1
|
Ong SP, Miller JC, McNabb WC, Gearry RB, Ware LM, Mullaney JA, Fraser K, Hort J, Bayer SB, Frampton CMA, Roy NC. Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study. Nutrients 2024; 16:4215. [PMID: 39683608 PMCID: PMC11644153 DOI: 10.3390/nu16234215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Age-related changes can lead to dietary insufficiency in older adults. The inclusion of high-quality, nutrient-dense foods such as ruminant milks can significantly improve health outcomes. However, many older adults worldwide do not meet daily milk intake recommendations because of digestive discomfort and health concerns. Ovine and caprine milks are increasingly popular for their perceived digestive and nutritional benefits. While preclinical studies suggest differences in milk digestion, human studies investigating acute postprandial responses remain inconclusive, and the impacts of sustained milk consumption remain uncertain. OBJECTIVES Hence, we present a randomized controlled trial investigating how the sustained consumption of bovine, caprine, or ovine milk influences digestion, nutrition, and metabolism in older women. METHODS A total of 165 healthy older women were randomized to receive bovine, caprine, or ovine milk, or no milk, twice daily for 12 weeks. The primary outcome is the impact of milk consumption on digestive comfort assessed via the Gastrointestinal Syndrome Rating Scale (GSRS). Secondary outcomes include changes in nutrient intake, plasma amino acid and lipid appearance, bowel habits, the gut microbiota, cardiometabolic health, physical function, physical activity, sleep, mood, sensory perception, and emotional response. CONCLUSIONS The findings could inform dietary recommendations for older women and facilitate the development of targeted functional food products.
Collapse
Affiliation(s)
- Shien Ping Ong
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand; (S.P.O.); (L.M.W.)
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (W.C.M.); (J.A.M.); (K.F.); (J.H.)
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
| | - Jody C. Miller
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand; (S.P.O.); (L.M.W.)
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
| | - Warren C. McNabb
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (W.C.M.); (J.A.M.); (K.F.); (J.H.)
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
| | - Richard B. Gearry
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand;
| | - Lara M. Ware
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand; (S.P.O.); (L.M.W.)
| | - Jane A. Mullaney
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (W.C.M.); (J.A.M.); (K.F.); (J.H.)
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
- AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Karl Fraser
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (W.C.M.); (J.A.M.); (K.F.); (J.H.)
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
- AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Joanne Hort
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (W.C.M.); (J.A.M.); (K.F.); (J.H.)
- Food Experience and Sensory Testing (Feast) Laboratory, Palmerston North 4442, New Zealand
| | - Simone B. Bayer
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand;
| | | | - Nicole C. Roy
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand; (S.P.O.); (L.M.W.)
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (W.C.M.); (J.A.M.); (K.F.); (J.H.)
- High-Value Nutrition National Science Challenge, Liggins Institute, Auckland 1023, New Zealand; (R.B.G.); (S.B.B.)
| |
Collapse
|
2
|
Jung C, González Serrano A, Batard C, Seror E, Gelwane G, Poidvin A, Lavallée I, Elbez A, Brussieux M, Prosser C, Gallier S, Bellaïche M. Whole Goat Milk-Based Formula versus Whey-Based Cow Milk Formula: What Formula Do Infants Enjoy More?-A Feasibility, Double-Blind, Randomized Controlled Trial. Nutrients 2023; 15:4057. [PMID: 37764840 PMCID: PMC10537215 DOI: 10.3390/nu15184057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: While goat milk formula (GMF) is an alternative to cow milk formula (CMF), infants' preferences for one over the other have not been formally assessed. Specifically, our aim in this study was to determine whether infants experience fewer feeding behavior problems with whole milk-based GMF than with conventional whey-based CMF. (2) Methods: This was a multicenter, double-blind, randomized controlled trial with two-arm parallel assignment conducted in six pediatricians' offices in or near Paris, France, between June 2018 and 31 December 2021. Overall, 64 healthy infants (≤4 months old), predominantly