1
|
Chuchuy A, Rodriguero MS, Alonso AC, Stein M, Micieli MV. Wolbachia infection in natural mosquito populations from Argentina. Parasitol Res 2024; 123:343. [PMID: 39382727 DOI: 10.1007/s00436-024-08352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The increasing spread of mosquito vectors has made mosquito-borne arboviral diseases a global threat to public health, leading to the urgent need for effective population control methods. Strategies based in the intracellular bacterium Wolbachia Hertig, 1936 are considered environmentally friendly, safe for humans, and potentially cost-effective for controlling arboviral diseases. To minimize undesirable side effects, it is relevant to assess whether Wolbachia is present in the area and understand the diversity associated with native infections before implementing these strategies. With this purpose, we investigated Wolbachia infection status, diversity, and prevalence in populations of Aedes albifasciatus (Macquart, 1838), Aedes fluviatilis (Lutz, 1904), and hybrids of the Culex pipiens (Linnaeus, 1758) complex from Argentina. Aedes albifasciatus and C. pipiens complex samples were collected in the province of Buenos Aires, and A. fluviatilis in the province of Misiones. Aedes albifasciatus was found to be uninfected, while infections with strains wFlu and wPip were detected in A. fluviatilis and hybrids of the C. pipiens complex, respectively. All strains were fixed or close to fixation and clustered within supergroup B. These finding provides valuable information on Wolbachia strains found in natural mosquito populations in Argentina that might be used in heterologous infections in the future or be considered when designing control strategies based on Wolbachia infection.
Collapse
Affiliation(s)
- Ailen Chuchuy
- Centro de Estudios Parasitológicos y de Vectores, CONICET (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61y 62, 1900, La Plata, Argentina
| | - Marcela S Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 1428, Autonomous City of Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, 1428, Autonomous City of Buenos Aires, Argentina.
| | - Ana C Alonso
- Laboratorio de Entomología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET (CCT Nordeste-CONICET-UNNE), Av. Las Heras 727, 3500, Resistencia, Argentina
- Instituto de Investigaciones en Energía No Convencional, Universidad Nacional de Salta, CONICET (INENCO-CONICET), Salta, Argentina
| | - Marina Stein
- Laboratorio de Entomología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET (CCT Nordeste-CONICET-UNNE), Av. Las Heras 727, 3500, Resistencia, Argentina
| | - María V Micieli
- Centro de Estudios Parasitológicos y de Vectores, CONICET (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61y 62, 1900, La Plata, Argentina
| |
Collapse
|
2
|
Clervil E, Guidez A, Talaga S, Carinci R, Gaborit P, Lavergne A, Tirera S, Duchemin JB. Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping. Microorganisms 2024; 12:1994. [PMID: 39458303 PMCID: PMC11509720 DOI: 10.3390/microorganisms12101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around the world. In South America, Wolbachia have been studied in human pathogen vectors such as sand flies and mosquitoes. In French Guiana, the diversity and distribution of Wolbachia are not well known in mosquitoes. In this study, we screened for Wolbachia natural infection in mosquitoes in French Guiana by using 16S rRNA, Wolbachia surface protein (WSP), and multi-locus sequence typing (MLST) molecular assays. A total of 29 out of 44 (65.9%) mosquito species were positive for natural Wolbachia infection according to the PCR results, and two Wolbachia strains co-infected three specimens of Mansonia titillans. Then, we analyzed the phylogenetic relationships among the Wolbachia detected. All of the tested specimens of Aedes aegypti, the major dengue vector of French Guiana, were negative. These results regarding Wolbachia strain, distribution, and prevalence in mosquitoes from French Guiana highlight Wolbachia-mosquito associations and pave the way for a future Wolbachia-based strategy for vector control in this Amazonian territory.
