1
|
Carlucci M, Savoia MA, Lucchese PG, Fanelli V, Mascio I, Aurelio FL, Miazzi MM, Pacifico A, Montemurro C, Nigro F. Behavior of Olive Genotypes Against Quick Decline Syndrome (QDS) Caused by Xylella fastidiosa subsp. pauca in Apulia. PLANTS (BASEL, SWITZERLAND) 2025; 14:157. [PMID: 39861511 PMCID: PMC11769438 DOI: 10.3390/plants14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Xylella fastidiosa subsp. pauca (Xfp), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load. These genotypes, which survived in heavily infected areas, showed varied responses to Xfp; some maintained low symptom severity with minimal bacterial presence (high or undetectable Cq values), while others exhibited increased bacterial loads yet remained asymptomatic or showed limited canopy desiccation. SSR markers were used to investigate the genetic relationships among these genotypes and other widespread Mediterranean cultivars, showing genetic similarity with the resistant ones such as the Albanian Kalinjot and the Greek Leucocarpa, as well as with local Apulian cultivars, highlighting the potential of local and Mediterranean olive germplasm for Xfp resistance. This study integrates phenotypic responses with genetic knowledge to support the development of conservation strategies that will enhance the genetic diversity of Apulian olive cultivars. In addition, by focusing on the resilience of the different olive genotypes, this research aims to protect the traditional cultivars from the emerging threats, thus preserving the ecological and cultural heritage of the olive biodiversity of the Mediterranean region.
Collapse
Affiliation(s)
- Mariangela Carlucci
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Pompea Gabriella Lucchese
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Francesco Luigi Aurelio
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Andrea Pacifico
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
- Spin Off Sinagri s.r.l., University of Bari Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| |
Collapse
|
2
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Tatulli G, Baldassarre F, Schiavi D, Tacconi S, Cognigni F, Costantini F, Balestra GM, Dini L, Pucci N, Rossi M, Scala V, Ciccarella G, Loreti S. Chitosan-Coated Fosetyl-Al Nanocrystals' Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:1466-1479. [PMID: 38700944 DOI: 10.1094/phyto-04-24-0144-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, Lyon, France
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesca Costantini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, p.le A. Moro 5, 00185, Rome, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l. Via S. Camillo Delellis Snc 01100 Viterbo, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| |
Collapse
|
4
|
Serio F, Imbriani G, Girelli CR, Miglietta PP, Scortichini M, Fanizzi FP. A Decade after the Outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:1433. [PMID: 38891241 PMCID: PMC11175074 DOI: 10.3390/plants13111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In 2013, an outbreak of Xylella fastidiosa (Xf) was identified for the first time in Europe, in the extreme south of Italy (Apulia, Salento territory). The locally identified subspecies pauca turned out to be lethal for olive trees, starting an unprecedented phytosanitary emergency for one of the most iconic cultivations of the Mediterranean area. Xf pauca (Xfp) is responsible for a severe disease, the olive quick decline syndrome (OQDS), spreading epidemically and with dramatic impact on the agriculture, the landscape, the tourism and the cultural heritage of this region. The bacterium, transmitted by insects that feed on xylem sap, causes rapid wilting in olive trees due to biofilm formation, which obstructs the plant xylematic vessels. The aim of this review is to perform a thorough analysis that offers a general overview of the published work, from 2013 to December 2023, related to the Xfp outbreak in Apulia. This latter hereto has killed millions of olive trees and left a ghostly landscape with more than 8000 square kilometers of infected territory, that is 40% of the region. The majority of the research efforts made to date to combat Xfp in olive plants are listed in the present review, starting with the early attempts to identify the bacterium, the investigations to pinpoint and possibly control the vector, the assessment of specific diagnostic techniques and the pioneered therapeutic approaches. Interestingly, according to the general set criteria for the preliminary examination of the accessible scientific literature related to the Xfp outbreak on Apulian olive trees, fewer than 300 papers can be found over the last decade. Most of them essentially emphasize the importance of developing diagnostic tools that can identify the disease early, even when infected plants are still asymptomatic, in order to reduce the risk of infection for the surrounding plants. On the other hand, in the published work, the diagnostic focus (57%) overwhelmingly encompasses all other possible investigation goals such as vectors, impacts and possible treatments. Notably, between 2013 and 2023, only 6.3% of the literature reports addressing the topic of Xfp in Apulia were concerned with the application of specific treatments against the bacterium. Among them, those reporting field trials on infected plants, including simple pruning indications, were further limited (6%).
Collapse
Affiliation(s)
- Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Pier Paolo Miglietta
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| |
Collapse
|
5
|
Vergine M, Vita F, Casati P, Passera A, Ricciardi L, Pavan S, Aprile A, Sabella E, De Bellis L, Luvisi A. Characterization of the olive endophytic community in genotypes displaying a contrasting response to Xylella fastidiosa. BMC PLANT BIOLOGY 2024; 24:337. [PMID: 38664617 PMCID: PMC11044560 DOI: 10.1186/s12870-024-04980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Collapse
Affiliation(s)
- Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
6
|
Sabella E, Buja I, Negro C, Vergine M, Cherubini P, Pavan S, Maruccio G, De Bellis L, Luvisi A. The Significance of Xylem Structure and Its Chemical Components in Certain Olive Tree Genotypes with Tolerance to Xylella fastidiosa Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:930. [PMID: 38611461 PMCID: PMC11013585 DOI: 10.3390/plants13070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Olive quick decline syndrome (OQDS) is a devastating plant disease caused by the bacterium Xylella fastidiosa (Xf). Exploratory missions in the Salento area led to the identification of putatively Xf-resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in host tissues (by the fluorescent in situ hybridization technique-FISH) and the presence of secondary metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood. The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless of hosts' genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant increase in compounds like salicylic acid, known as a signal molecule which mediates host responses upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry together with structural and chemical defenses are among the mechanisms operating to control Xf infection and may represent a common resistance trait among different olive genotypes.
