1
|
Felix JB, de Campos AC, Logan SW, Machado J, Souza Monteiro K, Longo E. Go Zika Go: feasibility study with modified motorized ride-on cars for the mobility of children with Congenital Zika Syndrome (CZS). Disabil Rehabil Assist Technol 2024; 19:2665-2678. [PMID: 38166551 DOI: 10.1080/17483107.2023.2300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/22/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE To explore the feasibility of an intervention using modified ride-on cars in terms of acceptability and potential changes in goal attainment, mobility, social function, and participation of children with Congenital Zika Syndrome (CZS). MATERIALS AND METHODS A pre- and post-intervention feasibility study was conducted with children with CZS, levels IV and V of the Gross Motor Function Classification System (GMFCS). The intervention consisted of 12 weeks of training (3 times a week for 40 min per session) and 4 weeks of follow-up. The primary outcomes included adherence, satisfaction, and learning in mobility. Secondary outcomes encompassed goal attainment, mobility, social/cognitive function, and participation. Descriptive statistics were performed. To explore potential individual changes with the intervention, Wilcoxon test was used to analyze Pediatric Evaluation of Disability Inventory - Computer Adaptive Test (PEDI-CAT) data and Young Children's Participation and Environment Measure (YC-PEM)/Participation and Environment Measure for Children and Youth (PEM-CY), along with standard error measurements of the PEDI-CAT domains. RESULTS Four children participated (median age 4.75 years; two females: three at level V on the GMFCS). Adherence was 75% of the total intervention time, and family members reported being satisfied or very satisfied. Children showed gains in learning the use of the modified ride-on cars and an increase in goal attainment after the intervention. Individual changes were observed in the PEDI-CAT domains (mobility and social/cognitive), but there were no significant changes in participation outcomes. CONCLUSIONS Children with CZS at GMFCS levels IV and V can learn to use motorized ride-on cars, attainment goals, and experience satisfaction.
Collapse
Affiliation(s)
- Jean Bendito Felix
- Postgraduate Program in Rehabilitation Sciences, University of Rio Grande do Norte/Faculty of Health Sciences of Trairi, Santa Cruz, Brazil
| | | | - Samuel W Logan
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Julianne Machado
- Postgraduate Program in Rehabilitation Sciences, University of Rio Grande do Norte/Faculty of Health Sciences of Trairi, Santa Cruz, Brazil
| | - Karoline Souza Monteiro
- Postgraduate Program in Rehabilitation Sciences, University of Rio Grande do Norte/Faculty of Health Sciences of Trairi, Santa Cruz, Brazil
| | - Egmar Longo
- Postgraduate Program in Rehabilitation Sciences, University of Rio Grande do Norte/Faculty of Health Sciences of Trairi, Santa Cruz, Brazil
| |
Collapse
|
2
|
Schwartz DA, Dashraath P, Baud D. Oropouche Virus (OROV) in Pregnancy: An Emerging Cause of Placental and Fetal Infection Associated with Stillbirth and Microcephaly following Vertical Transmission. Viruses 2024; 16:1435. [PMID: 39339911 PMCID: PMC11437435 DOI: 10.3390/v16091435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Oropouche virus (OROV) is an emerging arbovirus endemic in Latin America and the Caribbean that causes Oropouche fever, a febrile illness that clinically resembles some other arboviral infections. It is currently spreading through Brazil and surrounding countries, where, from 1 January to 1 August 2024, more than 8000 cases have been identified in Bolivia, Brazil, Columbia, and Peru and for the first time in Cuba. Travelers with Oropouche fever have been identified in the United States and Europe. A significant occurrence during this epidemic has been the report of pregnant women infected with OROV who have had miscarriages and stillborn fetuses with placental, umbilical blood and fetal somatic organ samples that were RT-PCR positive for OROV and negative for other arboviruses. In addition, there have been four cases of newborn infants having microcephaly, in which the cerebrospinal fluid tested positive for IgM antibodies to OROV and negative for other arboviruses. This communication examines the biology, epidemiology, and clinical features of OROV, summarizes the 2023-2024 Oropouche virus epidemic, and describes the reported cases of vertical transmission and congenital infection, fetal death, and microcephaly in pregnant women with Oropouche fever, addresses experimental animal infections and potential placental pathology findings of OROV, and reviews other bunyavirus agents that can cause vertical transmission. Recommendations are made for pregnant women travelling to the regions affected by the epidemic.
Collapse
Affiliation(s)
- David A. Schwartz
- Perinatal Pathology Consulting, 490 Dogwood Valley Drive, Atlanta, GA 30342, USA
| | - Pradip Dashraath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore;
| | - David Baud
- Materno-Fetal & Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| |
Collapse
|
3
|
Roy A, Liu Q, Yang Y, Debnath AK, Du L. Envelope Protein-Targeting Zika Virus Entry Inhibitors. Int J Mol Sci 2024; 25:9424. [PMID: 39273370 PMCID: PMC11394925 DOI: 10.3390/ijms25179424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Zika virus (ZIKV; family, Flaviviridae), which causes congenital Zika syndrome, Guillain-Barré Syndrome, and other severe diseases, is transmitted mainly by mosquitoes; however, the virus can be transmitted through other routes. Among the three structural and seven nonstructural proteins, the surface envelope (E) protein of ZIKV plays a critical role in viral entry and pathogenesis, making it a key target for the development of effective entry inhibitors. This review article describes the life cycle, genome, and encoded proteins of ZIKV, illustrates the structure and function of the ZIKV E protein, summarizes E protein-targeting entry inhibitors (with a focus on those based on natural products and small molecules), and highlights challenges that may potentially hinder the development of effective inhibitors of ZIKV infection. Overall, the article will provide useful guidance for further development of safe and potent ZIKV entry inhibitors targeting the viral E protein.
Collapse
Affiliation(s)
- Abhijeet Roy
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Qian Liu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Asim K. Debnath
- Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Marinho MDS, Zhang YN, Cassani NM, Santos IA, Costa Oliveira AL, dos Santos Pereira AK, Corbi PP, Zhang B, Jardim ACG. Development and validation of Mayaro virus with luciferase reporter genes as a tool for antiviral assays. Heliyon 2024; 10:e33885. [PMID: 39071632 PMCID: PMC11283106 DOI: 10.1016/j.heliyon.2024.e33885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Arboviruses are etiological agents in an extensive group of emerging diseases with great clinical relevance in Brazil, due to the wide distribution of their vectors and the favorable environmental conditions. Among them, the Mayaro virus (MAYV) has drawn attention since its emergence as the etiologic agent of Mayaro fever, a highly debilitating disease. To study viral replication and identify new drug candidates, traditional antiviral assays based on viral antigens and/or plaque assays have been demonstrating low throughput, making it difficult to carry out larger-scale assays. Therefore, we developed and characterized two DNA-launched infectious clones reporter viruses based on the MAYV strain BeAr 20290 containing the reporter genes of firefly luciferase (FLuc) and nanoluciferase (NLuc), designated as MAYV-firefly and MAYV-nanoluc, respectively. The viruses replicated efficiently with similar properties to the parental wild-type MAYV, and luminescence expression levels reflected viral replication. Reporter genes were also preserved during passage in cell culture, remaining stably expressed for one round of passage for MAYV-firefly and three rounds for MAYV-nanoluc. Employing the infectious clone, we described the effect of Rimantadine, an FDA-approved Alzheimer's drug, as a repurposing agent for MAYV but with a broad-spectrum activity against Zika virus infection. Additionally, we validated MAYV-nanoluc as a tool for antiviral drug screening using the compound EIDD-2749 (4'-Fluorouridine), which acts as an inhibitor of alphavirus RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Mikaela dos Santos Marinho
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ya-Nan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Natasha Marques Cassani
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ana Laura Costa Oliveira
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bo Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), Campus, São José do Rio Preto, SP, Brazil
| |
Collapse
|
5
|
Emperador DM, Stone M, Grebe E, Escadafal C, Dave H, Lackritz E, Kelly-Cirino C, Rabe I, Rojas DP, Busch MP, Simmons G. Comparative Evaluation of Select Serological Assays for Zika Virus Using Blinded Reference Panels. Viruses 2024; 16:1075. [PMID: 39066237 PMCID: PMC11281645 DOI: 10.3390/v16071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In response to the 2015 Zika virus (ZIKV) epidemic that occurred in Brazil, numerous commercial serological assays have been developed for clinical and research applications. Diagnosis of recent infection in pregnant women remains challenging. Having standardized, comparative studies of ZIKV tests is important for implementing optimal diagnostic testing and disease surveillance. This is especially important for serology tests used to detect ZIKV infection given that antibodies against ZIKV can cross-react with other arboviruses in the same virus family, such as dengue virus (DENV), yellow fever virus (YFV) and West Nile virus (WNV). We looked at the sensitivity and specificity of tests detecting ZIKV antibodies (IgM, IgG) from multiple manufacturers using panels of samples previously collected with known exposure to ZIKV and other arboviruses. We found that performance of the IgM tests was highly variable, with only one test (Inbios 2.0 IgM capture ELISA) having both high sensitivity and specificity. All IgG tests showed good sensitivity; however, specificity was highly variable, with some assays giving false-positive results on samples infected by another flavivirus. Overall, the results confirmed that accurate ZIKV antibody testing is challenging, especially in specimens from regions endemic for multiple other flaviviruses, and highlight the importance of available and suitable reference samples to evaluate ZIKV diagnostics.