formula-fed, were randomly assigned to either the whole milk-based GMF (n = 33) or whey-based CMF (n = 31) arm. Parents completed the Baby Eating Behavior Questionnaire (BEBQ) and the modified QUALIN questionnaire to evaluate infant feeding behavior and quality of life (psychomotor and socioemotional development), respectively, at inclusion (1 to 5 days before milk delivery) and the final visit (day 28 ± 3 after milk delivery). Informed consent was obtained for all recruited patients, and an ethical committee approved the study. (3) Results: Changes in BEBQ Enjoyment of Food and Slowness in Eating subscale scores from inclusion to final visit did not differ between arms. However, there were significant improvements in subscale scores for Food Responsiveness (GMF: 0.15 ± 1; CMF: -0.48 ± 0.81; p = 0.010) and General Appetite (GMF: 0.26 ± 1.2; CMF: -0.48 ± 0.88; p = 0.012), and modified QUALIN (GMF: 4.6 ± 9.4; CMF: -0.40 ± 7.6; p = 0.03) scores in favor of the GMF group. (4) Conclusions: In this double-blind, randomized controlled trial, GMF-fed infants exhibited a greater general appetite than CMF-fed infants, possibly due to differences in the composition of these formulas (i.e., protein and lipid profiles). In addition, GMF-fed infants enjoyed a better quality of life. There was no difference in food enjoyment between groups. These findings suggest that whole-milk-based GMF could be an attractive alternative to whey-based CMF. Clinical trial registration: NCT03488758 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Camille Jung
- Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
- Inserm, IMRB, Université Paris-Est-Créteil, 94000 Créteil, France;
| | | | | | - Elisa Seror
- Private Pediatric Practice, 75000 Paris, France
| | - Georges Gelwane
- Private Pediatric Practice, 92012 Boulogne-Billancourt, France
| | - Amélie Poidvin
- Private Pediatric Practice, 92035 La Garenne-Colombes, France
| | | | - Annie Elbez
- Private Pediatric Practice, 94700 Maisons-Alfort, France
| | - Maxime Brussieux
- Clinical Research Center, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
| | - Colin Prosser
- Dairy Goat Co-Operative (N.Z.) Ltd., Hamilton 3204, New Zealand (S.G.)
| | - Sophie Gallier
- Dairy Goat Co-Operative (N.Z.) Ltd., Hamilton 3204, New Zealand (S.G.)
| | - Marc Bellaïche
- Department of Pediatric Gastroenterology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France;
| |
Collapse
|
3
|
Rakha A, Mehak F, Shabbir MA, Arslan M, Ranjha MMAN, Ahmed W, Socol CT, Rusu AV, Hassoun A, Aadil RM. Insights into the constellating drivers of satiety impacting dietary patterns and lifestyle. Front Nutr 2022; 9:1002619. [PMID: 36225863 PMCID: PMC9549911 DOI: 10.3389/fnut.2022.1002619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake and body weight regulation are of special interest for meeting today's lifestyle essential requirements. Since balanced energy intake and expenditure are crucial for healthy living, high levels of energy intake are associated with obesity. Hence, regulation of energy intake occurs through short- and long-term signals as complex central and peripheral physiological signals control food intake. This work aims to explore and compile the main factors influencing satiating efficiency of foods by updating recent knowledge to point out new perspectives on the potential drivers of satiety interfering with food intake regulation. Human internal factors such as genetics, gender, age, nutritional status, gastrointestinal satiety signals, gut enzymes, gastric emptying rate, gut microbiota, individual behavioral response to foods, sleep and circadian rhythms are likely to be important in determining satiety. Besides, the external factors (environmental and behavioral) impacting satiety efficiency are highlighted. Based on mechanisms related to food consumption and dietary patterns several physical, physiological, and psychological factors affect satiety or satiation. A complex network of endocrine and neuroendocrine mechanisms controls the satiety pathways. In response to food intake and other behavioral cues, gut signals enable endocrine systems to target the brain. Intestinal and gastric signals interact with neural pathways in the central nervous system to halt eating or induce satiety. Moreover, complex food composition and structures result in considerable variation in satiety responses for different food groups. A better understanding of foods and factors impacting the efficiency of satiety could be helpful in making smart food choices and dietary recommendations for a healthy lifestyle based on updated scientific evidence.
