1
|
Tapela K, Prah DA, Tetteh B, Nuokpem F, Dosoo D, Coker A, Kumi-Ansah F, Amoako E, Assah KO, Kilba C, Nyakoe N, Quansah D, Languon S, Anyigba CA, Ansah F, Agyeman S, Owusu IA, Schneider K, Ampofo WK, Mutungi JK, Amegatcher G, Aniweh Y, Awandare GA, Quashie PK, Bediako Y. Cellular immune response to SARS-CoV-2 and clinical presentation in individuals exposed to endemic malaria. Cell Rep 2024; 43:114533. [PMID: 39052480 PMCID: PMC11372439 DOI: 10.1016/j.celrep.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Ghana and other parts of West Africa have experienced lower COVID-19 mortality rates than other regions. This phenomenon has been hypothesized to be associated with previous exposure to infections such as malaria. This study investigated the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influence of previous malaria exposure. Blood samples were collected from individuals with asymptomatic or symptomatic COVID-19 (n = 217). A variety of assays were used to characterize the SARS-CoV-2-specific immune response, and malaria exposure was quantified using Plasmodium falciparum ELISA. The study found evidence of attenuated immune responses to COVID-19 among asymptomatic individuals, with elevated proportions of non-classical monocytes and greater memory B cell activation. Symptomatic patients displayed higher P. falciparum-specific T cell recall immune responses, whereas asymptomatic individuals demonstrated elevated P. falciparum antibody levels. Summarily, this study suggests that P. falciparum exposure-associated immune modulation may contribute to reduced severity of SARS-CoV-2 infection among people living in malaria-endemic regions.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Franklin Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Amin Coker
- Accident and Emergency Unit, The Greater Accra Regional Hospital, Accra, Ghana
| | | | - Emmanuella Amoako
- Department of Pediatrics, Cape Coast Teaching Hospital, Cape Coast, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Kissi Ohene Assah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Charlyne Kilba
- Department of Internal Medicine, Surgery, Pediatrics, and Emergency Medicine, Greater Accra Regional Hospital, Accra, Ghana
| | - Nancy Nyakoe
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Seth Agyeman
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kristan Schneider
- Department of Mathematics, Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany
| | - William K Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joe Kimanthi Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Science, School of Biomedical and Allied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
2
|
Zheng X, Lu R, Pan D, Peng L, He R, Hu Y, Chen J, Tang J, Rong X, Teng S, Wang Y, Liu F, Xie T, Wu C, Tang Y, Liu W, Qu X. Regulatory T and CXCR3+ Circulating Tfh Cells Concordantly Shape the Neutralizing Antibody Responses in Individuals Who Have Recovered from Mild COVID-19. J Infect Dis 2024; 230:28-37. [PMID: 39052730 DOI: 10.1093/infdis/jiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Regulatory T (Treg) cells are involved in the antiviral immune response in patients with coronavirus disease 2019 (COVID-19); however, whether Treg cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of Treg cells and lower frequencies of CXCR3+ circulating T follicular helper (cTfh) cells than healthy controls. Furthermore, the frequencies of Treg and CXCR3+ cTfh cells were negatively and positively correlated with the nAb responses, respectively, and Treg cells was inversely associated with CXCR3+ cTfh cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, Treg cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTfh cells, especially CXCR3+ cTfh cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits concerted nAb responses, which are shaped by both Treg and Tfh cells.