Collapse
Affiliation(s)
- Emmanuelle Clervil
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Amandine Guidez
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Stanislas Talaga
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Romuald Carinci
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Pascal Gaborit
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Anne Lavergne
- Laboratoire d’Interaction Hôte-Virus, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Sourakhata Tirera
- Laboratoire d’Interaction Hôte-Virus, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Jean-Bernard Duchemin
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| |
Collapse
|
3
|
Montenegro D, Cortés-Cortés G, Balbuena-Alonso MG, Warner C, Camps M. Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop 2024; 260:107410. [PMID: 39349234 DOI: 10.1016/j.actatropica.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control. Wolbachia often induces cytoplasmic incompatibility in its mosquito hosts, resulting in infertile progeny between an infected male and an uninfected female. Wolbachia infection also suppresses the replication of pathogens in the mosquito, a process known as "pathogen blocking". Two strategies have emerged. The first one releases Wolbachia carriers (both male and female) to replace the wild mosquito population, a process driven by cytoplasmic incompatibility and that becomes irreversible once a threshold is reached. This suppresses disease transmission mainly by pathogen blocking and frequently requires a single intervention. The second strategy floods the field population with an exclusively male population of Wolbachia-carrying mosquitoes to generate infertile hybrid progeny. In this case, transmission suppression depends largely on decreasing the population density of mosquitoes driven by infertility and requires continued mosquito release. The efficacy of both Wolbachia-based approaches has been conclusively demonstrated by randomized and non-randomized studies of deployments across the world. However, results conducted in one setting cannot be directly or easily extrapolated to other settings because dengue incidence is highly affected by the conditions into which the mosquitoes are released. Compared to traditional vector control methods, Wolbachia-based approaches are much more environmentally friendly and can be effective in the medium/long term. On the flip side, they are much more complex and cost-intensive operations, requiring a substantial investment, infrastructure, trained personnel, coordination between agencies, and community engagement. Finally, we discuss recent evidence suggesting that the release of Wolbachia-transinfected mosquitoes has a moderate potential risk of spreading potentially dangerous genes in the environment.
Collapse
Affiliation(s)
- Diego Montenegro
- Corporación Innovation Hub, Monteria 230001, Colombia; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Grupo de Investigación: Salud y Tecnología 4.0. Fundación Chilloa, Santa Marta 470001, Colombia
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - María Guadalupe Balbuena-Alonso
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Caison Warner
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
4
|
Khosravi G, Akbarzadeh K, Karimian F, Koosha M, Saeedi S, Oshaghi MA. A survey of Wolbachia infection in brachyceran flies from Iran. PLoS One 2024; 19:e0301274. [PMID: 38776328 PMCID: PMC11111063 DOI: 10.1371/journal.pone.0301274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 05/24/2024] Open
Abstract
Wolbachia is a maternally inherited intracellular bacterium that is considered to be the most plentiful endosymbiont found in arthropods. It reproductively manipulates its host to increase the chances of being transmitted to the insect progeny; and it is currently used as a means of suppressing disease vector populations or controlling vector-borne diseases. Studies of the dissemination and prevalence of Wolbachia among its arthropod hosts are important for its possible use as a biological control agent. The molecular identification of Wolbachia relies on different primers sets due to Wolbachia strain variation. Here, we screened for the presence of Wolbachia in a broad range of Brachycera fly species (Diptera), collected from different regions of Iran, using nine genetic markers (wsp, ftsZ, fbpA, gatB, CoxA, gltA, GroEL dnaA, and 16s rRNA), for detecting, assessing the sensitivity of primers for detection, and phylogeny of this bacterium. The overall incidence of Wolbachia among 22 species from six families was 27.3%. The most commonly positive fly species were Pollenia sp. and Hydrotaea armipes. However, the bacterium was not found in the most medically important flies or in potential human disease vectors, including Musca domestica, Sarcophaga spp., Calliphora vicinia, Lucilia sericata, and Chrysomya albiceps. The primer sets of 16s rRNA with 53.0% and gatB with 52.0% were the most sensitive primers for detecting Wolbachia. Blast search, phylogenetic, and MLST analysis of the different locus sequences of Wolbachia show that all the six distantly related fly species likely belonging to supergroup A. Our study showed some primer sets generated false negatives in many of the samples, emphasizing the importance of using different loci in detecting Wolbachia. The study provides the groundwork for future studies of a Wolbachia-based program for control of flies.