Collapse
Affiliation(s)
- Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Asim Shabbir
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Rana Muhammad Aadil
| |
Collapse
|
4
|
The Role of Bovine and Non-Bovine Milk in Cardiometabolic Health: Should We Raise the "Baa"? Nutrients 2022; 14:nu14020290. [PMID: 35057470 PMCID: PMC8780791 DOI: 10.3390/nu14020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Although causality is yet to be confirmed, a considerable volume of research has explored the relationships between cow milk consumption, type II diabetes, and cardiovascular disease. Contrastingly, it has not been comprehensively examined whether milk of non-bovine origin can provide cardiometabolic protection. This narrative review outlines the marked differences in macronutrient composition, particularly protein and lipid content, and discusses how whole milk product (and individual milk ingredients) from different species could impact cardiometabolic health. There is some data, although primarily from compositional analyses, animal studies, and acute clinical trials, that non-bovine milk (notably sheep and goat milk) could be a viable substitute to cow milk for the maintenance, or enhancement, of cardiometabolic health. With a high content of medium-chain triglycerides, conjugated linoleic acid, leucine, and essential minerals, sheep milk could assist in the prevention of metabolic-related disorders. Similarly, albeit with a lower content of such functional compounds relative to sheep milk, goat and buffalo milk could be plausible counterparts to cow milk. However, the evidence required to generate nutritional recommendations for ‘non-bovine milk’ is currently lacking. Longer-term randomised controlled trials must assess how the bioactive ingredients of different species’ milks collectively influence biomarkers of, and subsequently incidence of, cardiometabolic health.
Collapse
|
5
|
[Satisfaction with the hospital menu and incorporation of drinkable goat milk yogurt as a dessert]. NUTR HOSP 2021; 37:321-326. [PMID: 32124621 DOI: 10.20960/nh.02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: an assessment of hospital menus should be regularly performed to suit the needs of patients. Drinkable goat milk yogurt could have nutritional advantages over the cow's milk variety. Objectives: to evaluate the satisfaction of patients with the hospital menu and with the inclusion therein of drinkable goat milk yogurt as a dessert as compared to a cow milk dessert. Material and methods: a satisfaction survey for the hospital menu and its included dessert (non-sweetened goat milk yogurt vs a sweetened cow's milk dessert (yogurt or rice pudding)) was conducted in patients admitted with baseline diets. Results: in all, 214 responses were analyzed: 43.9% of respondents were women. Mean age was 62.1 ± 15.8 years, and average patient stay was 14.1 ± 20.1 days. Acceptance of the hospital menu was rated as good in a high percentage of respondents (temperature, 90.9%; preparation, 75.6%; presentation, 88.9%; time schedule, 73.7%). Overall satisfaction with the lunch meal (1 to 10) was 7.5 ± 2.1 in patients who took the drinkable goat milk yogurt vs 7.4 ± 2.2 in those who took the cow's milk dessert (NS); satisfaction with the dessert was 6.1 ± 3.2 vs 7.9 ± 2.5 (p < 0.000), respectively. Conclusions: overall satisfaction with the hospital menu was high, and the acceptance of the liquid goat milk yogurt was lower than that observed for the cow's milk dessert. The absence of sweeteners in the former may have influenced the results obtained.
Collapse
|
6
|
Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci 2021; 86:257-265. [DOI: 10.1111/1750-3841.15574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Colin G Prosser
- Dairy Goat Co‐operative (N.Z.) Ltd. 18 Gallagher Drive Hamilton 3240 New Zealand
| |
Collapse
|
7
|
Hossain ME. Performance of Black Bengal goat: a 50-year review. Trop Anim Health Prod 2021; 53:71. [PMID: 33399972 DOI: 10.1007/s11250-020-02477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Black Bengal goat (BBG) is the most widely recognized legacy goat breed in Bangladesh. The breed is black in color yet likewise earthy, white, or dim colors additionally found. The breed has medium body size with grown-up weight 25-30 kg, little horns, short legs, and tight body structure. The BBG is one of the most compliant, all around adjusted, early maturing, prolific, productive, and tropical disease-resistant goat types of the world that produces incredible quality meat, milk, and skin. The breed is versatile in hot, moist, cruel, climatic conditions and flourishes well on a cacophonous dietary regimen from uncultivable decrepit grounds, residences, riversides, banks, sloping, and hilly territories where crop culture or dairy nourishing is inconceivable. In Bangladesh, the BBG is one of the main red meat-producing small ruminants which shares remarkable local interest during Eid-Ul-Adha, Eid-Ul-Fitr, wedding ceremony, birthday festival, circumcision, memorial programs, and other social celebrations with no social, cultural, and religious limitations. Being little in size, the BBG has been an amazing asset to advance supportable vocations for the negligible, little, and landless ranchers who rely upon free regular grazing lands for raising domesticated animals. Regardless of incredibly exceptional components and features, the production of BBG has not yet been popularized widely since meager consideration has been paid for improving their efficiency. Development of cutting edge hereditary, dietary, and health as well as disease control procedure and utilization of modern management frameworks may procure considerable changes in improving the overall performance of the BBG.