Collapse
Affiliation(s)
- Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Ilaria Buja
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni 165, 73100 Lecce, Italy; (E.S.); (I.B.); (C.N.); (L.D.B.); (A.L.)
| |
Collapse
|
7
|
Theologidis I, Karamitros T, Vichou AE, Kizis D. Nanopore-Sequencing Metabarcoding for Identification of Phytopathogenic and Endophytic Fungi in Olive ( Olea europaea) Twigs. J Fungi (Basel) 2023; 9:1119. [PMID: 37998924 PMCID: PMC10672464 DOI: 10.3390/jof9111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Metabarcoding approaches for the identification of plant disease pathogens and characterization of plant microbial populations constitute a rapidly evolving research field. Fungal plant diseases are of major phytopathological concern; thus, the development of metabarcoding approaches for the detection of phytopathogenic fungi is becoming increasingly imperative in the context of plant disease prognosis. We developed a multiplex metabarcoding method for the identification of fungal phytopathogens and endophytes in olive young shoots, using the MinION sequencing platform (Oxford Nanopore Technologies). Selected fungal-specific primers were used to amplify three different genomic DNA loci (ITS, beta-tubulin, and 28S LSU) originating from olive twigs. A multiplex metabarcoding approach was initially evaluated using healthy olive twigs, and further assessed with naturally infected olive twig samples. Bioinformatic analysis of basecalled reads was carried out using MinKNOW, BLAST+ and R programming, and results were also evaluated using the BugSeq cloud platform. Data analysis highlighted the approaches based on ITS and their combination with beta-tubulin as the most informative ones according to diversity estimations. Subsequent implementation of the method on symptomatic samples identified major olive pathogens and endophytes including genera such as Cladosporium, Didymosphaeria, Paraconiothyrium, Penicillium, Phoma, Verticillium, and others.
Collapse
Affiliation(s)
- Ioannis Theologidis
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control & Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Attica, Greece
| | - Aikaterini-Eleni Vichou
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Dimosthenis Kizis
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| |
Collapse
|
8
|
Cardoni M, Mercado-Blanco J. Confronting stresses affecting olive cultivation from the holobiont perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1261754. [PMID: 38023867 PMCID: PMC10661416 DOI: 10.3389/fpls.2023.1261754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The holobiont concept has revolutionized our understanding of plant-associated microbiomes and their significance for the development, fitness, growth and resilience of their host plants. The olive tree holds an iconic status within the Mediterranean Basin. Innovative changes introduced in olive cropping systems, driven by the increasing demand of its derived products, are not only modifying the traditional landscape of this relevant commodity but may also imply that either traditional or emerging stresses can affect it in ways yet to be thoroughly investigated. Incomplete information is currently available about the impact of abiotic and biotic pressures on the olive holobiont, what includes the specific features of its associated microbiome in relation to the host's structural, chemical, genetic and physiological traits. This comprehensive review consolidates the existing knowledge about stress factors affecting olive cultivation and compiles the information available of the microbiota associated with different olive tissues and organs. We aim to offer, based on the existing evidence, an insightful perspective of diverse stressing factors that may disturb the structure, composition and network interactions of the olive-associated microbial communities, underscoring the importance to adopt a more holistic methodology. The identification of knowledge gaps emphasizes the need for multilevel research approaches and to consider the holobiont conceptual framework in future investigations. By doing so, more powerful tools to promote olive's health, productivity and resilience can be envisaged. These tools may assist in the designing of more sustainable agronomic practices and novel breeding strategies to effectively face evolving environmental challenges and the growing demand of high quality food products.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
9
|
Picciotti U, Valverde-Urrea M, Garganese F, Lopez-Moya F, Foubelo F, Porcelli F, Lopez-Llorca LV. Brindley's Glands Volatilome of the Predator Zelus renardii Interacting with Xylella Vectors. INSECTS 2023; 14:520. [PMID: 37367336 DOI: 10.3390/insects14060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Alien species must adapt to new biogeographical regions to acclimatise and survive. We consider a species to have become invasive if it establishes negative interactions after acclimatisation. Xylella fastidiosa Wells, Raju et al., 1986 (XF) represents Italy's and Europe's most recent biological invasion. In Apulia (southern Italy), the XF-encountered Philaenus spumarius L. 1758 (Spittlebugs, Hemiptera: Auchenorrhyncha) can acquire and transmit the bacterium to Olea europaea L., 1753. The management of XF invasion involves various transmission control means, including inundative biological control using Zelus renardii (ZR) Kolenati, 1856 (Hemiptera: Reduviidae). ZR is an alien stenophagous predator of Xylella vectors, recently entered from the Nearctic and acclimated in Europe. Zelus spp. can secrete semiochemicals during interactions with conspecifics and prey, including volatile organic compounds (VOCs) that elicit conspecific defence behavioural responses. Our study describes ZR Brindley's glands, present in males and females of ZR, which can produce semiochemicals, eliciting conspecific behavioural responses. We scrutinised ZR secretion alone or interacting with P. spumarius. The ZR volatilome includes 2-methyl-propanoic acid, 2-methyl-butanoic acid, and 3-methyl-1-butanol, which are consistent for Z. renardii alone. Olfactometric tests show that these three VOCs, individually tested, generate an avoidance (alarm) response in Z. renardii. 3-Methyl-1-butanol elicited the highest significant repellence, followed by 2-methyl-butanoic and 2-methyl-propanoic acids. The concentrations of the VOCs of ZR decrease during the interaction with P. spumarius. We discuss the potential effects of VOC secretions on the interaction of Z. renardii with P. spumarius.