Collapse
Affiliation(s)
- Ghazal Khosravi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Koosha
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Saeedi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hernández AM, Alcaraz LD, Hernández-Álvarez C, Romero MF, Jara-Servín A, Barajas H, . Ramírez CM, Peimbert M. Revealing the microbiome diversity and biocontrol potential of field Aedes ssp.: Implications for disease vector management. PLoS One 2024; 19:e0302328. [PMID: 38683843 PMCID: PMC11057774 DOI: 10.1371/journal.pone.0302328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
The mosquito Aedes spp. holds important relevance for human and animal health, as it serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The microbiome's impact on its host's health and fitness is well known. However, most studies on mosquito microbiomes have been conducted in laboratory settings. We explored the mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity analysis and shotgun metagenomics for functional genomics. Our samples, which included Ae. aegypti and Ae. albopictus, spanned various developmental stages-eggs, larvae, and adults-gathered from five semiurban areas in Mexico. Our findings revealed a substantial diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera and 126,366 annotated proteins. The host developmental stage was identified as the primary factor associated with variations in the microbiome composition. Subsequently, we searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for 9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in abundance during the adult stages. Notably, we detected the presence of the cifA and cifB genes, which are associated with Wolbachia's cytoplasmic incompatibility, a biocontrol mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins, such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mosquito microbiome biodiversity and metabolic capabilities, which are essential for developing effective biocontrol strategies against this disease vector.
Collapse
Affiliation(s)
- Apolinar M. Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristóbal Hernández-Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel F. Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Jara-Servín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hugo Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| |
Collapse
|
6
|
Reyes JIL, Suzuki T, Suzuki Y, Watanabe K. Detection and quantification of natural Wolbachia in Aedes aegypti in Metropolitan Manila, Philippines using locally designed primers. Front Cell Infect Microbiol 2024; 14:1360438. [PMID: 38562961 PMCID: PMC10982481 DOI: 10.3389/fcimb.2024.1360438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density. Methods Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0. Results Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains. Conclusion Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.
Collapse
Affiliation(s)
- Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Takahiro Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
7
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
8
|
Ngnindji-Youdje Y, Lontsi-Demano M, Diarra AZ, Makaila AM, Tchuinkam T, Berenger JM, Parola P. Morphological, molecular, and MALDI-TOF MS identification of bed bugs and associated Wolbachia species from Cameroon. Acta Trop 2024; 249:107086. [PMID: 38036023 DOI: 10.1016/j.actatropica.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
After vanishing from the public eye for more than 50 years, bed bugs have resurged to become one of the most widely discussed and heavily researched insect pests in the world. This study presents the basic information of infestations of tropical bed bugs, Cimex hemipterus (Hemiptera: Cimicidae), in Cameroon. A total of 248 immature stage and adult bed bug specimens were collected from households and a travel agency in Yaoundé and Douala, Cameroon. The ability of MALDI-TOF MS to identify bed bugs was tested using heads for adults and cephalothoraxes for immature stages. Microorganism screening was performed by qPCR and confirmed by regular PCR and sequencing. Based on morphometrical criteria, four stages of immature bed bugs are represented. Of the 248 bed bug specimens morphologically identified as Cimex hemipterus, 246 (77 males, 65 females and 104 immature specimens) were submitted to MALDI-TOF MS analysis. Of the 222 adults and immature specimens tested, 122 (59.9 %) produced good quality MALDI-TOF MS spectra (35 adults and 87 immature specimens). Blind testing allowed species level identification of 98.21 % of adult and immature C. hemipterus. Among the bacteria tested, only Wolbachia DNA was found in 12/246 (4.8 %) bed bugs. More surveys in the country are warranted to assess the true level of bed bug infestations, in order to take appropriate action for their control.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France; Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Ahmat Mahamat Makaila
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
9
