-density lipoprotein cholesterol, body mass index, and weight yielded null results. Heterogeneity between studies and low certainty of evidence precluded development of strong conclusions about the incorporation of genetic information into nutrition practice. Although there are still relatively few well-designed RCTs to inform integration of genetic information into the Nutrition Care Process, the field of nutritional genomics is evolving rapidly, and gaps in the literature identified by this systematic review can inform future studies.
Collapse
|
10
|
Jannas‐Vela S, Klingel SL, Cervone DT, Wickham KA, Heigenhauser GJF, Mutch DM, Holloway GP, Spriet LL. Resting metabolic rate and skeletal muscle SERCA and Na + /K + ATPase activities are not affected by fish oil supplementation in healthy older adults. Physiol Rep 2020; 8:e14408. [PMID: 32342642 PMCID: PMC7186565 DOI: 10.14814/phy2.14408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/25/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na+ /K+ ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) activity by inducing a Ca2+ leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals. Subjects (n = 16 females; n = 8 males; 65 ± 1 years) were randomly assigned into groups supplemented with either olive oil (OO) (5 g/day) or FO (5 g/day) containing 2 g/day eicosapentaenoic acid and 1 g/day docosahexaenoic acid for 12 weeks. Participants visited the laboratory for RMR and substrate oxidation measurements after an overnight fast at weeks 0 and 12. Skeletal muscle biopsies were taken during weeks 0 and 12 for analysis of NKA and SERCA function and protein content. There was a main effect of time with decrease in RMR (5%) and fat oxidation (18%) in both the supplementation groups. The kinetic parameters of SERCA and NKA maximal activity, as well as the expression of SR and NKA proteins, were not affected after OO and FO supplementation. In conclusion, these results suggest that FO supplementation is not effective in altering RMR, substrate oxidation, and skeletal muscle SERCA and NKA protein levels and activities, in healthy older men and women.
Collapse
Affiliation(s)
- Sebastian Jannas‐Vela
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
- Exercise Science LaboratorySchool of KinesiologyFaculty of MedicineUniversidad Finis TerraeSantiagoChile
| | - Shannon L. Klingel
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Daniel T. Cervone
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Kate A. Wickham
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | | | - David M. Mutch
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Graham P. Holloway
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphONCanada
| |
Collapse
|
11
|
Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and Eating Preferences, Their Roles in Personalized Nutrition. Genes (Basel) 2020; 11:genes11040357. [PMID: 32230794 PMCID: PMC7230842 DOI: 10.3390/genes11040357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
At present, personalized diets, which take into account consumer genetic characteristics, are growing popular. Nutrigenetics studies the effect of gene variations on metabolism and nutrigenomics, which branches off further and investigates how nutrients and food compounds affect genes. This work deals with the mutations affecting the assimilation of metabolites, contributing to nutrigenetic studies. We searched for the genes responsible for eating preferences which allow for the tailoring of personalized diets. Presently, genetic nutrition is growing in demand, as it contributes to the prevention and/or rehabilitation of non-communicable diseases, both monogenic and polygenic. In this work, we showed single-nucleotide polymorphisms in genes-missense mutations that change the functions of coded proteins, resulting in a particular eating preferences or a disease. We studied the genes influencing food preferences-particularly those responsible for fats and carbohydrates absorption, food intolerance, metabolism of vitamins, taste sensations, oxidation of xenobiotics, eating preferences and food addiction. As a result, 34 genes were identified that affect eating preferences. Significant shortcomings were found in the methods/programs for developing personalized diets that are used today, and the weaknesses were revealed in the development of nutrigenetics (inconsistency of data on SNP genes, ignoring population genetics data, difficult information to understand consumer, etc.). Taking into account all the shortcomings, an approximate model was proposed in the review for selecting an appropriate personalized diet. In the future, it is planned to develop the proposed model for the compilation of individual diets.