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (DiSSPA), University of Bari Aldo Moro, 70125 Bari, Italy
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03690 Alicante, Spain
| | - Miguel Valverde-Urrea
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03690 Alicante, Spain
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (DiSSPA), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Federico Lopez-Moya
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03690 Alicante, Spain
| | - Francisco Foubelo
- Department of Organic Chemistry, Institute of Organic Synthesis, University of Alicante, 03690 Alicante, Spain
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (DiSSPA), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Luis Vicente Lopez-Llorca
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
10
|
Hereira-Pacheco SE, Estrada-Torres A, Dendooven L, Navarro-Noya YE. Shifts in root-associated fungal communities under drought conditions in Ricinus communis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
11
|
Gharsallah H, Ksentini I, Frikha-Gargouri O, Hadj Taieb K, Ben Gharsa H, Schuster C, Chatti-Kolsi A, Triki MA, Ksantini M, Leclerque A. Exploring Bacterial and Fungal Biodiversity in Eight Mediterranean Olive Orchards ( Olea europaea L.) in Tunisia. Microorganisms 2023; 11:microorganisms11041086. [PMID: 37110509 PMCID: PMC10145363 DOI: 10.3390/microorganisms11041086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
A wide array of bacteria and fungi are known for their association with pests that impact the health of the olive tree. The latter presents the most economically important cultivation in Tunisia. The microbial diversity associated with olive orchards in Tunisia remains unknown and undetermined. This study investigated microbial diversity to elucidate the microbial interactions that lead to olive disease, and the bio-prospects for potential microbial biocontrol agents associated with insect pests of economic relevance for olive cultivation in the Mediterranean area. Bacterial and fungal isolation was made from soil and olive tree pests. A total of 215 bacterial and fungal strains were randomly isolated from eight different biotopes situated in Sfax (Tunisia), with different management practices. 16S rRNA and ITS gene sequencing were used to identify the microbial community. The majority of the isolated bacteria, Staphylococcus, Bacillus, Alcaligenes, and Providencia, are typical of the olive ecosystem and the most common fungi are Penicillium, Aspergillus, and Cladosporium. The different olive orchards depicted distinct communities, and exhibited dissimilar amounts of bacteria and fungi with distinct ecological functions that could be considered as promising resources in biological control.
Collapse
Affiliation(s)
- Houda Gharsallah
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Ines Ksentini
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Karama Hadj Taieb
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Haifa Ben Gharsa
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Christina Schuster
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Amel Chatti-Kolsi
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Mohamed Ali Triki
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Mohieddine Ksantini
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Andreas Leclerque
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
13
|
Is Plant Microbiota a Driver of Resistance to the Vector-Borne Pathogen Xylella fastidiosa? Pathogens 2022; 11:pathogens11121492. [PMID: 36558826 PMCID: PMC9782604 DOI: 10.3390/pathogens11121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Xylella fastidiosa is a vector-borne plant vascular bacterial pathogen that causes several economically important diseases, including Pierce's disease (PD) in grapevine and olive quick decline syndrome (OQDS) in olive trees, among others [...].
Collapse
|
14
|
Hladnik M, Unković N, Janakiev T, Grbić ML, Arbeiter AB, Stanković S, Janaćković P, Gavrilović M, Rančić D, Bandelj D, Dimkić I. An Insight into an Olive Scab on the "Istrska Belica" Variety: Host-Pathogen Interactions and Phyllosphere Mycobiome. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02131-4. [PMID: 36307735 DOI: 10.1007/s00248-022-02131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The olive tree is one of the most important agricultural plants, affected by several pests and diseases that cause a severe decline in health status leading to crop losses. Olive leaf spot disease caused by the fungus Venturia oleaginea can result in complete tree defoliation and consequently lower yield. The aim of the study was to obtain new knowledge related to plant-pathogen interaction, reveal mechanisms of plant defense against the pathogen, and characterize fungal phyllosphere communities on infected and symptomless leaves that could contribute to the development of new plant breeding strategies and identification of novel biocontrol agents. The highly susceptible olive variety "Istrska Belica"' was selected for a detailed evaluation. Microscopy analyses led to the observation of raphides in the mesophyll and parenchyma cells of infected leaves and gave new insight into the complex V. oleaginea pathogenesis. Culturable and total phyllosphere mycobiota, obtained via metabarcoding approach, highlighted Didymella, Aureobasidium, Cladosporium, and Alternaria species as overlapping between infected and symptomless leaves. Only Venturia and Erythrobasidium in infected and Cladosporium in symptomless samples with higher abundance showed statistically significant differences. Based on the ecological role of identified taxa, it can be suggested that Cladosporium species might have potential antagonistic effects on V. oleaginea.