Collapse
Affiliation(s)
- Devy M. Emperador
- Pandemic Threats Programme, Foundation for Innovative New Diagnostics (FIND), 1218 Geneva, Switzerland; (D.M.E.)
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eduard Grebe
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Camille Escadafal
- Pandemic Threats Programme, Foundation for Innovative New Diagnostics (FIND), 1218 Geneva, Switzerland; (D.M.E.)
| | - Honey Dave
- Vitalant Research Institute, San Francisco, CA 94105, USA
| | - Eve Lackritz
- Epidemic and Pandemic Preparedness and Prevention Department, Health Emergencies Programme, World Health Organization, 1211 Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Pandemic Threats Programme, Foundation for Innovative New Diagnostics (FIND), 1218 Geneva, Switzerland; (D.M.E.)
| | - Ingrid Rabe
- Epidemic and Pandemic Preparedness and Prevention Department, Health Emergencies Programme, World Health Organization, 1211 Geneva, Switzerland
| | - Diana P. Rojas
- Epidemic and Pandemic Preparedness and Prevention Department, Health Emergencies Programme, World Health Organization, 1211 Geneva, Switzerland
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Alharbi M, Alshammari A, Alsabhan JF, Alzarea SI, Alshammari T, Alasmari F, Alasmari AF. A novel vaccine construct against Zika virus fever: insights from epitope-based vaccine discovery through molecular modeling and immunoinformatics approaches. Front Immunol 2024; 15:1426496. [PMID: 39050858 PMCID: PMC11267680 DOI: 10.3389/fimmu.2024.1426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
The Zika virus (ZIKV) is an emerging virus associated with the Flaviviridae family that mainly causes infection in pregnant women and leads to several abnormalities during pregnancy. This virus has unique properties that may lead to pathological diseases. As the virus has the ability to evade immune response, a crucial effort is required to deal with ZIKV. Vaccines are a safe means to control different pathogenic infectious diseases. In the current research, a multi-epitope-based vaccination against ZIKV is being designed using in silico methods. For the epitope prediction and prioritization phase, ZIKV polyprotein (YP_002790881.1) and flavivirus polyprotein (>YP_009428568.1) were targeted. The predicted B-cell epitopes were used for MHC-I and MHC-II epitope prediction. Afterward, several immunoinformatics filters were applied and nine (REDLWCGSL, MQDLWLLRR, YKKSGITEV, TYTDRRWCF, RDAFPDSNS, KPSLGLINR, ELIGRARVS, AITQGKREE, and EARRSRRAV) epitopes were found to be probably antigenic in nature, non-allergenic, non-toxic, and water soluble without any toxins. Selected epitopes were joined using a particular GPGPG linker to create the base vaccination for epitopes, and an extra EAAAK linker was used to link the adjuvant. A total of 312 amino acids with a molecular weight (MW) of 31.62762 and an instability value of 34.06 were computed in the physicochemical characteristic analysis, indicating that the vaccine design is stable. The molecular docking analysis predicted a binding energy of -329.46 (kcal/mol) for TLR-3 and -358.54 (kcal/mol) for TLR-2. Moreover, the molecular dynamics simulation analysis predicted that the vaccine and receptor molecules have stable binding interactions in a dynamic environment. The C-immune simulation analysis predicted that the vaccine has the ability to generate both humoral and cellular immune responses. Based on the design, the vaccine construct has the best efficacy to evoke immune response in theory, but experimental analysis is required to validate the in silico base approach and ensure its safety.
Collapse
Affiliation(s)
- Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jawza F. Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Talal Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
8
|
Henrio Marcellin DF, Huang J. Exploring Zika Virus Impact on Endothelial Permeability: Insights into Transcytosis Mechanisms and Vascular Leakage. Viruses 2024; 16:629. [PMID: 38675970 PMCID: PMC11054372 DOI: 10.3390/v16040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Treating brain disease is challenging, and the Zika virus (ZIKV) presents a unique obstacle due to its neuroinvasive nature. In this review, we discuss the immunopathogenesis of ZIKV and explore how the virus interacts with the body's immune responses and the role of the protein Mfsd2a in maintaining the integrity of the blood-brain barrier (BBB) during ZIKV neuroinvasion. ZIKV has emerged as a significant public health concern due to its association with severe neurological problems, including microcephaly and Gillain-Barré Syndrome (GBS). Understanding its journey through the brain-particularly its interaction with the placenta and BBB-is crucial. The placenta, which is designed to protect the fetus, becomes a pathway for ZIKV when infected. The BBB is composed of brain endothelial cells, acts as a second barrier, and protects the fetal brain. However, ZIKV finds ways to disrupt these barriers, leading to potential damage. This study explores the mechanisms by which ZIKV enters the CNS and highlights the role of transcytosis, which allows the virus to move through the cells without significantly disrupting the BBB. Although the exact mechanisms of transcytosis are unclear, research suggests that ZIKV may utilize this pathway.
Collapse
Affiliation(s)
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
9
|
Chen Y, Zhang X, Yang X, Su L, Chen W, Zhao J, Hu Y, Wang Y, Wu Y, Dong Y. PfAgo-Based Zika Virus Detection. Viruses 2024; 16:539. [PMID: 38675882 PMCID: PMC11054744 DOI: 10.3390/v16040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.
Collapse
Affiliation(s)
- Yuhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xianyi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lifang Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weiran Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jixiang Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuan Wang
- School of Basic Medicine, Hubei University of Arts and Sciences, Xiangyang 441053, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Industrial Biotechnology and Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
10
|
Carvalho VL, Prakoso D, Schwarz ER, Logan TD, Nunes BTD, Beachboard SE, Long MT. Negevirus Piura Suppresses Zika Virus Replication in Mosquito Cells. Viruses 2024; 16:350. [PMID: 38543716 PMCID: PMC10976066 DOI: 10.3390/v16030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
We investigated the interaction between the insect-specific virus, Piura virus (PIUV), and the arbovirus Zika virus (ZIKV) in Aedes albopictus cells. We performed coinfection experiments in C6/36 cells. Piura virus (Cor 33 strain, Colombia) and ZIKV (PRVABC58 strain, Puerto Rico) were co-inoculated into C6/36 cells using two multiplicity of infection (MOI) combinations: 0.1 for both viruses and 1.0 for ZIKV, 0.1 for PIUV. Wells were infected in triplicate with either PIUV and ZIKV coinfection, ZIKV-only, or PIUV-only. Mock infected cells served as control wells. The cell suspension was collected daily 7 days post-infection. Zika virus load was titrated by TCID50 on Vero 76 cells. The ZIKV-only infection and PIUV and ZIKV coinfection experiments were also quantified by RT-qPCR. We also investigated whether ZIKV interfered in the PIUV replication. PIUV suppressed the replication of ZIKV, resulting in a 10,000-fold reduction in ZIKV titers within 3 days post-infection. PIUV viral loads were not reduced in the presence of ZIKV. We conclude that, when concurrently infected, PIUV suppresses ZIKV in C6/36 cells while ZIKV does not interfere in PIUV replication.