Collapse
Affiliation(s)
- Md Emran Hossain
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh.
| |
Collapse
|
8
|
Dalziel JE, Dunstan KE, Dewhurst H, Van Gendt M, Young W, Carpenter E. Goat milk increases gastric emptying and alters caecal short chain fatty acid profile compared with cow milk in healthy rats. Food Funct 2020; 11:8573-8582. [DOI: 10.1039/d0fo01862g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Goat and cow milk share similar protein and lipid content, yet goat milk forms softer curds during stomach digestion.
Collapse
Affiliation(s)
- Julie E. Dalziel
- Food Nutrition & Health Team
- Food & Bio-Based Products Group
- AgResearch
- Palmerston North 4442
- New Zealand
| | - Kelly E. Dunstan
- Food Nutrition & Health Team
- Food & Bio-Based Products Group
- AgResearch
- Palmerston North 4442
- New Zealand
| | - Hilary Dewhurst
- Food Nutrition & Health Team
- Food & Bio-Based Products Group
- AgResearch
- Palmerston North 4442
- New Zealand
| | - Melanie Van Gendt
- Food Nutrition & Health Team
- Food & Bio-Based Products Group
- AgResearch
- Palmerston North 4442
- New Zealand
| | - Wayne Young
- Food Nutrition & Health Team
- Food & Bio-Based Products Group
- AgResearch
- Palmerston North 4442
- New Zealand
| | | |
Collapse
|
9
|
Shapira N. The Metabolic Concept of Meal Sequence vs. Satiety: Glycemic and Oxidative Responses with Reference to Inflammation Risk, Protective Principles and Mediterranean Diet. Nutrients 2019; 11:E2373. [PMID: 31590352 PMCID: PMC6835480 DOI: 10.3390/nu11102373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
With increasing exposure to eating opportunities and postprandial conditions becoming dominant states, acute effects of meals are garnering interest. In this narrative review, meal components, combinations and course sequence were questioned vis-à-vis resultant postprandial responses, including satiety, glycemic, oxidative and inflammatory risks/outcomes vs. protective principles, with reference to the Mediterranean diet. Representative scientific literature was reviewed and explained, and corresponding recommendations discussed and illustrated. Starting meals with foods, courses and/or preloads high in innate/added/incorporated water and/or fibre, followed by protein-based courses, delaying carbohydrates and fatty foods and minimizing highly-processed/sweetened hedonic foods, would increase satiety-per-calorie vs. obesogenic passive overconsumption. Similarly, starting with high-water/fibre dishes, followed by high-protein foods, oils/fats, and delayed/reduced slowly-digested whole/complex carbohydrate sources, optionally closing with simpler carbohydrates/sugars, would reduce glycaemic response. Likewise, starting with foods high in innate/added/incorporated water/fibre/antioxidants, high monounsaturated fatty acid foods/oils, light proteins and whole/complex carbohydrate foods, with foods/oils low in n-6 polyunsaturated fatty acids (PUFA) and n-6:n-3 PUFA ratios, and minimal-to-no red meat and highly/ultra-processed foods/lipids, would reduce oxidative/inflammatory response. Pyramids illustrating representative meal sequences, from most-to-least protective foods, visually communicate similarities between axes, suggesting potential unification for optimal meal sequence, consistent with anti-inflammatory nutrition and Mediterranean diet/meal principles, warranting application and outcome evaluation.