Collapse
Affiliation(s)
- Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Tamara Janakiev
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | | | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Peđa Janaćković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Milan Gavrilović
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Dragana Rančić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Zemun, Serbia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia.
| |
Collapse
|
15
|
Vita F, Sabbatini L, Sillo F, Ghignone S, Vergine M, Guidi Nissim W, Fortunato S, Salzano AM, Scaloni A, Luvisi A, Balestrini R, De Bellis L, Mancuso S. Salt stress in olive tree shapes resident endophytic microbiota. FRONTIERS IN PLANT SCIENCE 2022; 13:992395. [PMID: 36247634 PMCID: PMC9556989 DOI: 10.3389/fpls.2022.992395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Olea europaea L. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops. Salt stress represents one current major threats to crop production, including olive tree. In order to overcome this constraint, several cultivars have been evaluated over the years using biochemical and physiological methods to select the most suitable ones for cultivation in harsh environments. Thus the development of novel methodologies have provided useful tools for evaluating the adaptive capacity of cultivars, among which the evaluation of the plant-microbiota ratio, which is important for the maintenance of plant homeostasis. In the present study, four olive tree cultivars (two traditional and two for intensive cultivation) were subjected to saline stress using two concentrations of salt, 100 mM and 200 mM. The effects of stress on diverse cultivars were assessed by using biochemical analyses (i.e., proline, carotenoid and chlorophyll content), showing a cultivar-dependent response. Additionally, the olive tree response to stress was correlated with the leaf endophytic bacterial community. Results of the metabarcoding analyses showed a significant shift in the resident microbiome for plants subjected to moderate salt stress, which did not occur under extreme salt-stress conditions. In the whole, these results showed that the integration of stress markers and endophytic community represents a suitable approach to evaluate the adaptation of cultivars to environmental stresses.
Collapse
Affiliation(s)
- Federico Vita
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Leonardo Sabbatini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Stefano Ghignone
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Werther Guidi Nissim
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, National Research Council of Italy, Institute for the Animal Production System in the Mediterranean Environment (CNR-ISPAAM), Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, National Research Council of Italy, Institute for the Animal Production System in the Mediterranean Environment (CNR-ISPAAM), Portici, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
- Fondazione per il futuro delle città (FFC), Florence, Italy
| |
Collapse
|
16
|
Anguita-Maeso M, Ares-Yebra A, Haro C, Román-Écija M, Olivares-García C, Costa J, Marco-Noales E, Ferrer A, Navas-Cortés JA, Landa BB. Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Front Microbiol 2022; 13:866085. [PMID: 35910659 PMCID: PMC9330911 DOI: 10.3389/fmicb.2022.866085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Xylella fastidiosa represents a major threat to important crops worldwide including almond, citrus, grapevine, and olives. Nowadays, there are no efficient control measures for X. fastidiosa, and the use of preventive measures and host resistance represent the most practical disease management strategies. Research on vessel-associated microorganisms is gaining special interest as an innate natural defense of plants to cope against infection by xylem-inhabiting pathogens. The objective of this research has been to characterize, by next-generation sequencing (NGS) analysis, the microbial communities residing in the xylem sap of almond trees affected by almond leaf scorch disease (ALSD) in a recent X. fastidiosa outbreak occurring in Alicante province, Spain. We also determined community composition changes and network associations occurring between xylem-inhabiting microbial communities and X. fastidiosa. For that, a total of 91 trees with or without ALSD symptoms were selected from a total of eight representative orchards located in five municipalities within the X. fastidiosa-demarcated area. X. fastidiosa infection in each tree was verified by quantitative polymerase chain reaction (qPCR) analysis, with 54% of the trees being tested X. fastidiosa-positive. Globally, Xylella (27.4%), Sphingomonas (13.9%), and Hymenobacter (12.7%) were the most abundant bacterial genera, whereas Diplodia (30.18%), a member of the family Didymellaceae (10.7%), and Aureobasidium (9.9%) were the most predominant fungal taxa. Furthermore, principal coordinate analysis (PCoA) of Bray–Curtis and weighted UniFrac distances differentiated almond xylem bacterial communities mainly according to X. fastidiosa infection, in contrast to fungal community structure that was not closely related to the presence of the pathogen. Similar results were obtained when X. fastidiosa reads were removed from the bacterial data set although the effect was less pronounced. Co-occurrence network analysis revealed negative associations among four amplicon sequence variants (ASVs) assigned to X. fastidiosa with different bacterial ASVs belonging to 1174-901-12, Abditibacterium, Sphingomonas, Methylobacterium–Methylorubrum, Modestobacter, Xylophilus, and a non-identified member of the family Solirubrobacteraceae. Determination of the close-fitting associations between xylem-inhabiting microorganisms and X. fastidiosa may help to reveal specific microbial players associated with the suppression of ALSD under high X. fastidiosa inoculum pressure. These identified microorganisms would be good candidates to be tested in planta, to produce almond plants more resilient to X. fastidiosa infection when inoculated by endotherapy, contributing to suppress ALSD.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- *Correspondence: Manuel Anguita-Maeso,
| | - Aitana Ares-Yebra
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Carmen Haro
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Miguel Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Concepción Olivares-García
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Amparo Ferrer
- Servicio de Sanidad Vegetal, Generalitat Valenciana, Valencia, Spain
| | - Juan A. Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- Blanca B. Landa,
| |
Collapse
|
17
|
Sillo F, Vergine M, Luvisi A, Calvo A, Petruzzelli G, Balestrini R, Mancuso S, De Bellis L, Vita F. Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Front Microbiol 2022; 13:864434. [PMID: 35651491 PMCID: PMC9149314 DOI: 10.3389/fmicb.2022.864434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023] Open
Abstract
Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Alice Calvo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | | | - Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.,Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Landa BB, Saponari M, Feitosa-Junior OR, Giampetruzzi A, Vieira FJD, Mor E, Robatzek S. Xylella fastidiosa's relationships: the bacterium, the host plants, and the plant microbiome. THE NEW PHYTOLOGIST 2022; 234:1598-1605. [PMID: 35279849 DOI: 10.1111/nph.18089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Xylella fastidiosa is the causal agent of important crop diseases and is transmitted by xylem-sap-feeding insects. The bacterium colonizes xylem vessels and can persist with a commensal or pathogen lifestyle in more than 500 plant species. In the past decade, reports of X. fastidiosa across the globe have dramatically increased its known occurrence. This raises important questions: How does X. fastidiosa interact with the different host plants? How does the bacterium interact with the plant immune system? How does it influence the host's microbiome? We discuss recent strain genetic typing and plant transcriptome and microbiome analyses, which have advanced our understanding of factors that are important for X. fastidiosa plant infection.