Collapse
Affiliation(s)
- Valéria L. Carvalho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Dhani Prakoso
- Professor Nidom Foundation, Surabaya, East Java 60236, Indonesia;
| | - Erika R. Schwarz
- Montana Veterinary Diagnostic Laboratory, 1911 W Lincoln St., Bozeman, MT 59718, USA
| | - Tracey D. Logan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr. Suite 4101, Gainesville, FL 32611, USA
| | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Sarah E. Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Elliott KC, Mattapallil JJ. Zika Virus-A Reemerging Neurotropic Arbovirus Associated with Adverse Pregnancy Outcomes and Neuropathogenesis. Pathogens 2024; 13:177. [PMID: 38392915 PMCID: PMC10892292 DOI: 10.3390/pathogens13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a reemerging flavivirus that is primarily spread through bites from infected mosquitos. It was first discovered in 1947 in sentinel monkeys in Uganda and has since been the cause of several outbreaks, primarily in tropical and subtropical areas. Unlike earlier outbreaks, the 2015-2016 epidemic in Brazil was characterized by the emergence of neurovirulent strains of ZIKV strains that could be sexually and perinatally transmitted, leading to the Congenital Zika Syndrome (CZS) in newborns, and Guillain-Barre Syndrome (GBS) along with encephalitis and meningitis in adults. The immune response elicited by ZIKV infection is highly effective and characterized by the induction of both ZIKV-specific neutralizing antibodies and robust effector CD8+ T cell responses. However, the structural similarities between ZIKV and Dengue virus (DENV) lead to the induction of cross-reactive immune responses that could potentially enhance subsequent DENV infection, which imposes a constraint on the development of a highly efficacious ZIKV vaccine. The isolation and characterization of antibodies capable of cross-neutralizing both ZIKV and DENV along with cross-reactive CD8+ T cell responses suggest that vaccine immunogens can be designed to overcome these constraints. Here we review the structural characteristics of ZIKV along with the evidence of neuropathogenesis associated with ZIKV infection and the complex nature of the immune response that is elicited by ZIKV infection.
Collapse
Affiliation(s)
- Kenneth C. Elliott
- Department of Microbiology & Immunology, The Henry M Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph J. Mattapallil
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
de Sales-Neto JM, Madruga Carvalho DC, Arruda Magalhães DW, Araujo Medeiros AB, Soares MM, Rodrigues-Mascarenhas S. Zika virus: Antiviral immune response, inflammation, and cardiotonic steroids as antiviral agents. Int Immunopharmacol 2024; 127:111368. [PMID: 38103408 DOI: 10.1016/j.intimp.2023.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus first reported from humans in Nigeria in 1954. The first outbreak occurred in Micronesia followed by an outbreak in French Polynesia and another in Brazil when the virus was associated with numerous cases of severe neurological manifestations such as Guillain-Barre syndrome in adults and congenital zika syndrome in fetuses, particularly congenital microcephaly. Innate immunity is the first line of defense against ZIKV through triggering an antiviral immune response. Along with innate immune responses, a sufficient balance between anti- and pro-inflammatory cytokines and the amount of these cytokines are triggered to enhance the antiviral responses. Here, we reviewed the complex interplay between the mediators and signal pathways that coordinate antiviral immune response and inflammation as a key to understanding the development of the underlying diseases triggered by ZIKV. In addition, we summarize current and new therapeutic strategies for ZIKV infection, highlighting cardiotonic steroids as antiviral drugs for the development of this agent.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | - Mariana Mendonça Soares
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
13
|
Hindle S, Depatureaux A, Fortin-Dion S, Dieumegard H, Renaud C, Therrien C, Fallet-Bianco C, Lamarre V, Soudeyns H, Boucoiran I. Zika virus infection during pregnancy and vertical transmission: case reports and peptide-specific cell-mediated immune responses. Arch Virol 2024; 169:32. [PMID: 38243006 DOI: 10.1007/s00705-023-05952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Zika virus (ZIKV) infection in pregnant women is associated with birth defects, which are more prevalent and severe the earlier in pregnancy the infection occurs. Pregnant women at risk of possible ZIKV exposure (n = 154) were screened using ELISA for ZIKV IgM and IgG. Nine of 154 (5.84%) pregnant women who underwent screening exhibited positive ZIKV serology. Of these, two maternal infections were confirmed by real-time RT-PCR and five were considered probable, but only three of those were retained for further analysis based on strict diagnostic criteria. Plaque reduction neutralization tests (PRNT) confirmed ZIKV infection in nine cases (5.84%). Two cases of vertical ZIKV transmission were confirmed by PCR. One infant showed no signs of congenital ZIKV syndrome and had a normal developmental profile despite first-trimester maternal infection. In the second case, pregnancy was terminated. Production of interferon γ (IFN-γ) by peripheral blood mononuclear cells obtained from pregnant women and umbilical cord blood was measured using enzyme-linked immunospot assay (ELISpot) after stimulation with panels of synthetic peptides derived from the sequence of ZIKV proteins. This analysis revealed that, among all peptide pools tested, those derived from the ZIKV envelope protein generated the strongest IFN-γ response.
Collapse
Affiliation(s)
- Stéphanie Hindle
- Centre d'infectiologie mère-enfant (CIME), Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Room 7. 9. 61, Montreal, Quebec, H3T 1C5, Canada
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Agnès Depatureaux
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Fortin-Dion
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Hinatea Dieumegard
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Christian Renaud
- Faculty of Medicine, Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Christian Therrien
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Catherine Fallet-Bianco
- Departement of Pathology, CHU Sainte-Justine, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie Lamarre
- Infectious Diseases Service, CHU Sainte-Justine, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Soudeyns
- Centre d'infectiologie mère-enfant (CIME), Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Room 7. 9. 61, Montreal, Quebec, H3T 1C5, Canada.
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada.
- Faculty of Medicine, Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
- Faculty of Medicine, Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada.
| | - Isabelle Boucoiran
- Centre d'infectiologie mère-enfant (CIME), Centre de recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Room 7. 9. 61, Montreal, Quebec, H3T 1C5, Canada
- Obstetrics and Gynecology Service, CHU Sainte-Justine, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
15
|
Puccioni-Sohler M, Nascimento Soares C, Christo PP, Almeida SMD. Review of dengue, zika and chikungunya infections in nervous system in endemic areas. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1112-1124. [PMID: 38157877 PMCID: PMC10756841 DOI: 10.1055/s-0043-1777104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
Dengue, zika, and chikungunya are arboviruses of great epidemiological relevance worldwide. The emergence and re-emergence of viral infections transmitted by mosquitoes constitute a serious human public health problem. The neurological manifestations caused by these viruses have a high potential for death or sequelae. The complications that occur in the nervous system associated with arboviruses can be a challenge for diagnosis and treatment. In endemic areas, suspected cases should include acute encephalitis, myelitis, encephalomyelitis, polyradiculoneuritis, and/or other syndromes of the central or peripheral nervous system, in the absence of a known explanation. The confirmation diagnosis is based on viral (isolation or RT-PCR) or antigens detection in tissues, blood, cerebrospinal fluid, or other body fluids, increase in IgG antibody titers between paired serum samples, specific IgM antibody in cerebrospinal fluid and serological conversion to IgM between paired serum samples (non-reactive in the acute phase and reactive in the convalescent). The cerebrospinal fluid examination can demonstrate: 1. etiological agent; 2. inflammatory reaction or protein-cytological dissociation depending on the neurological condition; 3. specific IgM, 4. intrathecal synthesis of specific IgG (dengue and chikungunya); 5. exclusion of other infectious agents. The treatment of neurological complications aims to improve the symptoms, while the vaccine represents the great hope for the control and prevention of neuroinvasive arboviruses. This narrative review summarizes the updated epidemiology, general features, neuropathogenesis, and neurological manifestations associated with dengue, zika, and chikungunya infection.
Collapse
Affiliation(s)
- Marzia Puccioni-Sohler
- Universidade Federal do Estado do Rio de Janeiro, Escola de Medicina e Cirurgia, Departamento de Medicina Geral, Rio de Janeiro RJ, Brazil.
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Rio de Janeiro RJ, Brazil.
| | | | - Paulo Pereira Christo
- Santa Casa BH, Faculdade de Saúde, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Belo Horizonte MG, Brazil.