Collapse
|
10
|
Klockars A, Wood EL, Gartner SN, McColl LK, Levine AS, Carpenter EA, Prosser CG, Olszewski PK. Palatability of Goat's versus Cow's Milk: Insights from the Analysis of Eating Behavior and Gene Expression in the Appetite-Relevant Brain Circuit in Laboratory Animal Models. Nutrients 2019; 11:nu11040720. [PMID: 30925727 PMCID: PMC6520687 DOI: 10.3390/nu11040720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/17/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Goat's (GM) and cow's milk (CM) are dietary alternatives with select health benefits shown in human and animal studies. Surprisingly, no systematic analysis of palatability or preference for GM vs. CM has been performed to date. Here, we present a comprehensive investigation of short-term intake and palatability profiles of GM and CM in laboratory mice and rats. We studied consumption in no-choice and choice scenarios, including meal microstructure, and by using isocaloric milks and milk-enriched solid diets. Feeding results are accompanied by qPCR data of relevant genes in the energy balance-related hypothalamus and brain stem, and in the nucleus accumbens, which regulates eating for palatability. We found that GM and CM are palatable to juvenile, adult, and aged rodents. Given a choice, animals prefer GM- to CM-based diets. Analysis of meal microstructure using licking patterns points to enhanced palatability of and, possibly, greater motivation toward GM over CM. Most profound changes in gene expression after GM vs. CM were associated with the brain systems driving consumption for reward. We conclude that, while both GM and CM are palatable, GM is preferred over CM by laboratory animals, and this preference is driven by central mechanisms controlling eating for pleasure.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Erin L Wood
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Sarah N Gartner
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Laura K McColl
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55113, USA.
| | | | - Colin G Prosser
- Dairy Goat Cooperative (NZ) Ltd., Hamilton 3206, New Zealand.
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55113, USA.
| |
Collapse
|
11
|
Milan AM, Hodgkinson AJ, Mitchell SM, Prodhan UK, Prosser CG, Carpenter EA, Fraser K, Cameron-Smith D. Digestive Responses to Fortified Cow or Goat Dairy Drinks: A Randomised Controlled Trial. Nutrients 2018; 10:nu10101492. [PMID: 30322081 PMCID: PMC6213413 DOI: 10.3390/nu10101492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023] Open
Abstract
Fortified milk drinks are predominantly manufactured from bovine (cow) sources. Alternative formulations include those prepared with hydrolysed bovine milk proteins or from alternate bovidae species, such as caprine (goat) milk. Currently, there is little data on protein digestive and metabolic responses following ingestion of fortified milk drinks. To examine the digestive and metabolic responses to commercially-available fortified milks, young adults (n = 15 males: 15 females), in a randomised sequence, ingested isonitrogenous quantities of whole cow-protein (WC), whole goat-protein (WG), or partially-hydrolysed whey cow-protein (HC), commercial fortified milks. Plasma amino acid (AA) and hormonal responses were measured at baseline and again at 5 h after ingestion. Paracetamol recovery, breath hydrogen, and subjective digestive responses were also measured. Postprandial plasma AA was similar between WC and WG, while AA appearance was suppressed with HC. Following HC, there was a negative incremental AUC in plasma branched-chain AAs. Further, HC had delayed gastric emptying, increased transit time, and led to exaggerated insulin and GLP-1 responses, in comparison to whole protein formulas. Overall, WC and WG had similar protein and digestive responses with no differences in digestive comfort. Contrastingly, HC led to delayed gastric emptying, attenuated AA appearance, and a heightened circulating insulin response.
Collapse
Affiliation(s)
- Amber M Milan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Alison J Hodgkinson
- Food and Bio-based Products, AgResearch, Private Bag 3123, Hamilton 3240, New Zealand.
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Utpal K Prodhan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
| | - Colin G Prosser
- Dairy Goat Co-operative (NZ) Ltd., 18 Gallagher Dr, Melville, Hamilton 3206, New Zealand.
| | - Elizabeth A Carpenter
- Dairy Goat Co-operative (NZ) Ltd., 18 Gallagher Dr, Melville, Hamilton 3206, New Zealand.
| | - Karl Fraser
- AgResearch Grasslands, Private Bag 11008, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- AgResearch Grasslands, Private Bag 11008, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|