1
|
John FA, Gaghan C, Liu J, Wolfenden R, Kulkarni RR. Screening and selection of eubiotic compounds possessing immunomodulatory and anti-Clostridium perfringens properties. Poult Sci 2024; 103:103911. [PMID: 38909503 PMCID: PMC11253676 DOI: 10.1016/j.psj.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Eubiotics are water and/or feed additives used in poultry to promote gut health and control enteric burden of pathogens, including Clostridium perfringens. While several eubiotic compounds (ECs) are being introduced commercially, it is essential to devise an in vitro model to screen these compounds to assess their immunomodulatory and antimicrobial properties prior to their testing in vivo. A chicken macrophage cell-line (MQ-NCSU) was used to develop an in vitro model to screen the immunological and anti-C. perfringens properties of 10 ECs: monobutyrin, monolaurin, calcium butyrate, tributyrin, carvacrol, curcumin, green tea extract, rosemary extract, monomyristate, and tartaric acid. An optimal concentration for each EC was selected by measuring the effect on viability of MQ-NCSU cells. Cells were then treated with ECs for 6, 12, and 24 h. and expression of interferon-gamma (IFNγ), interleukin (IL)-1β, IL-6, IL-10, transforming growth factor-beta (TGFβ) and cluster of differentiation (CD40) genes, as well as major histocompatibility complex (MHC)-II protein were evaluated. At 6 h post-stimulation, monobutyrin, calcium butyrate, and green tea extract treatments induced a significant downregulation of IFNγ, IL-6, or IL-1β gene transcription and MHC-II expression, while the IL-10 or TGFβ gene expression in these treatments as well as those receiving rosemary extract and tartaric acid was significantly upregulated, when compared to control, suggesting immunomodulatory properties of these ECs. Finally, pretreatment of macrophages with these selected 5 ECs for 24 h followed by C. perfringens infection showed that monobutyrin, green tea extract, rosemary extract, and calcium butyrate treatments can inhibit bacterial growth significantly at 12 and/or 24 h post-infection, when compared to the control. Collectively, our findings show that ECs possessing immunomodulatory and anti-C. perfringens properties can be selected using an in vitro avian macrophage cell-based model so that such ECs can further be tested in vivo for their disease prevention efficacy.
Collapse
Affiliation(s)
- Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jundi Liu
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, USA
| | - Ross Wolfenden
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
John FA, Criollo V, Gaghan C, Armwood A, Holmes J, Thachil AJ, Crespo R, Kulkarni RR. Immunization of turkeys with Clostridium septicum alpha toxin-based recombinant subunit proteins can confer protection against experimental Clostridial dermatitis. PLoS One 2024; 19:e0302555. [PMID: 38683795 PMCID: PMC11057757 DOI: 10.1371/journal.pone.0302555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Clostridial dermatitis (CD), caused by Clostridium septicum, is an emerging disease of increasing economic importance in turkeys. Currently, there are no effective vaccines for CD control. Here, two non-toxic domains of C. septicum alpha toxin, namely ntATX-D1 and ntATX-D2, were identified, cloned, and expressed in Escherichia coli as recombinant subunit proteins to investigate their use as potential vaccine candidates. Experimental groups consisted of a Negative control (NCx) that did not receive C. septicum challenge, while the adjuvant-only Positive control (PCx), ntATX-D1 immunization (D1) and ntATX-D2 immunization (D2) groups received C. septicum challenge. Turkeys were immunized subcutaneously with 100 μg of protein at 7, 8 and 9 weeks of age along with an oil-in-water nano-emulsion adjuvant, followed by C. septicum challenge at 11 weeks of age. Results showed that while 46.2% of birds in the PCx group died post-challenge, the rate of mortality in D1- or D2-immunization groups was 13.3%. The gross and histopathological lesions in the skin, muscle and spleen showed that the disease severity was highest in PCx group, while the D2-immunized birds had significantly lower lesion scores when compared to PCx. Gene expression analysis revealed that PCx birds had significantly higher expression of pro-inflammatory cytokine genes in the skin, muscle and spleen than the NCx group, while the D2 group had significantly lower expression of these genes compared to PCx. Peripheral blood cellular analysis showed increased frequencies of activated CD4+ and/or CD8+ cells in the D1 and D2-immunized groups. Additionally, the immunized turkeys developed antigen-specific serum IgY antibodies. Collectively, these findings indicate that ntATX proteins, specifically the ntATX-D2 can be a promising vaccine candidate for protecting turkeys against CD and that the protection mechanisms may include downregulation of C. septicum-induced inflammation and increased CD4+ and CD8+ cellular activation.