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Minwuyelet A, Petronio GP, Yewhalaw D, Sciarretta A, Magnifico I, Nicolosi D, Di Marco R, Atenafu G. Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: updates and prospects. Front Microbiol 2023; 14:1267832. [PMID: 37901801 PMCID: PMC10612335 DOI: 10.3389/fmicb.2023.1267832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, Zika fever, and filariasis have the greatest health and economic impact. These mosquito-borne diseases are a major cause of morbidity and mortality in tropical and sub-tropical areas. Due to the lack of effective vector containment strategies, the prevalence and severity of these diseases are increasing in endemic regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia represents a promising new bio-control strategy. Wild-infected mosquitoes had been developing cytoplasmic incompatibility (CI), phenotypic alterations, and nutrition competition with pathogens. These reduce adult vector lifespan, interfere with reproduction, inhibit other pathogen growth in the vector, and increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can also establish stable infections through trans-infection and have the advantage of adaptability through pathogen defense, thereby selectively infecting uninfected mosquitoes and spreading to the entire population. This review aimed to evaluate the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially relevant articles. We used keywords: Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or in combination during the literature search. Data were extracted from 56 articles' texts, figures, and tables of the included article.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| | | | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Andrea Sciarretta
- Department of Agriculture, Environment and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Daria Nicolosi
- Department of Pharmaceutical and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Getnet Atenafu
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
11
|
Li Y, Sun Y, Zou J, Zhong D, Liu R, Zhu C, Li W, Zhou Y, Cui L, Zhou G, Lu G, Li T. Characterizing the Wolbachia infection in field-collected Culicidae mosquitoes from Hainan Province, China. Parasit Vectors 2023; 16:128. [PMID: 37060070 PMCID: PMC10103416 DOI: 10.1186/s13071-023-05719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mosquitoes are vectors of many pathogens, such as malaria, dengue virus, yellow fever virus, filaria and Japanese encephalitis virus. Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, such as cytoplasmic incompatibility. Wolbachia has been proposed as a tool to modify mosquitoes that are resistant to pathogen infection as an alternative vector control strategy. This study aimed to determine natural Wolbachia infections in different mosquito species across Hainan Province, China. METHODS Adult mosquitoes were collected using light traps, human landing catches and aspirators in five areas in Hainan Province from May 2020 to November 2021. Species were identified based on morphological characteristics, species-specific PCR and DNA barcoding of cox1 assays. Molecular classification of species and phylogenetic analyses of Wolbachia infections were conducted based on the sequences from PCR products of cox1, wsp, 16S rRNA and FtsZ gene segments. RESULTS A total of 413 female adult mosquitoes representing 15 species were identified molecularly and analyzed. Four mosquito species (Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Culex gelidus) were positive for Wolbachia infection. The overall Wolbachia infection rate for all mosquitoes tested in this study was 36.1% but varied among species. Wolbachia types A, B and mixed infections of A × B were detected in Ae. albopictus mosquitoes. A total of five wsp haplotypes, six FtsZ haplotypes and six 16S rRNA haplotypes were detected from Wolbachia infections. Phylogenetic tree analysis of wsp sequences classified them into three groups (type A, B and C) of Wolbachia strains compared to two groups each for FtsZ and 16S rRNA sequences. A novel type C Wolbachia strain was detected in Cx. gelidus by both single locus wsp gene and the combination of three genes. CONCLUSION Our study revealed the prevalence and distribution of Wolbachia in mosquitoes from Hainan Province, China. Knowledge of the prevalence and diversity of Wolbachia strains in local mosquito populations will provide part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Hainan Province.
Collapse
Affiliation(s)
- Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Sun
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Jiaquan Zou
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Chuanlong Zhu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Yanhe Zhou
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, 510623, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, Hainan, China.
- The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Academician Workstation of Hainan Province, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
12
|
Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, Du Y, Xing D, Li C, Zhao T, Jiang Y, Dong Y, Guo X, Zhao T. Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China. Front Cell Infect Microbiol 2022; 12:1082809. [PMID: 36530420 PMCID: PMC9748079 DOI: 10.3389/fcimb.2022.1082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China. Methods A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied. Results 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%. Conclusions Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - XiaoXia Guo
- *Correspondence: XiaoXia Guo, ; TongYan Zhao,
| | | |
Collapse
|
13
|