Collapse
Affiliation(s)
- Blanca B Landa
- Institute for Sustainable Agriculture, CSIC, Alameda del Obispo S/N, Córdoba, 14004, Spain
| | - Maria Saponari
- CNR - Institute for Sustainable Plant Protection (IPSP), Via Amendola 165/A, Bari, 70126, Italy
| | | | - Annalisa Giampetruzzi
- CNR - Institute for Sustainable Plant Protection (IPSP), Via Amendola 165/A, Bari, 70126, Italy
| | - Filipe J D Vieira
- Genetics, LMU Biocentre, Grosshadener Strasse 4, Planegg, 82152, Germany
| | - Eliana Mor
- Genetics, LMU Biocentre, Grosshadener Strasse 4, Planegg, 82152, Germany
| | - Silke Robatzek
- Genetics, LMU Biocentre, Grosshadener Strasse 4, Planegg, 82152, Germany
| |
Collapse
|
19
|
Popescu SC, Tomaso-Peterson M, Wilkerson T, Bronzato-Badial A, Wesser U, Popescu GV. Metagenomic Analyses of the Soybean Root Mycobiome and Microbiome Reveal Signatures of the Healthy and Diseased Plants Affected by Taproot Decline. Microorganisms 2022; 10:856. [PMID: 35630301 PMCID: PMC9143508 DOI: 10.3390/microorganisms10050856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Invading pathogens interact with plant-associated microbial communities, which can be altered under the pressure of pathogen infection. Limited information exists on plant-microbe interactions occurring during natural outbreaks in agricultural fields. Taproot decline (TRD) of soybean is an emerging disease caused by Xylaria necrophora. TRD disease occurrence and yield loss associated with TRD are outstanding issues in soybean production. We applied nuclear ribosomal DNA Internal Transcribed Spacers and 16S rRNA gene taxonomic marker sequencing to define the composition of the fungal and bacterial communities associated with healthy and diseased soybean roots collected from the Mississippi Delta. The plant compartment was a significant factor regulating taxonomic diversity, followed by the disease status of the plant. TRD impacted the root endophytes, causing imbalances; at the intermediate and advanced stages of TRD, X. necrophora decreased mycobiome diversity, whereas it increased microbiome richness. Networks of significant co-occurrence and co-exclusion relationships revealed direct and indirect associations among taxa and identified hubs with potential roles in assembling healthy and TRD-affected soybean biomes. These studies advance the understanding of host-microbe interactions in TRD and the part of biomes in plant health and disease.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (M.T.-P.); (T.W.); (A.B.-B.); (U.W.)
| | - Maria Tomaso-Peterson
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (M.T.-P.); (T.W.); (A.B.-B.); (U.W.)
| | - Teresa Wilkerson
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (M.T.-P.); (T.W.); (A.B.-B.); (U.W.)
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA
| | - Aline Bronzato-Badial
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (M.T.-P.); (T.W.); (A.B.-B.); (U.W.)
| | - Uyen Wesser
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (M.T.-P.); (T.W.); (A.B.-B.); (U.W.)
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
20
|
Malacrinò A, Mosca S, Li Destri Nicosia MG, Agosteo GE, Schena L. Plant Genotype Shapes the Bacterial Microbiome of Fruits, Leaves, and Soil in Olive Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050613. [PMID: 35270082 PMCID: PMC8912820 DOI: 10.3390/plants11050613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/02/2023]
Abstract
The plant microbiome plays an important role in plant biology, ecology, and evolution. While recent technological developments enabled the characterization of plant-associated microbiota, we still know little about the impact of different biotic and abiotic factors on the diversity and structures of these microbial communities. Here, we characterized the structure of bacterial microbiomes of fruits, leaves, and soil collected from two olive genotypes (Sinopolese and Ottobratica), testing the hypothesis that plant genotype would impact each compartment with a different magnitude. Results show that plant genotype differently influenced the diversity, structure, composition, and co-occurence network at each compartment (fruits, leaves, soil), with a stronger effect on fruits compared to leaves and soil. Thus, plant genotype seems to be an important factor in shaping the structure of plant microbiomes in our system, and can be further explored to gain functional insights leading to improvements in plant productivity, nutrition, and defenses.