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Neurologia, Belo Horizonte MG, Brazil.
| | - Sérgio Monteiro de Almeida
- Universidade Federal do Paraná, Faculdade de Medicina, Departamento de Patologia Médica, Curitiba PR, Brazil.
| |
Collapse
|
16
|
Dias RFC, Ribeiro BMRM, Cassani NM, Farago DN, Antoniucci GA, de Oliveira Rocha RE, de Oliveira Souza F, Pilau EJ, Jardim ACG, Ferreira RS, de Oliveira Rezende Júnior C. Discovery and structural optimization of a new series of N-acyl-2-aminobenzothiazole as inhibitors of Zika virus. Bioorg Med Chem 2023; 95:117488. [PMID: 37812885 DOI: 10.1016/j.bmc.2023.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Zika virus infection is associated to severe diseases such as congenital microcephaly and Zika fever causing serious harm to humans and special concern to health systems in low-income countries. Currently, there are no approved drugs against the virus, and the development of anti-Zika virus drugs is thus urgent. The present investigation describes the discovery and hit expansion of a N-acyl-2-aminobenzothiazole series of compounds against Zika virus replication. A structure-activity relationship study was obtained with the synthesis and evaluation of anti-Zika virus activity and cytotoxicity on Vero cells of nineteen derivatives. The three optimized compounds were 2.2-fold more potent than the initial hit and 20.9, 7.7 and 6.4-fold more selective. Subsequent phenotypic and biochemical assays were performed to evidence whether non-structural proteins, such as the complex NS2B-NS3pro, are related to the mechanism of action of the most active compounds.
Collapse
Affiliation(s)
- Renieidy Flávia Clemente Dias
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Beatriz Murta Rezende Moraes Ribeiro
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Natasha Marques Cassani
- Laboratório de Pesquisa em Antivirais (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Danilo Nascimento Farago
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Giovanna André Antoniucci
- Laboratório de Pesquisa em Antivirais (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Rafael Eduardo de Oliveira Rocha
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Felipe de Oliveira Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), State University of Maringá (UEM), Maringá, PR 807020-900, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), State University of Maringá (UEM), Maringá, PR 807020-900, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratório de Pesquisa em Antivirais (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
17
|
Toizumi M, Vu CN, Huynh HT, Uematsu M, Tran VT, Vo HM, Nguyen HAT, Ngwe Tun MM, Bui MX, Dang DA, Moriuchi H, Yoshida LM. A Birth Cohort Follow-Up Study on Congenital Zika Virus Infection in Vietnam. Viruses 2023; 15:1928. [PMID: 37766334 PMCID: PMC10534914 DOI: 10.3390/v15091928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
We assessed the development, sensory status, and brain structure of children with congenital Zika virus (ZIKV) infection (CZI) at two years and preschool age. CZI was defined as either ZIKV RNA detection or positive ZIKV IgM and neutralization test in the cord or neonatal blood. Twelve children with CZI born in 2017-2018 in Vietnam, including one with Down syndrome, were assessed at 23-25.5 months of age, using Ages and Stages Questionnaire (ASQ-3), ASQ:Social-Emotional (ASQ:SE-2), Modified Checklist for Autism in Toddlers, automated auditory brainstem response (AABR), and Spot Vision Screener (SVS). They underwent brain CT and MRI. They had detailed ophthalmological examinations, ASQ-3, and ASQ:SE-2 at 51-62 months of age. None had birthweight or head circumference z-score < -3 except for the one with Down syndrome. All tests passed AABR (n = 10). No ophthalmological problems were detected by SVS (n = 10) and detailed examinations (n = 6), except for a girl's astigmatism. Communication and problem-solving domains in a boy at 24 months, gross-motor area in a boy, and gross-motor and fine-motor areas in another boy at 59-61 months were in the referral zone. Brain CT (n = 8) and MRI (n = 6) revealed no abnormalities in the cerebrum, cerebellum, or brainstem other than cerebellar hypoplasia with Down syndrome. The CZI children were almost age-appropriately developed with no brain or eye abnormalities. Careful and longer follow-up is necessary for children with CZI.
Collapse
Affiliation(s)
- Michiko Toizumi
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Cuong Nguyen Vu
- Khanh Hoa Health Service, Nha Trang 650000, Vietnam; (C.N.V.); (H.T.H.); (M.X.B.)
| | - Hai Thi Huynh
- Khanh Hoa Health Service, Nha Trang 650000, Vietnam; (C.N.V.); (H.T.H.); (M.X.B.)
| | - Masafumi Uematsu
- Department of Ophthalmology, Nagasaki University Hospital, Nagasaki 852-8501, Japan;
| | - Vy Thao Tran
- Khanh Hoa General Hospital, Nha Trang 650000, Vietnam; (V.T.T.); (H.M.V.)
| | - Hien Minh Vo
- Khanh Hoa General Hospital, Nha Trang 650000, Vietnam; (V.T.T.); (H.M.V.)
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.A.T.N.); (D.A.D.)
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 693-0021, Japan
| | - Minh Xuan Bui
- Khanh Hoa Health Service, Nha Trang 650000, Vietnam; (C.N.V.); (H.T.H.); (M.X.B.)
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.A.T.N.); (D.A.D.)
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan;
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| |
Collapse
|
18
|
Barbosa MD, Costa A, Prieto-Oliveira P, Andreata-Santos R, Peter CM, Zanotto PMA, Janini LMR. Proposal of Model for Evaluation of Viral Kinetics of African/Asian/Brazilian- Zika virus Strains (Step Growth Curve) in Trophoblastic Cell Lines. Viruses 2023; 15:1446. [PMID: 37515134 PMCID: PMC10386092 DOI: 10.3390/v15071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Zika virus (ZIKV) epidemic brought new discoveries regarding arboviruses, especially flaviviruses, as ZIKV was described as sexually and vertically transmitted. The latter shows severe consequences for the embryo/fetus, such as congenital microcephaly and deficiency of the neural system, currently known as Congenital ZIKV Syndrome (CZS). To better understand ZIKV dynamics in trophoblastic cells present in the first trimester of pregnancy (BeWo, HTR-8, and control cell HuH-7), an experiment of viral kinetics was performed for African MR766 low passage and Asian-Brazilian IEC ZIKV lineages. The results were described independently and demonstrated that the three placental cells lines are permissive and susceptible to ZIKV. We noticed cytopathic effects that are typical in in vitro viral infection in BeWo and HTR-8. Regarding kinetics, MR766lp showed peaks of viral loads in 24 and 48 hpi for all cell types tested, as well as marked cells death after peak production. On the other hand, the HTR-8 lineage inoculated with ZIKV-IEC exhibited increased viral production in 144 hpi, with a peak between 24 and 96 hpi. Furthermore, IEC had peak variations of viral production for BeWo in 144 hpi. Considering such in vitro results, the hypothesis that maternal fetal transmission is probably a way of virus transmission between the mother and the embryo/fetus is maintained.
Collapse
Affiliation(s)
- Márcia Duarte Barbosa
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Anderson Costa
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Paula Prieto-Oliveira
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Robert Andreata-Santos
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Cristina M Peter
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Mario Ramos Janini
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
19
|
Shukla R, Chandra A, Kumar A, Kandpal P, Avashthi H, Goel VK, Qamar I, Singh N, Kelvin DJ, Singh TR. Repurposing of drugs against methyltransferase as potential Zika virus therapies. Sci Rep 2023; 13:7870. [PMID: 37188743 PMCID: PMC10184974 DOI: 10.1038/s41598-023-33341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
In recent years, the outbreak of infectious disease caused by Zika Virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Several possible druggable targets involved in virus replication have been identified. In search of additional potential inhibitors, we screened 2895 FDA-approved compounds using Non-Structural Protein 5 (NS5) as a target utilizing virtual screening of in-silco methods. The top 28 compounds with the threshold of binding energy -7.2 kcal/mol value were selected and were cross-docked on the three-dimensional structure of NS5 using AutoDock Tools. Of the 2895 compounds screened, five compounds (Ceforanide, Squanavir, Amcinonide, Cefpiramide, and Olmesartan_Medoxomil) ranked highest based on filtering of having the least negative interactions with the NS5 and were selected for Molecular Dynamic Simulations (MDS) studies. Various parameters such as RMSD, RMSF, Rg, SASA, PCA and binding free energy were calculated to validate the binding of compounds to the target, ZIKV-NS5. The binding free energy was found to be -114.53, -182.01, -168.19, -91.16, -122.56, and -150.65 kJ mol-1 for NS5-SFG, NS5-Ceforanide, NS5-Squanavir, NS5-Amcinonide, NS5-Cefpiramide, and NS5-Ol_Me complexes respectively. The binding energy calculations suggested Cefpiramide and Olmesartan_Medoxomil (Ol_Me) as the most stable compounds for binding to NS5, indicating a strong rationale for their use as lead compounds for development of ZIKV inhibitors. As these drugs have been evaluated on pharmacokinetics and pharmacodynamics parameters only, in vitro and in vivo testing and their impact on Zika viral cell culture may suggest their clinical trials on ZIKV patients.