Ngnindji-Youdje Y, Diarra AZ, Lontsi-Demano M, Tchuinkam T, Parola P. Detection of Tick-Borne Pathogens in Ticks from Cattle in Western Highlands of Cameroon. Microorganisms 2022; 10:microorganisms10101957. [PMID: 36296233 PMCID: PMC9609823 DOI: 10.3390/microorganisms10101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to detect and identify microorganisms in ticks collected in the Western Highlands of Cameroon. Quantitative real-time and standard PCR assays, coupled with sequencing, were used. A total of 944 ticks collected from cattle in five distinct sites in Cameroon were selected for the analyses. They belonged to five genera (Amblyomma, Hyalomma, Rhipicephalus, Haemaphysalis, and Ixodes) and twelve species. Real-time PCR revealed that 23% (n = 218) of the ticks were positive for Rickettsia spp., 15% (n = 141) for bacteria of the Anaplasmataceae family, 3% (n = 29) for Piroplasmida, 0.5% (n = 5) for Coxiella burnetii, 0.4% (n = 4) for Borrelia spp., and 0.2% (n = 2) for Bartonella spp. The co-infection rate (3.4%, n = 32) involved mainly Rickettsia spp. and Anaplasmataceae. Of the Rickettsia spp. positive ticks, the targeted PCR and sequencing yielded Rickettsia africae (78.9%), Rickettsia aeschlimannii (6.4%), Rickettsia massiliae (7.8%), Candidatus Rickettsia barbariae (0.9%), and Rickettsia sp. (0.9%). Anaplasmataceae included Anaplasma marginale (4.3%), Anaplasma platys (1.4%), Anaplasma centrale (0.7%), Ehrlichia ruminantium (0.7%), Wolbachia sp., Candidatus Ehrlichia rustica (13.5%), Candidatus Ehrlichia urmitei (7%), and an uncultured Ehrlichia sp. (4.2%). Borrelia theileri was identified in one Rhipicephalus microplus tick. Unfortunately, Piroplasmida could not be identified to the species level. This study demonstrates that in Cameroon, ticks harbour a wide variety of microorganisms and present a risk of zoonotic diseases.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Correspondence: ; Tel.: +33-(0)-4-13-73-24-01; Fax: +33-(0)-4-13-73-24-02
| |
Collapse
|
14
|
Chaves EB, Nascimento-Pereira AC, Pinto JLM, Rodrigues BL, de Andrade MS, Rêbelo JMM. Detection of Wolbachia in Mosquitoes (Diptera: Culicidae) in the State of Maranhão, Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1831-1836. [PMID: 35849008 DOI: 10.1093/jme/tjac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, the endobacteria Wolbachia has emerged as a biological tool for the control of arboviruses. Thus, we investigated the rate of natural infection by Wolbachia in Culicidae species from Maranhão, Brazil. For this, we amplified the Wolbachia surface protein gene (wsp) from mosquitoes collected in six localities of Maranhão, and positive samples were subjected to new analysis using group-specific primers. In total, 448 specimens comprising 6 genera and 18 species of mosquitoes were analyzed. Wolbachia DNA was PCR-detected in 7 species, three of which are new records: Aedes scapularis (Rondani, 1848), Coquillettidia juxtamansonia (Chagas, 1907) and Cq. venezuelensis (Theobald, 1912), in addition to Ae. albopictus (Skuse, 1894) and Culex quinquefasciatus Say, 1823, which are commonly described as permissive to maintain this bacterium in natural environments, and two species of the subgenera Anopheles (Nyssorhynchus) Blanchard, 1902 and Culex (Melanoconion) Theobald, 1903 which could not be identified at species level. The infection rate of all species ranged from 0 to 80%, and the average value was 16.5%. This study increases the knowledge about the prevalence of Wolbachia in the culicid fauna and may help in selecting strains for biological control purposes.
Collapse
Affiliation(s)
- Erick Barros Chaves
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Avenida dos Portugueses 1966, Campus do Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Agostinho Cardoso Nascimento-Pereira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brasil, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro-RJ, Brazil
| | - Jorge Luiz Moraes Pinto
- Laboratório de Entomologia e Vetores, Universidade Federal do Maranhão, Avenida dos Portugueses 1966, Campus do Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Bruno Leite Rodrigues
- Pós-Graduação de Saúde Pública, Faculdade de Saúde Pública da USP, Avenida Dr. Arnaldo, 715 Cerqueira César, 01246-904, São Paulo-SP, Brazil
| | - Marcelo Souza de Andrade
- Laboratório de Estudos Genômicos e Histocompatibilidade, Hospital Presidente Dutra, Universidade Federal do Maranhão, Rua Silva Jardim, s/n - Centro, 65021-000 São Luís, MA, Brasil
| | - José Manuel Macário Rêbelo
- Laboratório de Entomologia e Vetores, Universidade Federal do Maranhão, Avenida dos Portugueses 1966, Campus do Bacanga, 65080-805, São Luís, Maranhão, Brazil
| |
Collapse
|
15
|
Waymire E, Duddu S, Yared S, Getachew D, Dengela D, Bordenstein SR, Balkew M, Zohdy S, Irish SR, Carter TE. Wolbachia 16S rRNA haplotypes detected in wild Anopheles stephensi in eastern Ethiopia. Parasit Vectors 2022; 15:178. [PMID: 35610655 PMCID: PMC9128127 DOI: 10.1186/s13071-022-05293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND About two out of three Ethiopians are at risk of malaria, a disease caused by the parasites Plasmodium falciparum and Plasmodium vivax. Anopheles stephensi, an invasive vector typically found in South Asia and the Middle East, was recently found to be distributed across eastern and central Ethiopia and is capable of transmitting both P. falciparum and P. vivax. The detection of this vector in the Horn of Africa (HOA) coupled with widespread insecticide resistance requires that new methods of vector control be investigated in order to control the spread of malaria. Wolbachia, a naturally occurring endosymbiotic bacterium of mosquitoes, has been identified as a potential vector control tool that can be explored for the control of malaria transmission. Wolbachia could be used to control the mosquito population through suppression or potentially decrease malaria transmission through population replacement. However, the presence of Wolbachia in wild An. stephensi in eastern Ethiopia is unknown. This study aimed to identify the presence