Collapse
Affiliation(s)
- Anna Vesnina
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Correspondence: ; Tel.: +7-(383)-3308889
| |
Collapse
|
12
|
Reduced intestinal FADS1 gene expression and plasma omega-3 fatty acids following Roux-en-Y gastric bypass. Clin Nutr 2019; 38:1280-1288. [DOI: 10.1016/j.clnu.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
|
13
|
Lee JB, Notay K, Klingel SL, Chabowski A, Mutch DM, Millar PJ. Docosahexaenoic acid reduces resting blood pressure but increases muscle sympathetic outflow compared with eicosapentaenoic acid in healthy men and women. Am J Physiol Heart Circ Physiol 2019; 316:H873-H881. [DOI: 10.1152/ajpheart.00677.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supplementation with monounsaturated or ω-3 polyunsaturated fatty acids ( n-3 PUFA) can lower resting blood pressure (BP) and reduce the risk of cardiovascular events. The independent contributions of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on BP, and the mechanisms responsible, are unclear. We tested whether EPA, DHA, and olive oil (OO), a source of monounsaturated fat, differentially affect resting hemodynamics and muscle sympathetic nerve activity (MSNA). Eighty-six healthy young men and women were recruited to participate in a 12-wk, randomized, double-blind trial examining the effects of orally supplementing ~3 g/day of EPA ( n = 28), DHA ( n = 28), or OO ( n = 30) on resting hemodynamics; MSNA was examined in a subset of participants ( n = 31). Both EPA and DHA supplements increased the ω-3 index ( P < 0.01). Reductions in systolic BP were greater [adjusted intergroup mean difference (95% confidence interval)] after DHA [−3.4 mmHg (−0.9, −5.9), P = 0.008] and OO [−3.0 mmHg (−0.5, −5.4), P = 0.01] compared with EPA, with no difference between DHA and OO ( P = 0.74). Reductions in diastolic BP were greater following DHA [−3.4 mmHg (−1.3,−5.6), P = 0.002] and OO [−2.2 mmHg (0.08,−4.3), P = 0.04] compared with EPA. EPA increased heart rate compared with DHA [4.2 beats/min (−0.009, 8.4), P = 0.05] and OO [4.2 beats/min, (0.08, 8.3), P = 0.04]. MSNA burst frequency was higher after DHA [4 bursts/min (0.5, 8.3), P = 0.02] but not OO [−3 bursts/min (−6, 0.6), P = 0.2] compared with EPA. Overall, DHA and OO evoked similar responses in resting BP; however, DHA, but not OO, increased peripheral vasoconstrictor outflow. These findings may have implications for fatty acid supplementation in clinical populations characterized by chronic high BP and sympathetic overactivation. NEW & NOTEWORTHY We studied the effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and olive oil supplementation on blood pressure (BP) and muscle sympathetic nerve activity (MSNA). After 12 wk of 3 g/day supplementation, DHA and olive oil were associated with lower resting systolic and diastolic BPs than EPA. However, DHA increased MSNA compared with EPA. The reductions in BP with DHA likely occur via a vascular mechanism and evoke a baroreflex-mediated increase in sympathetic activity.
Collapse
Affiliation(s)
- Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Shannon L. Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Rozga M, Handu D. Nutritional Genomics in Precision Nutrition: An Evidence Analysis Center Scoping Review. J Acad Nutr Diet 2019; 119:507-515.e7. [PMID: 30150009 DOI: 10.1016/j.jand.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 02/03/2023]
|
15
|
Metherel AH, Lacombe RS, Aristizabal Henao JJ, Morin-Rivron D, Kitson AP, Hopperton KE, Chalil D, Masoodi M, Stark KD, Bazinet RP. Two weeks of docosahexaenoic acid (DHA) supplementation increases synthesis-secretion kinetics of n-3 polyunsaturated fatty acids compared to 8 weeks of DHA supplementation. J Nutr Biochem 2018; 60:24-34. [DOI: 10.1016/j.jnutbio.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022]
|
16
|
Horne J, Madill J, O'Connor C, Shelley J, Gilliland J. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory? Lifestyle Genom 2018; 11:49-63. [PMID: 29635250 DOI: 10.1159/000488086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. PURPOSE This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. METHODS Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. RESULTS Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other behaviour change theories, these theories were generally mentioned briefly, and were not thoroughly incorporated into the study design or analyses. The genetic interventions provided to participants were overall of "poor" quality. However, a separate analysis of studies using controlled intervention research methods demonstrated the use of higher-quality genetic interventions (overall rated to be "fair"). The provision of actionable recommendations informed by genetic testing was more likely to facilitate behaviour change than the provision of genetic information without actionable lifestyle recommendations. Several studies of good quality demonstrated changes in lifestyle habits arising from the provision of genetic interventions. The most promising lifestyle changes were changes in nutrition. CONCLUSIONS It is possible to facilitate behaviour change using genetic testing as the catalyst. Future research should ensure that high-quality genetic interventions are provided to participants, and should consider validated theories such as the TPB in their study design and analyses. Further recommendations for future research are provided.