Collapse
Affiliation(s)
- Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Abigail Armwood
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jennifer Holmes
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anil J. Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, Raleigh, North Carolina, United States of America
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
Boone AC, Kulkarni RR, Cortes AL, Gaghan C, Mohammed J, Villalobos T, Esandi J, Gimeno IM. Evaluation of Adjuvant Effect of Cytosine-Guanosine-Oligodeoxynucleotide in Meat-Type Chickens Coadministered In Ovo with Herpesvirus of Turkey Vaccine. Viral Immunol 2024; 37:89-100. [PMID: 38301195 DOI: 10.1089/vim.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 μg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Javid Mohammed
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | | | - Javier Esandi
- Zoetis-Global Biodevice, Durham, North Carolina, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Criollo V, John FA, Gaghan C, Fletcher OJ, Thachil A, Crespo R, Kulkarni RR. Characterization of immune responses and immunopathology in turkeys experimentally infected with clostridial dermatitis-producing strains of Clostridium septicum. Vet Immunol Immunopathol 2024; 269:110717. [PMID: 38340537 DOI: 10.1016/j.vetimm.2024.110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Clostridium septicum is one of the major causative agents of clostridial dermatitis (CD), an emerging disease of turkeys, characterized by sudden deaths and necrotic dermatitis. Despite its economic burden on the poultry industry, the immunopathological changes and pathogen-specific immune responses are poorly characterized. Here, we used three strains of C. septicum, namely Str. A1, Str. B1 and Str. C1, isolated from CD field outbreaks, to experimentally infect turkeys to evaluate local (skin and muscle) and systemic (spleen) pathological and immunological responses. Results showed that while all three strains produced an acute disease, Str. A1 and B1 caused significantly higher mortality when compared to Str. C1. Gross and histopathology evaluation showed that birds infected with Str. A1 and B1 had severe inflammatory, edematous, granulomatous and necrotic lesions in the skin, muscle and spleen, while these lesions produced by Str. C1 were relatively less severe and mostly confined to skin and/or muscle. Immune gene expression in these tissues showed that Str. B1-infected birds had significantly higher expression of interleukin (IL)-1β, IL-6 and interferon (IFN)γ genes compared to uninfected control, suggesting a robust inflammatory response both locally as well as systemically. The transcription of IL-1β and IFNγ in the muscle or spleen of Str. A1-infected birds and IL-1β in the skin of Str. C1-infected group was also significantly higher than control. Additionally, Str. A1 or B1-infected groups also had significantly higher IL-4 transcription in these tissues, while birds infected with all three strains developed C. septicum-specific serum antibodies. Furthermore, splenic cellular immunophenotyping in the infected turkeys showed a marked reduction in CD4+ cells. Collectively, it can be inferred that host responses against C. septicum involve an acute inflammatory response along with antibody production and that the disease severity seem to depend on the strain of C. septicum involved in CD in turkeys.