Collapse
Affiliation(s)
- Xingyu Zheng
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rui Lu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Dong Pan
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Liting Peng
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rongzhang He
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jun Chen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jinyong Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xiaohan Rong
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Shishan Teng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - You Wang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Fen Liu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Tianyi Xie
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Chanfeng Wu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yinggen Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Wenpei Liu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaowang Qu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Strambo D, Marto JP, Ntaios G, Nguyen TN, Michel P. Effect of Asymptomatic and Symptomatic COVID-19 on Acute Ischemic Stroke Revascularization Outcomes. Stroke 2024; 55:78-88. [PMID: 38134260 PMCID: PMC10734790 DOI: 10.1161/strokeaha.123.043899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The association of COVID-19 with higher bleeding risk and worse outcomes in acute ischemic stroke (AIS) undergoing revascularization may be related to the presence of infection symptoms. We aimed to assess the safety and outcomes of revascularization treatments in patients with AIS with asymptomatic COVID-19 (AS-COVID) or symptomatic COVID-19 (S-COVID). METHODS We conducted an international multicenter retrospective cohort study of consecutive AIS tested for SARS-CoV-2, receiving intravenous thrombolysis and endovascular treatment between 2020 and 2021. We compared COVID-negative controls, AS-COVID, and S-COVID using multivariable regression. We assessed symptomatic intracranial hemorrhage (symptomatic intracerebral hemorrhage), mortality, and 3-month disability (modified Rankin Scale score). RESULTS Among 15 124 patients from 105 centers (median age, 71 years; 49% men; 39% treated with intravenous thrombolysis only; and 61% with endovascular treatment±intravenous thrombolysis), 849 (5.6%) had COVID-19, of whom 395 (46%) were asymptomatic and 454 (54%) symptomatic. Compared with controls, both patients with AS-COVID and S-COVID had higher symptomatic intracerebral hemorrhage rates (COVID-controls, 5%; AS-COVID, 7.6%; S-COVID, 9.4%; adjusted odds ratio [aOR], 1.43 [95% CI, 1.03-1.99]; aOR, 1.63 [95% CI, 1.14-2.32], respectively). Only in patients with symptomatic infections, we observed a significant increase in mortality at 24 hours (COVID-controls, 1.3%; S-COVID, 4.8%; aOR, 2.97 [95% CI, 1.76-5.03]) and 3 months (COVID-controls, 19.5%; S-COVID, 40%; aOR, 2.64 [95% CI, 2.06-3.37]). Patients with COVID-19 had worse 3-month disability regardless of disease symptoms although disability was affected to a greater extent in symptomatic patients (aOR for worse modified Rankin Scale score shift: AS-COVID, 1.25 [95% CI, 1.03-1.51]; S-COVID, 2.10 [95% CI, 1.75-2.53]). S-COVID had lower successful recanalization (74.9% versus 85.6%; P<0.001), first pass recanalization (20.3% versus 28.3%; P=0.005), and a higher number of passes. CONCLUSIONS In AIS undergoing revascularization treatments, both AS-COVID and S-COVID influence the risk of intracranial bleeding and worse clinical outcomes. The magnitude of this effect is more pronounced in symptomatic infections, which also present less favorable recanalization outcomes. These findings emphasize the impact of SARS-CoV-2 infection on the prognosis of revascularized AIS independent of symptom status. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04895462.
Collapse
Affiliation(s)
- Davide Strambo
- Stroke Center, Neurology Service, Department of Neurological Sciences, Lausanne University Hospital, University of Lausanne, Switzerland (D.S., P.M.)
| | - João Pedro Marto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Portugal (J.P.M.)
| | - George Ntaios
- Departement of Internal Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece (G.N.)
| | - Thanh N. Nguyen
- Departement of Neurology, Boston Medical Center, MA (T.N.N.)
| | - Patrik Michel
- Stroke Center, Neurology Service, Department of Neurological Sciences, Lausanne University Hospital, University of Lausanne, Switzerland (D.S., P.M.)
| |
Collapse
|
4
|
Yu AYX, Ganesh A. COVID-19 Infection, Symptoms, and Stroke Revascularization Outcomes: Intriguing Connections. Stroke 2024; 55:89-91. [PMID: 38134253 DOI: 10.1161/strokeaha.123.045321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Affiliation(s)
- Amy Y X Yu
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada (A.Y.X.Y.)
| | - Aravind Ganesh
- Departments of Clinical Neurosciences and Community Health Sciences, Hotchkiss Brain Institute and the O'Brien Institute for Public Health, University of Calgary, AB, Canada (A.G.)