Collapse
Affiliation(s)
- Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India
- Centre for Excellence in Healthcare Technologies and Informatics (CEHTI), Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201312, India
- School of Physical Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anuj Kumar
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
- Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
- European Virus Bioinformatics Center, Leutragraben 1, Jena, Germany
| | | | - Himanshu Avashthi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201312, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201312, India.
| | - David J Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, China.
- Department of Microbiology and Immunology, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada.
- Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada.
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India.
- Centre for Excellence in Healthcare Technologies and Informatics (CEHTI), Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India.
| |
Collapse
|
20
|
Yang W, Liu LB, Liu FL, Wu YH, Zhen ZD, Fan DY, Sheng ZY, Song ZR, Chang JT, Zheng YT, An J, Wang PG. Single-cell RNA sequencing reveals the fragility of male spermatogenic cells to Zika virus-induced complement activation. Nat Commun 2023; 14:2476. [PMID: 37120617 PMCID: PMC10148584 DOI: 10.1038/s41467-023-38223-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Zika virus (ZIKV) is a potential threat to male reproductive health but the mechanisms underlying its influence on testes during ZIKV infection remain obscure. To address this question, we perform single-cell RNA sequencing using testes from ZIKV-infected mice. The results reveal the fragility of spermatogenic cells, especially spermatogonia, to ZIKV infection and show that the genes of the complement system are significantly upregulated mainly in infiltrated S100A4 + monocytes/macrophages. Complement activation and its contribution to testicular damage are validated by ELISA, RT‒qPCR and IFA and further verify in ZIKV-infected northern pigtailed macaques by RNA genome sequencing and IFA, suggesting that this might be the common response to ZIKV infection in primates. On this basis, we test the complement inhibitor C1INH and S100A4 inhibitors sulindac and niclosamide for their effects on testis protection. C1INH alleviates the pathological change in the testis but deteriorates ZIKV infection in general. In contrast, niclosamide effectively reduces S100A4 + monocyte/macrophage infiltration, inhibits complement activation, alleviates testicular damage, and rescues the fertility of male mice from ZIKV infection. This discovery therefore encourages male reproductive health protection during the next ZIKV epidemic.
Collapse
Affiliation(s)
- Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Li-Bo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Yan-Hua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zi-Da Zhen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zi-Yang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zheng-Ran Song
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
21
|
Feracci M, Eydoux C, Fattorini V, Lo Bello L, Gauffre P, Selisko B, Sutto-Ortiz P, Shannon A, Xia H, Shi PY, Noel M, Debart F, Vasseur JJ, Good S, Lin K, Moussa A, Sommadossi JP, Chazot A, Alvarez K, Guillemot JC, Decroly E, Ferron F, Canard B. AT-752 targets multiple sites and activities on the Dengue virus replication enzyme NS5. Antiviral Res 2023; 212:105574. [PMID: 36905944 DOI: 10.1016/j.antiviral.2023.105574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 μM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.
Collapse
Affiliation(s)
- Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Cécilia Eydoux
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Lea Lo Bello
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Pierre Gauffre
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Priscila Sutto-Ortiz
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Institute for Drug Discovery, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Mathieu Noel
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Jean-Jacques Vasseur
- IBMM, UMR 5247 CNRS-UM1-UM2, Department of Nucleic Acids, Montpellier University, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Steve Good
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Kai Lin
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA, 02110, USA
| | | | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Claude Guillemot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
22
|
Ren M, Zhou Y, Tu T, Jiang D, Pang M, Li Y, Luo Y, Yao X, Yang Z, Wang Y. RVG Peptide-Functionalized Favipiravir Nanoparticle Delivery System Facilitates Antiviral Therapy of Neurotropic Virus Infection in a Mouse Model. Int J Mol Sci 2023; 24:ijms24065851. [PMID: 36982925 PMCID: PMC10058582 DOI: 10.3390/ijms24065851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotropic viruses severely damage the central nervous system (CNS) and human health. Common neurotropic viruses include rabies virus (RABV), Zika virus, and poliovirus. When treating neurotropic virus infection, obstruction of the blood-brain barrier (BBB) reduces the efficiency of drug delivery to the CNS. An efficient intracerebral delivery system can significantly increase intracerebral delivery efficiency and facilitate antiviral therapy. In this study, a rabies virus glycopeptide (RVG) functionalized mesoporous silica nanoparticle (MSN) packaging favipiravir (T-705) was developed to generate T-705@MSN-RVG. It was further evaluated for drug delivery and antiviral treatment in a VSV-infected mouse model. The RVG, a polypeptide consisting of 29 amino acids, was conjugated on the nanoparticle to enhance CNS delivery. The T-705@MSN-RVG caused a significant decrease in virus titers and virus proliferation without inducing substantial cell damage in vitro. By releasing T-705, the nanoparticle promoted viral inhibition in the brain during infection. At 21 days post-infection (dpi), a significantly enhanced survival ratio (77%) was observed in the group inoculated with nanoparticle compared with the non-treated group (23%). The viral RNA levels were also decreased in the therapy group at 4 and 6 dpi compared with that of the control group. The T-705@MSN-RVG could be considered a promising system for CNS delivery for treating neurotropic virus infection.
Collapse
Affiliation(s)
- Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maonan Pang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanwei Li
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
23
|
Vilhena LS, de Azevedo da Silva AC, Dias da Silva DM, Pinto DP, Coelho EF, de Araújo JFGM, da Silveira GPE, Pereira HM, da Silva LDSFV, Estrela Marins RDCE, Bortolini RG, Souza TML, Dos Santos VGV, de Assis Nascimento V, Amendoeira FC, da Fonseca LB. Development and validation of LC-MS/MS methods for the simultaneous quantification of sofosbuvir and its major metabolite (GS-331007) in blood plasma and cerebrospinal and seminal fluid: Application to a pilot clinical trial with a focus on Zika. Biomed Chromatogr 2023; 37:e5606. [PMID: 36797051 DOI: 10.1002/bmc.5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Zika still poses a threat to global health owing to its association with serious neurological conditions and the absence of a vaccine and treatment. Sofosbuvir, an anti-hepatitis C drug, has shown anti-Zika effects in animal and cell models. Thus, this study aimed to develop and validate novel LC-MS/MS methods for the quantification of sofosbuvir and its major metabolite (GS-331007) in human plasma and cerebrospinal (CSF) and seminal fluid (SF), and apply the methods to a pilot clinical trial. The samples were prepared by liquid-liquid extraction and separated using isocratic mode on Gemini C18 columns. Analytical detection was performed using a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The validated ranges for sofosbuvir were 0.5-2,000 ng/mL (plasma) and 0.5-100 ng/mL (CSF and SF), while for the metabolite they were 2.0-2,000 ng/mL (plasma), 5.0-200 ng/mL (CSF) and 10-1,500 ng/mL (SF). The intra-day and inter-day accuracies (90.8-113.8%) and precisions (1.4-14.8%) were within the acceptance range. The developed methods fulfilled all validation parameters concerning selectivity, matrix effect, carryover, linearity, dilution integrity, precision, accuracy and stability, confirming the suitability of the method for the analysis of clinical samples.
Collapse
Affiliation(s)
- Leandro Schiavo Vilhena
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Diego Medeiros Dias da Silva
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Douglas Pereira Pinto
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Estephane Fernandes Coelho
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | | | - Heliana Martins Pereira
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Rita de Cássia Elias Estrela Marins
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.,Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Cidade Universitária da Universidade Federal do Rio de Janeiro, CEP 21941-580, Rio de Janeiro, RJ, Brazil
| | - Roberta Ghilosso Bortolini
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L Souza
- Center for Technological Development in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Viviane de Assis Nascimento
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fábio Coelho Amendoeira
- Pharmacology Laboratory, Department of Pharmacodynamics and Physiology, National Institute for Quality Assurance in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Laís Bastos da Fonseca
- Equivalence and Pharmacokinetics Laboratory (SEFAR), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Yu Z, Xu J, She Q. Harnessing the LdCsm RNA Detection Platform for Efficient microRNA Detection. Int J Mol Sci 2023; 24:ijms24032857. [PMID: 36769177 PMCID: PMC9918065 DOI: 10.3390/ijms24032857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.
Collapse
Affiliation(s)
| | | | - Qunxin She
- Correspondence: ; Tel.: +86-532-58631522
| |
Collapse
|
25
|
Cassani NM, Santos IA, Grosche VR, Ferreira GM, Guevara-Vega M, Rosa RB, Pena LJ, Nicolau-Junior N, Cintra ACO, Mineo TP, Sabino-Silva R, Sampaio SV, Jardim ACG. Roles of Bothrops jararacussu toxins I and II: Antiviral findings against Zika virus. Int J Biol Macromol 2023; 227:630-640. [PMID: 36529220 DOI: 10.1016/j.ijbiomac.2022.12.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022]
Abstract
Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.