Collapse
Affiliation(s)
- Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Anil Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States.
| |
Collapse
|
5
|
Kulkarni RR, Gaghan C, Mohammed J, Sharif S, Taha-Abdelaziz K. Cellular Immune Responses in Lymphoid Tissues of Broiler Chickens Experimentally Infected with Necrotic Enteritis-Producing Clostridium perfringens Strains. Avian Dis 2023; 67:186-196. [PMID: 37556298 DOI: 10.1637/aviandiseases-d-23-00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 08/11/2023]
Abstract
Host cellular responses against Clostridium perfringens (CP), the causative agent of necrotic enteritis (NE) in chickens, are poorly understood. In the present study, we first tested the NE-producing ability of seven netB+ CP strains (CP5, CP18, CP26, CP64, CP67, CP68, and NCNE-1), using an experimental infection model of broiler chickens. Evaluation of intestinal gross lesions showed that all the strains, except CP5, were able to produce NE, while CP26 and CP64 strains produced relatively more severe lesions when compared with other groups. Next, cellular responses in the cecal tonsil (CT), bursa of Fabricius, and spleen were evaluated in chickens infected with strains representing variation in the level of virulence, namely, avirulent CP5, virulent CP18, and a relatively more virulent CP26 strain. Immunophenotyping analysis showed that CT or splenic macrophage frequencies were significantly higher in CP18- and CP26-infected chickens compared with uninfected controls, while the frequencies of γδ T-cells and B-cells in the CT of CP26-infected chickens were significantly higher than those in the uninfected, CP5- or CP18-infected groups. The T-cell analysis showed that chickens infected with CP18 and CP26 had a significantly higher number of splenic CD4+ and CD8+ T-cells expressing CD44 and CD28 activation molecules, while CP26-infected chickens also had significantly increased CT frequency of these activated CD4+ and CD8+ T-cells when compared with uninfected or CP5-infected groups. Collectively, our findings suggested that cellular responses, including activation of T-cells, are selectively induced against virulent CP strains and that the NE-producing characteristics of this pathogen may influence the outcome of immunity to NE.
Collapse
Affiliation(s)
- Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607,
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607
| | - Javid Mohammed
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607
- Department of Immunology Duke University School of Medicine Durham NC 27710
| | - Shayan Sharif
- Department of Pathobiolo Ontario Veterinar Colle e Universit of Guelph Guelph Ontario Canada N1G 2W1
| | | |
Collapse
|
6
|
Kulkarni RR, Gaghan C, Gorrell K, Fletcher OJ. Mucosal and systemic lymphoid immune responses against Clostridium perfringens strains with variable virulence in the production of necrotic enteritis in broiler chickens. Avian Pathol 2023; 52:108-118. [PMID: 36453684 DOI: 10.1080/03079457.2022.2154195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1β gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFβ, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.
Collapse
Affiliation(s)
- Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kaitlin Gorrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Gaghan C, Gorrell K, Taha-Abdelaziz K, Sharif S, Kulkarni RR. Intracloacal Inoculation of Broiler Chickens with Clostridium perfringens Strains: Evaluation of Necrotic Enteritis Disease Development and Lymphoid Immune Responses. Microorganisms 2023; 11:microorganisms11030771. [PMID: 36985344 PMCID: PMC10054439 DOI: 10.3390/microorganisms11030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Necrotic enteritis (NE) is an economically important disease of chickens. We have recently shown that inflammatory responses in chickens inoculated orally with virulent Clostridium perfringens were spatially regulated. Here, we used previously virulence-characterized netB+ C. perfringens strains, avirulent CP5 and virulent CP18 and CP26, to assess the severity of NE and immune responses in broiler chickens when inoculated intracloacally. The results showed that CP18- and CP26-infected birds had a reduced weight gain and developed milder/less severe NE lesions, as determined by the gross lesions scores, suggesting a subclinical-grade infection. Gene expression analysis in infected birds revealed three statistically significant observations compared to uninfected-control: (1) Increased expression of anti-inflammatory/immunoregulatory interleukin (IL)-10/transforming growth factor (TGF)β in cecal tonsil (CT) and bursa of Fabricius in the CP18/CP26-infected groups. (2) Increased CT transcription of pro-inflammatory IL-1β, IL-6 and interferon (IFN)γ and decreased Harderian gland (HG) expression of IFNγ in the CP18/CP26-infected birds. (3) Increased HG or bursal expression of IL-4 and IL-13 in CP5-infected birds. Collectively, intracloacal C. perfringens inoculation seems to induce a highly regulated inflammatory response in the CT and other mucosal lymphoid organs and an intracloacal infection model may be useful in evaluating immune responses in chickens with subclinical NE.