Collapse
|
21
|
Piombo E, Dubey M. Computational Analysis of HTS Data and Its Application in Plant Pathology. Methods Mol Biol 2022; 2536:275-307. [PMID: 35819611 DOI: 10.1007/978-1-0716-2517-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput sequencing is a basic tool of biological research, and it is extensively used in plant pathology projects. Here, we describe how to handle data coming from a variety of sequencing experiments, focusing on the analysis of Illumina reads. We describe how to perform genome assembly and annotation with DNA reads, correctly analyze RNA-seq data to discover differentially expressed genes, handle amplicon sequencing data from microbial communities, and utilize small RNA sequencing data to predict miRNA sequences and their putative targets.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
Fernández-González AJ, Ramírez-Tejero JA, Nevado-Berzosa MP, Luque F, Fernández-López M, Mercado-Blanco J. Coupling the endophytic microbiome with the host transcriptome in olive roots. Comput Struct Biotechnol J 2021; 19:4777-4789. [PMID: 34504670 PMCID: PMC8411203 DOI: 10.1016/j.csbj.2021.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The connection between olive genetic responses to environmental and agro-climatic conditions and the composition, structure and functioning of host-associated, belowground microbiota has never been studied under the holobiont conceptual framework. Two groups of cultivars growing under the same environmental, pedological and agronomic conditions, and showing highest (AH) and lowest (AL) Actinophytocola relative abundances, were earlier identified. We aimed now to: i) compare the root transcriptome profiles of these two groups harboring significantly different relative abundances in the above-mentioned bacterial genus; ii) examine their rhizosphere and root-endosphere microbiota co-occurrence networks; and iii) connect the root host transcriptome pattern to the composition of the root microbial communities by correlation and co-occurrence network analyses. Significant differences in olive gene expression were found between the two groups. Co-occurrence networks of the root endosphere microbiota were clearly different as well. Pearson's correlation analysis enabled a first portray of the interaction occurring between the root host transcriptome and the endophytic community. To further identify keystone operational taxonomic units (OTUs) and genes, subsequent co-occurrence network analysis showed significant interactions between 32 differentially expressed genes (DEGs) and 19 OTUs. Overall, negative correlation was detected between all upregulated genes in the AH group and all OTUs except of Actinophytocola. While two groups of olive cultivars grown under the same conditions showed significantly different microbial profiles, the most remarkable finding was to unveil a strong correlation between these profiles and the differential gene expression pattern of each group. In conclusion, this study shows a holistic view of the plant-microbiome communication.
Collapse
Affiliation(s)
- Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Jorge A. Ramírez-Tejero
- Departamento de Biología Experimental, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén 23071, Spain
| | - María Patricia Nevado-Berzosa
- Departamento de Biología Experimental, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén 23071, Spain
| | - Francisco Luque
- Departamento de Biología Experimental, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén 23071, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
23
|
Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021; 9:microorganisms9081771. [PMID: 34442850 PMCID: PMC8397937 DOI: 10.3390/microorganisms9081771] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.
Collapse
|
24
|
Greco D, Aprile A, De Bellis L, Luvisi A. Diseases Caused by Xylella fastidiosa in Prunus Genus: An Overview of the Research on an Increasingly Widespread Pathogen. FRONTIERS IN PLANT SCIENCE 2021; 12:712452. [PMID: 34484274 PMCID: PMC8414816 DOI: 10.3389/fpls.2021.712452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Cultivated plants belonging to the genus Prunus are globally widespread and for some countries, are economically important crops; and they play a key role in the composition of a landscape. Xylella fastidiosa is a key threat to plant health, and several Prunus species are heavily stressed by this pathogen, such as almond, peach, and plum; many strain types of different subspecies can cause severe diseases. This review highlights different approaches to managing epidemic events related to X. fastidiosa in stone fruit plants. In fact, in most new European and Asian outbreaks, almond is the main and very common host and peach, plum, apricot, and cherry are widespread and profitable crops for the involved areas. Various diseases associated with stone fruit plants show different degrees of severity in relation to cultivar, although investigations are still limited. The development and selection of tolerant and resistant cultivars and the study of resistance mechanisms activated by the plant against X. fastidiosa infections seem to be the best way to find long-term solutions aimed at making affected areas recover. In addition, observations in orchards severely affected by the disease can be essential for collecting tolerant or resistant materials within the local germplasm. In areas where the bacterium is not yet present, a qualitative-quantitative study on entomofauna is also important for the timely identification of potential vectors and for developing effective control strategies.
Collapse
|
25
|
Olive Cultivars Susceptible or Tolerant to Xylella fastidiosa Subsp. pauca Exhibit Mid-Term Different Metabolomes upon Natural Infection or a Curative Treatment. PLANTS 2021; 10:plants10040772. [PMID: 33920775 PMCID: PMC8103516 DOI: 10.3390/plants10040772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Xylella fastidiosa subsp. pauca, is a bacterial phytopathogen associated with the "olive quick decline syndrome" (OQDS) causing severe economic losses to olive groves in Salento area (Apulia, Italy). In a previous work, we analyzed by 1H-NMR the metabolic pattern of naturally infected Ogliarola salentina and Cellina di Nardò susceptible cultivars untreated and treated with a zinc-copper citric acid biocomplex and we observed the treatment related variation of the disease biomarker quinic acid. In this study, we focused also on the Leccino cultivar, known to exhibit tolerance to the disease progression. The 1H-NMR-based metabolomic approach was applied with the aim to characterize the overall metabolism of tolerant Leccino in comparison with the susceptible cultivars Ogliarola salentina and Cellina di Nardò under periodic mid-term treatment. In particular, we studied the leaf extract molecular patterns of naturally infected trees untreated and treated with the biocomplex. The metabolic Leccino profiles were analyzed for the first time and compared with those exhibited by the susceptible Cellina di Nardò and Ogliarola salentina cultivars. The study highlighted a specificity in the metabolic response of the tolerant Leccino compared to susceptible cultivars. These differences provide useful information to describe the defensive mechanisms underlying the change of metabolites as a response to the infection, and the occurrence of different levels of disease, season and treatment effects for olive cultivars.