Collapse
Affiliation(s)
- Natasha Marques Cassani
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil
| | - Giulia Magalhães Ferreira
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marco Guevara-Vega
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Adélia Cristina Oliveira Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tiago Patriarca Mineo
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
26
|
Japanese Encephalitis Vaccine Generates Cross-Reactive Memory T Cell Responses to Zika Virus in Humans. J Trop Med 2022; 2022:8379286. [DOI: 10.1155/2022/8379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Objective. Zika virus (ZIKV) and Japanese encephalitis virus (JEV) are mosquito-borne flaviviruses with sequence homology. ZIKV circulates in some regions where JEV also circulates, or where JE vaccination is used. Cross-immunity between flaviviruses exists, but the precise mechanisms remain unclear. We previously demonstrated that T cell immunity induced by the live-attenuated Japanese encephalitis (JE) SA14-14-2 vaccine conferred protective immunity against ZIKV infection in mice, which could even bypass antibody-dependent enhancement. However, the role of T cell immune, especially memory T cell subsets, in cross-reactive immune responses between JE vaccine and ZIKV in humans has not been reported. Methods. We examined central and effector memory CD4+ and CD8+ T cell (TCM and TEM) responses (including degranulation, cytokines, and chemokines) in the presence of JEV and ZIKV, respectively, by using qualified peripheral blood mononuclear cell samples from 18 children who had recently received a two-dose course of JE vaccine SA14-14-2 as well as seven children without JE vaccination. Results. Cross-reactive CD8+ TCM in response to ZIKV was characterized by secretion of IFN-γ, whereas CD8+ TEM did not show significant upregulation of functional factors. In the presence of ZIKV, IFN-γ and TNF-α expression was upregulated by CD4+ TEM, and the expression signature of CD4+ TCM is more cytotoxic potential. Conclusions. We profiled the cross-reactive memory T cell responses to ZIKV in JE vaccine recipients. These data will provide evidence for the mechanism of cross-reactive memory T cell immune responses between JEV and ZIKV and a more refined view of bivalent vaccine design strategy.
Collapse
|
27
|
Gomes F, Alfson K, Junqueira M. Editorial: The application of OMICS technologies to interrogate host-virus interactions. Front Cell Infect Microbiol 2022; 12:1050012. [DOI: 10.3389/fcimb.2022.1050012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
|
28
|
Patricio DDO, Dias GBM, Granella LW, Trigg B, Teague HC, Bittencourt D, Báfica A, Zanotto-Filho A, Ferguson B, Mansur DS. DNA-PKcs restricts Zika virus spreading and is required for effective antiviral response. Front Immunol 2022; 13:1042463. [PMID: 36311766 PMCID: PMC9606669 DOI: 10.3389/fimmu.2022.1042463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 04/23/2024] Open
Abstract
Zika virus (ZIKV) is a single-strand RNA mosquito-borne flavivirus with significant public health impact. ZIKV infection induces double-strand DNA breaks (DSBs) in human neural progenitor cells that may contribute to severe neuronal manifestations in newborns. The DNA-PK complex plays a critical role in repairing DSBs and in the innate immune response to infection. It is unknown, however, whether DNA-PK regulates ZIKV infection. Here we investigated the role of DNA-PKcs, the catalytic subunit of DNA-PK, during ZIKV infection. We demonstrate that DNA-PKcs restricts the spread of ZIKV infection in human epithelial cells. Increased ZIKV replication and spread in DNA-PKcs deficient cells is related to a notable decrease in transcription of type I and III interferons as well as IFIT1, IFIT2, and IL6. This was shown to be independent of IRF1, IRF3, or p65, canonical transcription factors necessary for activation of both type I and III interferon promoters. The mechanism of DNA-PKcs to restrict ZIKV infection is independent of DSB. Thus, these data suggest a non-canonical role for DNA-PK during Zika virus infection, acting downstream of IFNs transcription factors for an efficient antiviral immune response.
Collapse
Affiliation(s)
- Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Brisa Malaquias Dias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucilene Wildner Granella
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ben Trigg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dina Bittencourt
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alfeu Zanotto-Filho
- Laboratório de Farmacologia e Bioquímica do Câncer, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Brian Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
29
|
Avila-Bonilla RG, Salas-Benito JS. Interactions of host miRNAs in the flavivirus 3´UTR genome: From bioinformatics predictions to practical approaches. Front Cell Infect Microbiol 2022; 12:976843. [PMID: 36310869 PMCID: PMC9606609 DOI: 10.3389/fcimb.2022.976843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Flavivirus of the Flaviviridae family includes important viruses, such as Dengue, Zika, West Nile, Japanese encephalitis, Murray Valley encephalitis, tick-borne encephalitis, Yellow fever, Saint Louis encephalitis, and Usutu viruses. They are transmitted by mosquitoes or ticks, and they can infect humans, causing fever, encephalitis, or haemorrhagic fever. The treatment resources for these diseases and the number of vaccines available are limited. It has been discovered that eukaryotic cells synthesize small RNA molecules that can bind specifically to sequences present in messenger RNAs to inhibit the translation process, thus regulating gene expression. These small RNAs have been named microRNAs, and they have an important impact on viral infections. In this review, we compiled the available information on miRNAs that can interact with the 3’ untranslated region (3’UTR) of the flavivirus genome, a conserved region that is important for viral replication and translation.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Moleculart 3, Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| |
Collapse
|
30
|
Ribeiro JF, Melo JR, Santos CDL, Chaves CR, Cabral Filho PE, Pereira G, Santos BS, Pereira GA, Rosa DS, Ribeiro RT, Fontes A. Sensitive Zika Biomarker Detection Assisted by Quantum Dot-Modified Electrochemical Immunosensing Platform. Colloids Surf B Biointerfaces 2022; 221:112984. [DOI: 10.1016/j.colsurfb.2022.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
31
|
Marchi S, Dragoni F, Boccuto A, Idoko OT, Zazzi M, Sow S, Diallo A, Viviani S, Montomoli E, Vicenti I, Trombetta CM. Neutralizing activity of African lineage Zika virus immune sera towards Asian lineage. Acta Trop 2022; 237:106736. [DOI: 10.1016/j.actatropica.2022.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
|
32
|
Mao ZQ, Minakawa N, Moi ML. Novel Antiviral Efficacy of Hedyotis diffusa and Artemisia capillaris Extracts against Dengue Virus, Japanese Encephalitis Virus, and Zika Virus Infection and Immunoregulatory Cytokine Signatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192589. [PMID: 36235456 PMCID: PMC9571899 DOI: 10.3390/plants11192589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/25/2023]
Abstract
Currently, there are no specific therapeutics for flavivirus infections, including dengue virus (DENV) and Zika virus (ZIKV). In this study, we evaluated extracts from the plants Hedyotis diffusa (HD) and Artemisia capillaris (AC) to determine the antiviral activity against DENV, ZIKV, and Japanese encephalitis virus (JEV). HD and AC demonstrated inhibitory activity against JEV, ZIKV, and DENV replication and reduced viral RNA levels in a dose-responsive manner, with non-cytotoxic concentration ranging from 0.1 to 10 mg/mL. HD and AC had low cytotoxicity to Vero cells, with CC50 values of 33.7 ± 1.6 and 30.3 ± 1.7 mg/mL (mean ± SD), respectively. The anti-flavivirus activity of HD and AC was also consistent in human cell lines, including human glioblastoma (T98G), human chronic myeloid leukemia (K562), and human embryonic kidney (HEK-293T) cells. Viral-infected, HD-treated cells demonstrated downregulation of cytokines including CCR1, CCL26, CCL15, CCL5, IL21, and IL17C. In contrast, CCR1, CCL26, and AIMP1 were elevated following AC treatment in viral-infected cells. Overall, HD and AC plant extracts demonstrated flavivirus replication inhibitory activity, and together with immunoregulatory cytokine signatures, these results suggest that HD and AC possess bioactive compounds that may further be refined as promising candidates for clinical applications.