Collapse
Affiliation(s)
- Justine Horne
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada.,School of Food and Nutritional Sciences, Brescia University College at The University of Western Ontario, London, Ontario, Canada
| | - Janet Madill
- School of Food and Nutritional Sciences, Brescia University College at The University of Western Ontario, London, Ontario, Canada
| | - Colleen O'Connor
- School of Food and Nutritional Sciences, Brescia University College at The University of Western Ontario, London, Ontario, Canada
| | - Jacob Shelley
- Faculty of Law, The University of Western Ontario, London, Ontario, Canada.,School of Health Studies, The University of Western Ontario, London, Ontario, Canada.,Interfaculty Program in Public Health, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jason Gilliland
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada.,Department of Geography, The University of Western Ontario, London, Ontario, Canada.,Department of Paediatrics, The University of Western Ontario, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Horne J, Madill J, Gilliland J. Incorporating the 'Theory of Planned Behavior' into personalized healthcare behavior change research: a call to action. Per Med 2017; 14:521-529. [PMID: 29749859 DOI: 10.2217/pme-2017-0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 'Theory of Planned Behavior' (TPB) has been tested and validated in the scientific literature across multiple disciplines and is arguably the most widely accepted theory among behavior change academics. Despite this widespread acceptability, the TPB has yet to be incorporated into personalized healthcare behavior change research. Several prominent personalized healthcare researchers suggest that personalizing healthcare recommendations have a positive impact on changes in lifestyle habits. However, research in this area has demonstrated conflicting findings. We provide a scientific and theoretical basis to support a proposed expansion of the TPB to include personalization, and call to action-personalized healthcare behavior change researchers to test this expansion. Specific recommendations for study design are included.
Collapse
Affiliation(s)
- Justine Horne
- Faculty of Health Sciences, The University of Western Ontario, London, Canada.,Division of Food & Nutritional Sciences, Brescia University College, The University of Western Ontario, London, Canada
| | - Janet Madill
- Division of Food & Nutritional Sciences, Brescia University College, The University of Western Ontario, London, Canada
| | - Jason Gilliland
- Department of Geography, The University of Western Ontario, London, Canada.,Department of Paediatrics, The University of Western Ontario, London, Canada.,School of Health Studies, The University of Western Ontario, London, Canada.,Department of Epidemiology & Biostatistics, The University of Western Ontario, London, Canada
| |
Collapse
|
18
|
Klingel SL, Roke K, Hidalgo B, Aslibekyan S, Straka RJ, An P, Province MA, Hopkins PN, Arnett DK, Ordovas JM, Lai CQ, Mutch DM. Sex Differences in Blood HDL-c, the Total Cholesterol/HDL-c Ratio, and Palmitoleic Acid are Not Associated with Variants in Common Candidate Genes. Lipids 2017; 52:969-980. [PMID: 29080057 DOI: 10.1007/s11745-017-4307-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Blood lipids are associated with cardiovascular disease (CVD) risk. Moreover, circulating lipid and fatty acid levels vary between men and women, and evidence demonstrates these traits may be influenced by single nucleotide polymorphisms (SNP). Sex-genotype interactions related to blood lipids and fatty acids have been poorly investigated and may help elucidate sex differences in CVD risk. The goal of this study was to investigate if the influence of SNPs previously associated with blood lipids and fatty acids varies in a sex-specific manner. Lipids and fatty acids were measured in serum and red blood cells (RBC), respectively, in 94 adults (18-30 years) from the GONE FISHIN' cohort and 118 age-matched individuals from the GOLDN cohort. HDL-c levels were higher and the total cholesterol/HDL-c (TC/HDL-c) ratio was lower in women versus men (p < 0.01). RBC palmitoleic acid and the stearoyl-CoA desaturase index were both higher in women (p < 0.01). Fatty acid desaturase (FADS) pathway activity (estimated using the ratio of eicosapentaenoic acid/alpha-linolenic acid) was higher in men (p < 0.01). The AA genotype for rs1800775 in CETP had a lower TC/HDL-c ratio in men, but not women (p int = 0.03). Independent of sex, major alleles for rs174537 in FADS1 (GG) and rs3211956 in CD36 (TT) had higher arachidonic acid, lower dihomo-γ-linoleic acid, and a higher FADS1 activity compared to minor alleles. The current study showed that blood lipid and fatty acid levels vary between healthy young men and women, but that the observed sex differences are not associated with common variants in candidate lipid metabolism genes.
Collapse
Affiliation(s)
- Shannon L Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Animal Science and Nutrition Building, Guelph, ON, N1G 2W1, Canada
| | - Kaitlin Roke
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Animal Science and Nutrition Building, Guelph, ON, N1G 2W1, Canada
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Paul N Hopkins
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Jose M Ordovas
- JM-USDA-Human Nutrition Research Center ON Aging, Tufts University, Medford, MA, USA.,Instituto Madrileno Estudios Avanzados Alimentacion, Madrid, Spain.,Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Animal Science and Nutrition Building, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|