Collapse
|
26
|
Haro C, Anguita-Maeso M, Metsis M, Navas-Cortés JA, Landa BB. Evaluation of Established Methods for DNA Extraction and Primer Pairs Targeting 16S rRNA Gene for Bacterial Microbiota Profiling of Olive Xylem Sap. FRONTIERS IN PLANT SCIENCE 2021; 12:640829. [PMID: 33777075 PMCID: PMC7994608 DOI: 10.3389/fpls.2021.640829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Next-generation sequencing has revolutionized our ability to investigate the microbiota composition of diverse and complex environments. However, a number of factors can affect the accuracy of microbial community assessment, such as the DNA extraction method, the hypervariable region of 16S rRNA gene targeted, or the PCR primers used for amplification. The aim of this study was to assess the influence of commercially available DNA extraction kits and different primer pairs to provide a non-biased vision of the composition of bacterial communities present in olive xylem sap. For that purpose, branches from "Picual" and "Arbequina" olive cultivars were used for xylem sap extraction using a Scholander chamber device. The DNA extraction protocol significantly affected xylem sap bacterial community assessment. That resulted in significant differences in alpha (Richness) and beta diversity (UniFrac distances) metrics among DNA extraction protocols, with the 12 DNA extraction kits evaluated being clustered in four groups behaving differently. Although the core number of taxa detected by all DNA extraction kits included four phyla, seven classes, 12 orders, 16 or 21 families, and 12 or 14 genera when using the Greengenes or Silva database for taxonomic assignment, respectively, some taxa, particularly those identified at low frequency, were detected by some DNA extraction kits only. The most accurate depiction of a bacterial mock community artificially inoculated on sap samples was generated when using the PowerPlant DNA extraction kit, the combination of 799F/1193R primers amplifying the hypervariable V5-V7 region, and the Silva 132 database for taxonomic assignment. The DESeq2 analysis displayed significant differences among genera abundance between the different PCR primer pairs tested. Thus, Enterobacter, Granulicatella, Prevotella, and Brevibacterium presented a significant higher abundance in all PCR protocols when compared with primer pair 799F/1193R, while the opposite was true for Pseudomonas and Pectobacterium. The methodological approach followed in this study can be useful to optimize plant-associated microbiome analysis, especially when exploring new plant niches. Some of the DNA extraction kits and PCR primers selected in this study will contribute to better characterize bacterial communities inhabiting the xylem sap of olives or other woody crop species.
Collapse
Affiliation(s)
- Carmen Haro
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Manuel Anguita-Maeso
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | | | - Juan A. Navas-Cortés
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
27
|
Endophytic fungal community structure in olive orchards with high and low incidence of olive anthracnose. Sci Rep 2021; 11:689. [PMID: 33436767 PMCID: PMC7804420 DOI: 10.1038/s41598-020-79962-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Fungal endophytes have been increasingly recognized to promote host plant protection to pathogens, but knowledge of the multiple effects that they could have in crop diseases is still scarce. This work attempts to understand the role of fungal endophytes in crop diseases, specifically in reducing disease development and interfering on lifestyle transition of the pathogen. To accomplish this, the endophytic fungal community of reproductive organs of olive tree from two orchards showing different levels of anthracnose incidence, a major disease of olive fruits, was characterized and compared between them. The two orchards showed distinct endophytic communities, differing in species richness, abundance and composition, with highest isolation rates and richness of endophytes in the orchard with low anthracnose incidence. These differences among orchards were greater on fruits than on flowers, suggesting that these changes in endophytic fungal composition may influence the lifestyle shifts in pathogen (from latent to pathogen). A number of fungal taxa were found to be positively associated to one of the two orchards. The fungal endophytes best correlated with high incidence of anthracnose are pathogens, while endophytes-associated to low anthracnose incidence are described to protect plants. Altogether, the results suggest varying pathogen-endophyte interactions among the two orchards.
Collapse
|
28
|
Illuminating Olea europaea L. endophyte fungal community. Microbiol Res 2021; 245:126693. [PMID: 33482404 DOI: 10.1016/j.micres.2020.126693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
A wide array of fungal endophytes is known to inhabit plant tissues and were recently recognized as essential for plant health. A better description of the scarcely known endophyte microbiota in olive tree phyllosphere is the first step for elucidating the microbial interactions that lead to olive disease establishment. In this work, the fungal endophytic community of the phyllosphere of different olive tree cultivars (Cobrançosa, Galega vulgar, Madural, Picual, Verdeal Transmontana) is revealed by using a metabarcoding strategy targeting ITS1 barcode. A total of 460 OTUs were obtained, increasing the broad view of fungal endophytes inhabiting the olive tree phyllosphere, in particular yeast endophytes. New endophytes were persistently found in all cultivar tissues. Different olive tree cultivars depicted distinct endophyte communities. Olive cultivars exhibited dissimilar amounts of fungi with distinct ecological functions, which could explain at least in part their differential susceptibility/tolerance to olive diseases.