Collapse
Affiliation(s)
- Zhan Qiu Mao
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Noboru Minakawa
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022. [PMID: 36222134 PMCID: PMC9425815 DOI: 10.1007/s12038-022-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
34
|
Gurung S, Reuter D, Norris A, Dubois M, Maxted M, Singleton K, Castillo-Castrejon M, Papin JF, Myers DA. Early and mid-gestation Zika virus (ZIKV) infection in the olive baboon (Papio anubis) leads to fetal CNS pathology by term gestation. PLoS Pathog 2022; 18:e1010386. [PMID: 35969617 PMCID: PMC9410558 DOI: 10.1371/journal.ppat.1010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) infection in pregnancy can produce catastrophic teratogenic damage to the developing fetus including microcephaly and congenital Zika syndrome (CZS). We previously described fetal CNS pathology occurring by three weeks post-ZIKV inoculation in Olive baboons at mid-gestation, including neuroinflammation, loss of radial glia (RG), RG fibers, neuroprogenitor cells (NPCs) resulting in disrupted NPC migration. In the present study, we explored fetal brain pathologies at term gestation resulting from ZIKV exposure during either first or second trimester in the Olive baboon. In all dams, vRNA in whole blood resolved after 7 days post inoculation (dpi). One first trimester infected dam aborted at 5 dpi. All dams developed IgM and IgG response to ZIKV with ZIKV IgG detected in fetal serum. Placental pathology and inflammation were observed including disruption of syncytiotrophoblast layers, delayed villous maturation, partially or fully thrombosed vessels, calcium mineralization and fibrin deposits. In the uterus, ZIKV was detected in ¾ first trimester but not in second trimester infected dams. While ZIKV was not detected in any fetal tissue at term, all fetuses exhibited varying degrees of neuropathology. Fetal brains from ZIKV inoculated dams exhibited a range of gross brain pathologies including irregularities of the major gyri and sulci of the cerebral cortex and cerebellar pathology. Frontal cortices of ZIKV fetuses showed a general disorganization of the six-layered cortex with degree of disorganization varying among the fetuses from the two groups. Frontal cortices from ZIKV inoculation in the first but not second trimester exhibited increased microglia, and in both trimester ZIKV inoculation, increased astrocyte numbers (white matter). In the cerebellum, increased microglia were observed in fetuses from both first and second trimester inoculation. In first trimester ZIKV inoculation, decreased oligodendrocyte precursor cell populations were observed in fetal cerebellar white matter. In general, our observations are in accordance with those described in human ZIKV infected fetuses.
Collapse
Affiliation(s)
- Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Abby Norris
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Molly Dubois
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Marta Maxted
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Krista Singleton
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
- * E-mail:
| |
Collapse
|
35
|
Insights into the Anti-inflammatory and Antiviral Mechanisms of Resveratrol. Mediators Inflamm 2022; 2022:7138756. [PMID: 35990040 PMCID: PMC9391165 DOI: 10.1155/2022/7138756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound, which has been extensively studied on its biological activity. It has been widely accepted that resveratrol possesses anti-inflammatory and antiviral activities. In this review, we summarize the anti-inflammatory dosages and mechanism and antiviral mechanism of resveratrol. Since viral infections are often accompanied by inflammation, we propose that the NF-κB signaling pathway is a key and common molecular mechanism of resveratrol to exert anti-inflammatory and antiviral effects. For future studies, we believe that resveratrol's anti-inflammatory and antiviral mechanisms can consider the upstream signaling molecules of the NF-κB signaling pathway. For resveratrol antivirus, future studies can be conducted on the interaction of resveratrol with key proteins or important enzymes of the virus. In addition, we also think that the clinical application of resveratrol is very important. In short, resveratrol is a promising anti-inflammatory and antiviral drug, and research on it needs to be expanded.
Collapse
|
36
|
Novel Homozygous TTI2 Variant Causing Autosomal Recessive Syndromic Intellectual Disability and Primary Microcephaly from Pakistan: A Case Report (Exome Report). Case Rep Genet 2022; 2022:2766957. [PMID: 35990009 PMCID: PMC9391182 DOI: 10.1155/2022/2766957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
We describe a male patient with a novel TTI2 variant, which has not been previously associated with a human phenotype. His features include intellectual disability, primary microcephaly, delayed psychomotor development, speech delay, short stature, dysmorphic facial features, esotropia, kyphoscoliosis, and behavior abnormalities (Figure). Next generation sequencing revealed autosomal recessive TTI2 variant with uncertain significance, denoted as c.21_22insAAGCGCTCTG (p.Glu8Lysfs × 12). TTI2 encodes a regulator of DNA damage response and helps maintain steady levels of the PIKK family of protein kinases. No disease-causing variants in other genes potentially linked to his clinical presentation were identified. We report a novel loss-of-function homozygous variant in TTI2 that leads to syndromic intellectual disability and primary microcephaly.
Collapse
|
37
|
Tréguier Y, Cochard J, Burlaud-Gaillard J, Lemoine R, Chouteau P, Roingeard P, Meunier JC, Maquart M. The envelope protein of Zika virus interacts with apolipoprotein E early in the infectious cycle and this interaction is conserved on the secreted viral particles. Virol J 2022; 19:124. [PMID: 35902969 PMCID: PMC9331583 DOI: 10.1186/s12985-022-01860-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Zika virus (ZIKV), a member of the Flaviviridae family, has caused massive outbreaks of infection in tropical areas over the last decade and has now begun spreading to temperate countries. Little is currently known about the specific host factors involved in the intracellular life cycle of ZIKV. Flaviviridae viruses interact closely with host-cell lipid metabolism and associated secretory pathways. Another Flaviviridae, hepatitis C virus, is highly dependent on apolipoprotein E (ApoE) for the completion of its infectious cycle. We therefore investigated whether ZIKV also interacted with this protein. Methods ZIKV infections were performed on both liver and microglia derived cell lines in order to proceed to colocalization analysis and immunoprecipitation assays of ApoE and Zika envelope glycoprotein (Zika E). Transmission electron microscopy combined to immunogold labeling was also performed on the infected cells and related supernatant to study the association of ApoE and Zika E protein in the virus-induced membrane rearrangements and secreted particles, respectively. Finally, the potential of neutralization of anti-ApoE antibodies on ZIKV particles was studied. Result We demonstrated an interaction between ApoE and the Zika E protein. This specific interaction was observed in virus-induced host-cell membrane rearrangements, but also on newly formed intracellular particles. The partial neutralizing effect of anti-ApoE antibody and the immunogold labeling of the two proteins on secreted virions indicates that this interaction is conserved during ZIKV intracellular trafficking and release. Conclusions These data suggest that another member of the Flaviviridae also interacts with ApoE, indicating that this could be a common mechanism for the viruses from this family.
Collapse
Affiliation(s)
- Yannick Tréguier
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, Tours, France
| | - Jade Cochard
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, Tours, France.,Plateforme IBiSA des Microscopies, Université de Tours et CHU de Tours, Tours, France
| | - Roxane Lemoine
- Plateforme B Cell Ressources, EA4245 T2I, Université de Tours, Tours, France
| | - Philippe Chouteau
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, Tours, France. .,Plateforme IBiSA des Microscopies, Université de Tours et CHU de Tours, Tours, France.
| | | | - Marianne Maquart
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, Tours, France.
| |
Collapse
|
38
|
Huber S, Braun NJ, Schmacke LC, Quek JP, Murra R, Bender D, Hildt E, Luo D, Heine A, Steinmetzer T. Structure-Based Optimization and Characterization of Macrocyclic Zika Virus NS2B-NS3 Protease Inhibitors. J Med Chem 2022; 65:6555-6572. [PMID: 35475620 DOI: 10.1021/acs.jmedchem.1c01860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.
Collapse
Affiliation(s)
- Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jun Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921
| | - Robin Murra
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Eberhard Hildt
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
39
|
The threat of mosquito-borne arboviral disease in Spain: A bibliographic review. Med Clin (Barc) 2022; 158:378-386. [PMID: 35027150 DOI: 10.1016/j.medcli.2021.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Over the last two decades there has been an increase in outbreaks of arboviral diseases, being Spain at high risk for disease emergence. This paper reviews the current evidence regarding the transmissibility, disease epidemiology, control strategies and mosquito-borne disease drivers and maintaining factors in Spain. There is risk of autochthonous cases and outbreaks in Spain due to recent transmission occurrence. Recently, there has been an expansion of Aedes Albopticus, a vector for Dengue, Zika and Chikungunya; and Cullex spp., vector for West Nile Virus, already endemic in Spain. Their establishment has been facilitated by climate and environmental drivers. If climate change projections are to be met, an increase in disease transmission is to be expected, as well as the re-establishment of other vectors such as Aedes Aegypti. Our review supports the need to understand the threat of these emerging diseases and implement preventive strategies in order to minimise their impact.