and diversity of Wolbachia in An. stephensi across eastern Ethiopia. METHODS DNA was extracted from An. stephensi collected from eastern Ethiopia in 2018 and screened for Wolbachia using a 16S targeted PCR assay, as well as multilocus strain typing (MLST) PCR assays. Haplotype and phylogenetic analysis of the sequenced 16S amplicons were conducted to compare with Wolbachia from countries across Africa and Asia. RESULTS Twenty out of the 184 mosquitoes screened were positive for Wolbachia, with multiple haplotypes detected. In addition, phylogenetic analysis revealed two superclades, representing Wolbachia supergroups A and B (bootstrap values of 81 and 72, respectively) with no significant grouping of geographic location or species. A subclade with a bootstrap value of 89 separates the Ethiopian haplotype 2 from other sequences in that superclade. CONCLUSIONS These findings provide the first evidence of natural Wolbachia populations in wild An. stephensi in the HOA. They also identify the need for further research to confirm the endosymbiotic relationship between Wolbachia and An. stephensi and to investigate its utility for malaria control in the HOA.
Collapse
Affiliation(s)
| | - Sowmya Duddu
- Department of Biology, Baylor University, Waco, TX USA
| | | | | | - Dereje Dengela
- PMI VectorLink Ethiopia Project, Abt Associates, Addis Ababa, Ethiopia
| | | | - Meshesha Balkew
- PMI VectorLink Ethiopia Project, Abt Associates, Addis Ababa, Ethiopia
| | - Sarah Zohdy
- U.S. President’s Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Seth R. Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | |
Collapse
|
16
|
Thayanukul P, Lertanantawong B, Sirawaraporn W, Charasmongkolcharoen S, Chaibun T, Jittungdee R, Kittayapong P. Simple, sensitive, and cost-effective detection of wAlbB Wolbachia in Aedes mosquitoes, using loop mediated isothermal amplification combined with the electrochemical biosensing method. PLoS Negl Trop Dis 2022; 16:e0009600. [PMID: 35560029 PMCID: PMC9132313 DOI: 10.1371/journal.pntd.0009600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 05/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Wolbachia is an endosymbiont bacterium generally found in about 40% of insects, including mosquitoes, but it is absent in Aedes aegypti which is an important vector of several arboviral diseases. The evidence that Wolbachia trans-infected Ae. aegypti mosquitoes lost their vectorial competence and became less capable of transmitting arboviruses to human hosts highlights the potential of using Wolbachia-based approaches for prevention and control of arboviral diseases. Recently, release of Wolbachia trans-infected Ae. aegypti has been deployed widely in many countries for the control of mosquito-borne viral diseases. Field surveillance and monitoring of Wolbachia presence in released mosquitoes is important for the success of these control programs. So far, a number of studies have reported the development of loop mediated isothermal amplification (LAMP) assays to detect Wolbachia in mosquitoes, but the methods still have some specificity and cost issues. Methodology/Principal findings We describe here the development of a LAMP assay combined with the DNA strand displacement-based electrochemical sensor (BIOSENSOR) method to detect wAlbB Wolbachia in trans-infected Ae. aegypti. Our developed LAMP primers used a low-cost dye detecting system and 4 oligo nucleotide primers which can reduce the cost of analysis while the specificity is comparable to the previous methods. The detection capacity of our LAMP technique was 1.4 nM and the detection limit reduced to 2.2 fM when combined with the BIOSENSOR. Our study demonstrates that a BIOSENSOR can also be applied as a stand-alone method for detecting Wolbachia; and it showed high sensitivity when used with the crude DNA extracts of macerated mosquito samples without DNA purification. Conclusions/Significance Our results suggest that both LAMP and BIOSENSOR, either used in combination or stand-alone, are robust and sensitive. The methods have good potential for routine detection of Wolbachia in mosquitoes during field surveillance and monitoring of Wolbachia-based release programs, especially in countries with limited resources. Mosquito-borne diseases such as dengue, chikungunya, zika, and yellow fever are transmitted to humans mainly by the bites of Aedes aegypti mosquitoes. Controlling the vectors of these diseases relies mostly on the use of insecticides. However, the efficiency has been reduced through the development of insecticide resistance in mosquitoes. Wolbachia is an endosymbiotic bacterium that is naturally found in 40% of insects, including mosquitoes. The bacterium can protect its insect hosts from viral infections and can also cause sterility in insect host populations, therefore, providing an opportunity to use it for human disease control. Application of a Wolbachia trans-infected mosquitoes needs simple, rapid and sensitive methods for detecting the bacteria in released mosquitoes. In this paper, we develop the methods of LAMP and BIOSENSORS for detecting wAlbB Wolbachia in mosquitoes. Our positive LAMP reaction can be visualized by color change from violet to blue at a sensitivity of ≥ 10 pg of genomic DNA. When used in combination with the BIOSENSOR method, the sensitivity increases a millionfold without losing specificity. Our study suggests that both developed methods, either used in combination or stand-alone, are efficient and cost-effective, hence, they could be applied for routine surveys of Wolbachia in mosquito control programs that use Wolbachia-based approaches.