| |
Collapse
|
5
|
Kumwichar P, Chongsuvivatwong V. COVID-19 pneumonia and the subsequent risk of getting active pulmonary tuberculosis: a population-based dynamic cohort study using national insurance claims databases. EClinicalMedicine 2023; 56:101825. [PMID: 36694864 PMCID: PMC9854255 DOI: 10.1016/j.eclinm.2023.101825] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
Background A three-fold increase in the incidence of detecting pulmonary tuberculosis (PTB) in patients hospitalised with COVID-19 pneumonia compared with that in the general population was recently reported; however, this finding may be due to admission bias in the diagnostic investigation. The current cohort study aimed to estimate the risk of having detectable active PTB after SARS-CoV-2 infection. Methods Insurance claims data in lower Southern Thailand from the 12th regional National Health Security Office, Thailand, were used. Inpatient and outpatient electronic medical records were linked using encrypted identification numbers. Records of individuals aged ≥18 years from 1 April to 30 September 2021 were retrieved to form a dynamic cohort. Exposure status was based on SARS-CoV-2 investigation and pneumonia status: population control (general population who had never been tested), negative reverse transcription-polymerase chain reaction (RT-PCR) control, asymptomatic COVID-19, symptomatic COVID-19 without pneumonia, and COVID-19 pneumonia groups. They were tracked in the databases for subsequent bacteriologically confirmed PTB until 31 March 2022. Findings Overall, 4,241,201 individuals were recruited in the dynamic cohort and contributed 3,108,224, 227,918, 34,251, 10,325, and 14,160 person-years in the above exposure groups, respectively. Time-varying Cox's regression was conducted using population control as reference. Hazard ratios (95% CIs) of the negative control, asymptomatic, symptomatic COVID-19 without pneumonia, and pneumonia groups were 1.58 (1.08, 2.32), 1.00 (0.25, 4.01), 2.98 (0.74, 11.98), 9.87 (5.64, 17.30) in the first 30 days and 0.97 (0.81, 1.15), 1.41 (0.92, 2.17), 3.85 (2.42, 6.13), and 7.15 (5.54, 9.22) thereafter, respectively. Interpretation Having had COVID-19 pneumonia, as opposed to the general population status, was strongly associated with a higher hazard of detectable active PTB. In tuberculosis endemic areas, patients with COVID-19 pneumonia should be closely followed up to reduce PTB-related burden. Funding The Fogarty International Center and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health supported the article processing charges under Award Number D43TW009522.
Collapse
Affiliation(s)
- Ponlagrit Kumwichar
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Kanjanavanich Rd, Kho Hong, Hat Yai District, Songkhla, 90110, Thailand
| | - Virasakdi Chongsuvivatwong
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Kanjanavanich Rd, Kho Hong, Hat Yai District, Songkhla, 90110, Thailand
| |
Collapse
|
6
|
Cao S, Zhang Q, Song L, Xiao M, Chen Y, Wang D, Li M, Hu J, Lin L, Zheng Y, Zhou K, Ye S, Zhou J, Zhou YN, Cui J, Wang J, Sun J, Tao J, Chen Z, Chen R, Zhou P, Shi Z, Wei S, Zhao L, Wang H, Tong X, Li X, Men D, Hou B, Zhang XE. Dysregulation of Innate and Adaptive Immune Responses in Asymptomatic SARS-CoV-2 Infection with Delayed Viral Clearance. Int J Biol Sci 2022; 18:4648-4657. [PMID: 35874943 PMCID: PMC9305270 DOI: 10.7150/ijbs.72963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Asymptomatic infection with SARS-CoV-2 is a major concern in the control of the COVID-19 pandemic. Many questions concerning asymptomatic infection remain to be answered, for example, what are the differences in infectivity and the immune response between asymptomatic and symptomatic infections? In this study, based on a cohort established by the Wuchang District Health Bureau of Wuhan in the early stage of the COVID-19 pandemic in Wuhan in 2019, we conducted a comprehensive analysis of the clinical, virological, immunological, and epidemiological data of asymptomatic infections. The major findings of this study included: 1) the asymptomatic cohort enrolled this study exhibited low-grade but recurrent activity of viral replication; 2) despite a lack of overt clinical symptoms, asymptomatic infections exhibited ongoing innate and adaptive immune responses; 3) however, the immune response from asymptomatic infections was not activated adequately, which may lead to delayed viral clearance. Given the fragile equilibrium between viral infection and host immunity, and the delayed viral clearance in asymptomatic individuals, close viral monitoring should be scheduled, and therapeutic intervention may be needed.