Collapse
|
29
|
Anguita-Maeso M, Trapero-Casas JL, Olivares-García C, Ruano-Rosa D, Palomo-Ríos E, Jiménez-Díaz RM, Navas-Cortés JA, Landa BB. Verticillium dahliae Inoculation and in vitro Propagation Modify the Xylem Microbiome and Disease Reaction to Verticillium Wilt in a Wild Olive Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:632689. [PMID: 33747012 PMCID: PMC7966730 DOI: 10.3389/fpls.2021.632689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 05/13/2023]
Abstract
Host resistance is the most practical, long-term, and economically efficient disease control measure for Verticillium wilt in olive caused by the xylem-invading fungus Verticillium dahliae (Vd), and it is at the core of the integrated disease management. Plant's microbiome at the site of infection may have an influence on the host reaction to pathogens; however, the role of xylem microbial communities in the olive resistance to Vd has been overlooked and remains unexplored to date. This research was focused on elucidating whether in vitro olive propagation may alter the diversity and composition of the xylem-inhabiting microbiome and if those changes may modify the resistance response that a wild olive clone shows to the highly virulent defoliating (D) pathotype of Vd. Results indicated that although there were differences in microbial communities among the different propagation methodologies, most substantial changes occurred when plants were inoculated with Vd, regardless of whether the infection process took place, with a significant increase in the diversity of bacterial communities when the pathogen was present in the soil. Furthermore, it was noticeable that olive plants multiplied under in vitro conditions developed a susceptible reaction to D Vd, characterized by severe wilting symptoms and 100% vascular infection. Moreover, those in vitro propagated plants showed an altered xylem microbiome with a decrease in total OTU numbers as compared to that of plants multiplied under non-aseptic conditions. Overall, 10 keystone bacterial genera were detected in olive xylem regardless of infection by Vd and the propagation procedure of plants (in vitro vs nursery), with Cutibacterium (36.85%), Pseudomonas (20.93%), Anoxybacillus (6.28%), Staphylococcus (4.95%), Methylobacterium-Methylorubrum (3.91%), and Bradyrhizobium (3.54%) being the most abundant. Pseudomonas spp. appeared as the most predominant bacterial group in micropropagated plants and Anoxybacillus appeared as a keystone bacterium in Vd-inoculated plants irrespective of their propagation process. Our results are the first to show a breakdown of resistance to Vd in a wild olive that potentially may be related to a modification of its xylem microbiome and will help to expand our knowledge of the role of indigenous xylem microbiome on host resistance, which can be of use to fight against main vascular diseases of olive.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - José Luis Trapero-Casas
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Concepción Olivares-García
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - David Ruano-Rosa
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Elena Palomo-Ríos
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Department of Botany and Plant Physiology, University of Malaga, Málaga, Spain
| | - Rafael M. Jiménez-Díaz
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
- Agronomy Department, University of Córdoba, Córdoba, Spain
| | - Juan A. Navas-Cortés
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Blanca B. Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
- *Correspondence: Blanca B. Landa,
| |
Collapse
|
30
|
Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. The plant endosphere world - bacterial life within plants. Environ Microbiol 2020; 23:1812-1829. [PMID: 32955144 DOI: 10.1111/1462-2920.15240] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
The plant endosphere is colonized by complex microbial communities and microorganisms, which colonize the plant interior at least part of their lifetime and are termed endophytes. Their functions range from mutualism to pathogenicity. All plant organs and tissues are generally colonized by bacterial endophytes and their diversity and composition depend on the plant, the plant organ and its physiological conditions, the plant growth stage as well as on the environment. Plant-associated microorganisms, and in particular endophytes, have lately received high attention, because of the increasing awareness of the importance of host-associated microbiota for the functioning and performance of their host. Some endophyte functions are known from mostly lab assays, genome prediction and few metagenome analyses; however, we have limited understanding on in planta activities, particularly considering the diversity of micro-environments and the dynamics of conditions. In our review, we present recent findings on endosphere environments, their physiological conditions and endophyte colonization. Furthermore, we discuss microbial functions, the interaction between endophytes and plants as well as methodological limitations of endophyte research. We also provide an outlook on needs of future research to improve our understanding on the role of microbiota colonizing the endosphere on plant traits and ecosystem functioning.
Collapse
Affiliation(s)
- Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| | | | | | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| | - Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V4C7, Canada
| | - Angela Sessitsch
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| |
Collapse
|
31
|
Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P. Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens 2020; 9:pathogens9090723. [PMID: 32887278 PMCID: PMC7558191 DOI: 10.3390/pathogens9090723] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.
Collapse
Affiliation(s)
- Annalisa Giampetruzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Teresa Lino Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Daniela Costa
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Giusy D’Attoma
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Raied Abou Kubaa
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Giuseppe Altamura
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Maria Saponari
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Pasquale Saldarelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
- Correspondence: ; Tel.: +39-0805443065
| |
Collapse
|
32
|
Nicoletti R, Di Vaio C, Cirillo C. Endophytic Fungi of Olive Tree. Microorganisms 2020; 8:E1321. [PMID: 32872625 PMCID: PMC7565531 DOI: 10.3390/microorganisms8091321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to the general interest connected with investigations on biodiversity in natural contexts, more recently the scientific community has started considering occurrence of endophytic fungi in crops in the awareness of the fundamental role played by these microorganisms on plant growth and protection. Crops such as olive tree, whose management is more and more frequently based on the paradigm of sustainable agriculture, are particularly interested in the perspective of a possible applicative employment, considering that the multi-year crop cycle implies a likely higher impact of these symbiotic interactions. Aspects concerning occurrence and effects of endophytic fungi associated with olive tree (Olea europaea) are revised in the present paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Claudio Di Vaio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
33
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|