Collapse
Affiliation(s)
- Parinda Thayanukul
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Benchaporn Lertanantawong
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Worachart Sirawaraporn
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | | | - Thanyarat Chaibun
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | | | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Aikawa T, Maehara N, Ichihara Y, Masuya H, Nakamura K, Anbutsu H. Cytoplasmic incompatibility in the semivoltine longicorn beetle Acalolepta fraudatrix (Coleoptera: Cerambycidae) double infected with Wolbachia. PLoS One 2022; 17:e0261928. [PMID: 35030199 PMCID: PMC8759696 DOI: 10.1371/journal.pone.0261928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are obligatory endosymbiotic α-proteobacteria found in many arthropods. They are maternally inherited, and can induce reproductive alterations in the hosts. Despite considerable recent progress in studies on the associations between Wolbachia and various taxonomic groups of insects, none of the researches have revealed the effects of Wolbachia on longicorn beetles as the host insect. Acalolepta fraudatrix is a forest longicorn beetle that is distributed in East Asia. In this study, the relationship between Wolbachia and A. fraudatrix was investigated. Out of two populations of A. fraudatrix screened for Wolbachia using the genes ftsZ, wsp, and 16S rRNA, only one of the populations showed detection of all three genes indicating the presence of Wolbachia. Electron microscopy and fluorescent in situ hybridization also confirmed that the A. fraudatrix population was infected with Wolbachia. Sequencing the wsp genes derived from single insects revealed that two strains of Wolbachia coexisted in the insects based on the detection of two different sequences of the wsp gene. We designated these strains as wFra1 and wFra2. The bacterial titers of wFra1 were nearly 2-fold and 3-fold higher than wFra2 in the testes and ovaries, respectively. The two strains of Wolbachia in the insects were completely eliminated by rearing the insects on artificial diets containing 1% concentration of tetracycline for 1 generation. Reciprocal crosses between Wolbachia-infected and Wolbachia-uninfected A. fraudatrix demonstrated that only eggs produced by the crosses between Wolbachia-infected males and Wolbachia-uninfected females did not hatch, indicating that Wolbachia infecting A. fraudatrix causes cytoplasmic incompatibility in the host insect. This is the first report showing the effect of Wolbachia on reproductive function in a longicorn beetle, A. fraudatrix.