Collapse
Affiliation(s)
- Shanshan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Liu Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhong Xiao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Yexing Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinchao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lin Lin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujian Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Na Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jing Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Hubei University, Wuhan 430074, China
| | - Jingzhi Wang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jing Sun
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Junxiu Tao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Zhou Chen
- Wuchang District Hospital of Traditional Chinese Medicine, Wuhan 430060, China
| | - Rong Chen
- Jiyuqiao Street Community Health Service Center, Wuchang District, Wuhan 430081, China
| | - Peng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linhua Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoling Tong
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaodong Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baidong Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Dobosh B, Zandi K, Giraldo DM, Goh SL, Musall K, Aldeco M, LeCher J, Giacalone VD, Yang J, Eddins DJ, Bhasin M, Ghosn E, Sukhatme V, Schinazi RF, Tirouvanziam R. Baricitinib attenuates the proinflammatory phase of COVID-19 driven by lung-infiltrating monocytes. Cell Rep 2022; 39:110945. [PMID: 35688145 PMCID: PMC9130711 DOI: 10.1016/j.celrep.2022.110945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2-infected subjects are generally asymptomatic during initial viral replication but may suffer severe immunopathology after the virus has receded and monocytes have infiltrated the airways. In bronchoalveolar lavage fluid from severe COVID-19 patients, monocytes express mRNA encoding inflammatory mediators and contain SARS-CoV-2 transcripts. We leverage a human small airway model of infection and inflammation, whereby primary blood monocytes transmigrate across SARS-CoV-2-infected lung epithelium to characterize viral burden, gene expression, and inflammatory mediator secretion by epithelial cells and monocytes. In this model, lung-infiltrating monocytes acquire SARS-CoV-2 from the epithelium and upregulate expression and secretion of inflammatory mediators, mirroring in vivo data. Combined use of baricitinib (Janus kinase inhibitor) and remdesivir (nucleoside analog) enhances antiviral signaling and viral clearance by SARS-CoV-2-positive monocytes while decreasing secretion of proneutrophilic mediators associated with acute respiratory distress syndrome. These findings highlight the role of lung-infiltrating monocytes in COVID-19 pathogenesis and their importance as a therapeutic target.
Collapse
Affiliation(s)
- Brian Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Diego Moncada Giraldo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Shu Ling Goh
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn Musall
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milagros Aldeco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Julia LeCher
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Vincent D Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Junkai Yang
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Devon J Eddins
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics and Department of Biomedical Bioinformatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eliver Ghosn
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vikas Sukhatme
- Department of Medicine and the Morningside Center for Innovative and Affordable Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
8
|
Liu LD, Duricka DL. Stellate ganglion block reduces symptoms of Long COVID: A case series. J Neuroimmunol 2022; 362:577784. [PMID: 34922127 PMCID: PMC8653406 DOI: 10.1016/j.jneuroim.2021.577784] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022]
Abstract
After recovering from COVID-19, a significant proportion of symptomatic and asymptomatic individuals develop Long COVID. Fatigue, orthostatic intolerance, brain fog, anosmia, and ageusia/dysgeusia in Long COVID resemble "sickness behavior," the autonomic nervous system response to pro-inflammatory cytokines (Dantzer et al., 2008). Aberrant network adaptation to sympathetic/parasympathetic imbalance is expected to produce long-standing dysautonomia. Cervical sympathetic chain activity can be blocked with local anesthetic, allowing the regional autonomic nervous system to "reboot." In this case series, we successfully treated two Long COVID patients using stellate ganglion block, implicating dysautonomia in the pathophysiology of Long COVID and suggesting a novel treatment.
Collapse
|