Collapse
Affiliation(s)
- Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Kaitlin Gorrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-513-6277
| |
Collapse
|
8
|
Criollo V, Gaghan C, John F, Orozco E, Thachil A, Crespo R, Kulkarni RR. Immune Response Evaluation in Commercial Turkeys Affected with Clostridial Dermatitis. Avian Dis 2023; 67:80-88. [PMID: 37140115 DOI: 10.1637/aviandiseases-d-22-00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
Clostridial dermatitis (CD), caused by Clostridium septicum and Clostridium perfringens, is an economically important emerging disease of turkeys characterized by sudden deaths and necrotic dermatitis. Immune responses in CD-affected commercial turkeys are poorly understood. In the present study, C. septicum was isolated from CD-affected commercial turkeys during a recent outbreak, and the tissues (skin, muscle, and spleen) were collected and analyzed for immune gene expression, along with samples from clinically healthy birds. The results showed that CD-affected turkeys had significantly higher levels of IL-1β, IL-6, IFNγ, and iNOS transcripts in the skin, muscle, and spleen tissues compared to healthy birds. Affected turkeys also had a significantly elevated transcription of toll-like receptor (TLR21) gene in the skin and spleen tissues, suggesting a role for this receptor in the immune recognition. The expression of IL-4 and IL-13 genes in the spleen and muscle was also significantly higher in the affected birds. Additional birds from the same affected and healthy farms examined for serology revealed that the CD-affected turkeys had significantly higher levels of serum IgM and IgY antibodies. Furthermore, in vitro stimulation of MQ-NCSU macrophages with C. septicum led to a significant transcriptional upregulation of IL-1β and IFNγ genes, while the IL-10 gene expression was downregulated. The surface expression of MHC-II protein and cellular production of nitric oxide were also significantly increased in the C. septicum-stimulated macrophages, indicating cellular activation. Collectively, our findings suggest that the host responses in CD-affected turkeys involve a robust inflammatory response as well as a response mediated by IL4/IL-13 cytokines that may aid in antibody-mediated immunity.
Collapse
Affiliation(s)
- Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Feba John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Eric Orozco
- Butterball LLC, P.O. Box 10009, Goldsboro, NC 27532
| | - Anil Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, 4400 Reedy Creek Road, Raleigh, NC 27607
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| |
Collapse
|
9
|
Boone AC, Kulkarni RR, Cortes AL, Villalobos T, Esandi J, Gimeno IM. In ovo HVT vaccination enhances cellular responses at hatch and addition of poly I:C offers minimal adjuvant effects. Vaccine 2023; 41:2514-2523. [PMID: 36894394 DOI: 10.1016/j.vaccine.2023.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 μg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 μg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States; Experimental Pathology Laboratories Inc, 615 Davis Drive Ste. 500, Durham, NC 27713, United States.
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | | | - Javier Esandi
- Zoetis-Global Biodevice, 1040 Swabia Ct, Durham, NC 27703, United States.
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| |
Collapse
|
10
|
Gaghan C, Browning M, Cortes AL, Gimeno IM, Kulkarni RR. Effect of CpG-Oligonucleotide in Enhancing Recombinant Herpes Virus of Turkey-Laryngotracheitis Vaccine-Induced Immune Responses in One-Day-Old Broiler Chickens. Vaccines (Basel) 2023; 11:vaccines11020294. [PMID: 36851171 PMCID: PMC9965839 DOI: 10.3390/vaccines11020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 μg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1β, and lung IFNγ genes, the IL-1β gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10μg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life.
Collapse
Affiliation(s)
| | | | | | - Isabel M. Gimeno
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| | - Raveendra R. Kulkarni
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| |
Collapse
|