Collapse
Affiliation(s)
- Takuya Aikawa
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
- * E-mail:
| | - Noritoshi Maehara
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Yu Ichihara
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, Japan
| | - Hayato Masuya
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Katsunori Nakamura
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Shinjuku-ku, Tokyo, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
18
|
Zouache K, Martin E, Rahola N, Gangue MF, Minard G, Dubost A, Van VT, Dickson L, Ayala D, Lambrechts L, Moro CV. Larval habitat determines the bacterial and fungal microbiota of the mosquito vector Aedes aegypti. FEMS Microbiol Ecol 2022; 98:6526867. [PMID: 35147188 DOI: 10.1093/femsec/fiac016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/12/2022] Open
Abstract
Mosquito larvae are naturally exposed to microbial communities present in a variety of larval development sites. Several earlier studies have highlighted that the larval habitat influences the composition of the larval bacterial microbiota. However, little information is available on their fungal microbiota, i.e. the mycobiota. In this study, we provide the first simultaneous characterization of the bacterial and fungal microbiota in field-collected Aedes aegypti larvae and their respective aquatic habitats. We evaluated whether the microbial communities associated with the breeding site may affect the composition of both the bacterial and fungal communities in Ae. aegypti larvae. Our results show a higher similarity in microbial community structure for both bacteria and fungi between larvae and the water in which larvae develop than between larvae from different breeding sites. This supports the hypothesis that larval habitat is a major factor driving microbial composition in mosquito larvae. Since the microbiota plays an important role in mosquito biology, unravelling the network of interactions that operate between bacteria and fungi is essential to better understand the functioning of the mosquito holobiont.
Collapse
Affiliation(s)
- Karima Zouache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Nil Rahola
- CIRMF, Franceville, Gabon.,UMR MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | | | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Van Tran Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Laura Dickson
- Institut Pasteur, Université de Paris, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Diego Ayala
- CIRMF, Franceville, Gabon.,UMR MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Louis Lambrechts
- Institut Pasteur, Université de Paris, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
19
|
Ross PA. Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Trop 2021; 222:106045. [PMID: 34273308 DOI: 10.1016/j.actatropica.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.
Collapse
|
20
|
Cano-Calle D, Saldamando-Benjumea CI, Vivero-Gómez RJ, Moreno-Herrera CX, Arango-Isaza RE. Two New Strains of Wolbachia Affecting Natural Avocado Thrips. Indian J Microbiol 2021; 61:348-354. [PMID: 34295000 PMCID: PMC8263844 DOI: 10.1007/s12088-021-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022] Open
Abstract
Wolbachia is an obligate intracellular bacterium with a high frequency of infection and a continental distribution in arthropods and nematodes. This endosymbiont can induce various reproductive phenotypes in their hosts and has been previously found naturally in several pests including thrips (Thripidae). These insects cause physical fruit damage and economic losses in avocado. The presence of Wolbachia was evaluated for the first time in avocado thrips populations of Frankliniella sp. and Scirtothrips hansoni sp.n. from eastern Antioquia. DNA from adult thrips individuals was used to assess the detection of Wolbachia by amplifying a fragment (600 bp) of the Wolbachia major surface protein (wsp) gene. Results confirmed the presence of two new Wolbachia strains in these two thrips species, with a higher percentage of natural infection in S. hansoni sp.n. The first Wolbachia species was found in Frankliniella sp. and belongs to supergroup A and the second was detected in S. hansoni sp.n. and is part of supergroup B. Wolbachia was more frequently found in females (32.73%), and only found in one male. Analysis of phylogenetic relationships, suggests that the two new Wolbachia sequences (wFran: Frankliniella and wShan: Scirtothrips hansoni) detected here represent two new groups for this endosymbiont. The haplotype network shows the presence of two possible haplotypes for each strain. Future studies to evaluate the possible use of Wolbachia as a control agent in avocado thrips are necessary. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00951-5.
Collapse
Affiliation(s)
- Daniela Cano-Calle
- Facultad de Ciencias, Grupo Biotecnología Vegetal UNALMED-CIB, Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Facultad de Ciencias, Grupo Microbiodiversidad y Bioprospección (MICROBIOP), Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Corporación Para Investigaciones Biológicas (CIB), Cra. 65 #59a-110, 050034 Medellín, Antioquia Colombia
| | - Clara I. Saldamando-Benjumea
- Facultad de Ciencias, Grupo Biotecnología Vegetal UNALMED-CIB, Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Corporación Para Investigaciones Biológicas (CIB), Cra. 65 #59a-110, 050034 Medellín, Antioquia Colombia
| | - Rafael J. Vivero-Gómez
- Facultad de Ciencias, Grupo Microbiodiversidad y Bioprospección (MICROBIOP), Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
| | - Claudia X. Moreno-Herrera
- Facultad de Ciencias, Grupo Microbiodiversidad y Bioprospección (MICROBIOP), Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
| | - Rafael E. Arango-Isaza
- Facultad de Ciencias, Grupo Biotecnología Vegetal UNALMED-CIB, Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Corporación Para Investigaciones Biológicas (CIB), Cra. 65 #59a-110, 050034 Medellín, Antioquia Colombia
| |
Collapse
|