Collapse
|
40
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
41
|
De Pijper CA, Schnyder JL, Stijnis C, Goorhuis A, Grobusch MP. A review of severe thrombocytopenia in Zika patients - Pathophysiology, treatment and outcome. Travel Med Infect Dis 2021; 45:102231. [PMID: 34896327 DOI: 10.1016/j.tmaid.2021.102231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND During the 2015 Zika virus infection (ZVI) epidemic swiping through the Americas, few cases of ZVI with severe, potentially life-threatening thrombocytopenia were reported. Platelet transfusion, corticosteroids and intravenous immunoglobulins (IVIG) were in most cases applied as therapeutic options, predominantly with success. We present a comprehensive overview concerning the pathophysiology, treatment strategies and outcomes of patients with ZVI and severe thrombocytopenia (platelet count <50 × 109/L). METHOD A literature search was performed. RESULTS Eleven case reports and case series with a total of 28 patients met the inclusion criteria; including five cases with lethal outcome. Therapeutic strategies, including platelet transfusion, administration of steroids and/or IVIG were described in 24 cases. CONCLUSIONS Severe thrombocytopenia is a rare, but potentially life-threatening complication of ZVI. The principal pathophysiological mechanism appears to immune-induced thrombocytopenia. Due to a paucity of cases, the optimal treatment strategy remains to be elucidated.
Collapse
Affiliation(s)
- Cornelis Adrianus De Pijper
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam Infection & Immunity, Amsterdam Public Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jenny Lea Schnyder
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam Infection & Immunity, Amsterdam Public Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis Stijnis
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam Infection & Immunity, Amsterdam Public Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Goorhuis
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam Infection & Immunity, Amsterdam Public Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Peter Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam Infection & Immunity, Amsterdam Public Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Ren M, Wang Y, Luo Y, Yao X, Yang Z, Zhang P, Zhao W, Jiang D. Functionalized Nanoparticles in Prevention and Targeted Therapy of Viral Diseases With Neurotropism Properties, Special Insight on COVID-19. Front Microbiol 2021; 12:767104. [PMID: 34867899 PMCID: PMC8634613 DOI: 10.3389/fmicb.2021.767104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Neurotropic viruses have neural-invasive and neurovirulent properties to damage the central nervous system (CNS), leading to humans' fatal symptoms. Neurotropic viruses comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. However, the blood-brain barrier (BBB) usually prevents macromolecules from entering the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported in the targeted therapy of neurotropic viruses due to their sensitivity and targeting characteristics. Therefore, the present review outlines efficient functionalized NPs to further understand the recent trends, challenges, and prospects of these materials.
Collapse
Affiliation(s)
| | - Yin Wang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Sridhara S, Goswami HN, Whyms C, Dennis JH, Li H. Virus detection via programmable Type III-A CRISPR-Cas systems. Nat Commun 2021; 12:5653. [PMID: 34580296 PMCID: PMC8476571 DOI: 10.1038/s41467-021-25977-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Among the currently available virus detection assays, those based on the programmable CRISPR-Cas enzymes have the advantage of rapid reporting and high sensitivity without the requirement of thermocyclers. Type III-A CRISPR-Cas system is a multi-component and multipronged immune effector, activated by viral RNA that previously has not been repurposed for disease detection owing in part to the complex enzyme reconstitution process and functionality. Here, we describe the construction and application of a virus detection method, based on an in vivo-reconstituted Type III-A CRISPR-Cas system. This system harnesses both RNA- and transcription-activated dual nucleic acid cleavage activities as well as internal signal amplification that allow virus detection with high sensitivity and at multiple settings. We demonstrate the use of the Type III-A system-based method in detection of SARS-CoV-2 that reached 2000 copies/μl sensitivity in amplification-free and 60 copies/μl sensitivity via isothermal amplification within 30 min and diagnosed SARS-CoV-2-infected patients in both settings. The high sensitivity, flexible reaction conditions, and the small molecular-driven amplification make the Type III-A system a potentially unique nucleic acid detection method with broad applications.
Collapse
Affiliation(s)
- Sagar Sridhara
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Charlisa Whyms
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Jonathan H Dennis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
44
|
Zika virus infection in pregnant women and their children: A review. Eur J Obstet Gynecol Reprod Biol 2021; 265:162-168. [PMID: 34508989 DOI: 10.1016/j.ejogrb.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) transmitted primarily by Aedes mosquitoes. ZIKV can be transmitted to humans by non-vector borne mechanisms such as sexual intercourse, maternal-foetal transmission or blood transfusion. In 2015, ZIKV emerged in the Americas, and spread to 87 countries and territories with autochthonous transmission, distributed across four of the six WHO regions. Most ZIKV infections in pregnancy are asymptomatic, but mother to child transmission of the virus can occur in 20 to 30% of cases and cause severe foetal and child defects. Children exposed to ZIKV while in utero might develop a pattern of structural anomalies and functional disabilities secondary to central nervous system damage, known as congenital Zika syndrome, and whose most common clinical feature is microcephaly. Normocephalic children born to mothers with ZIKV infection in pregnancy, and with no observable Zika-associated birth defects, may also present with later neurodevelopmental delay or post-natal microcephaly. Screening and detection of ZIKV infection in pregnancy is essential, because most women with ZIKV infection are asymptomatic and clinical manifestations are non-specific. However, the diagnosis of ZIKV infection poses multiple challenges due to limited resources and scarce laboratory capabilities in most affected areas, the narrow window of time that the virus persists in the bloodstream, the large proportion of asymptomatic infections, and the cross-reactivity with other flaviviruses such as Dengue virus (DENV). Molecular methods (RT-PCR) are the most reliable tool to confirm ZIKV infection, as serodiagnosis requires confirmation with neutralization tests in case of inconclusive or positive serology results. Prenatal ultrasound assessment is essential for monitoring foetal development and early detection of possible severe anomalies. A mid- and long-term follow-up of children exposed to ZIKV while in utero is necessary to promptly detect clinical manifestations of possible neurological impairment. Tweetable abstract: Zika virus infection during pregnancy is a cause of pregnancy loss and disability in children. Protection against mosquito bites, access to sexual and reproductive health services, prompt screening and detection of ZIKV infection in pregnancy, and prenatal ultrasound monitoring are key control strategies whilst a vaccine is not available.
Collapse
|
45
|
Aggarwal A, Adukia S, Bhatt M. Video Anthology of Movement Disorders Due to Infections in South Asia. Mov Disord Clin Pract 2021; 8:843-858. [PMID: 34405094 DOI: 10.1002/mdc3.13275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/23/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
South Asia, encompassing many populous countries including India, Pakistan, and Bangladesh, is home to a wide variety of infectious diseases several of which are disproportionately prevalent, endemic or distinctive to the region. These result in considerable morbidity and mortality, which can be greatly reduced through public-health measures, timely diagnosis and treatment. Some of these infectious diseases have neurological manifestations including movement disorders either due to the pathogen being neuroinvasive or via an immune-mediated response. For diseases such as Japanese encephalitis, movement disorders are the primary manifestation while for others, they can be a presenting feature. Thus, recognizing these movement disorders is often crucial to the diagnosis of the particular infection, and/or to exclude infection as a cause and arrive at the correct alternate diagnosis. Once diagnosed, the infection-related movement disorders are treated by targeting the infectious agent, or symptomatically. In this article, we describe and illustrate a variety of movement disorders that are seen in patients infected by viruses, bacteria and parasites in South Asia. This would be of value to neurologists practicing in the region and, with the increasing ease in movement of people and pathogens, those practicing elsewhere.
Collapse
Affiliation(s)
- Annu Aggarwal
- Movement Disorder Clinic, Department of Neurosciences Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute Mumbai India
| | - Sachin Adukia
- Movement Disorder Clinic, Department of Neurosciences Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute Mumbai India
| | - Mohit Bhatt
- Movement Disorder Clinic, Department of Neurosciences Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute Mumbai India
| |
Collapse
|
46
|
de Matos SMS, Hennigen AF, Wachholz GE, Rengel BD, Schuler-Faccini L, Roehe PM, Varela APM, Fraga LR. Possible Emergence of Zika Virus of African Lineage in Brazil and the Risk for New Outbreaks. Front Cell Infect Microbiol 2021; 11:680025. [PMID: 34368011 PMCID: PMC8342935 DOI: 10.3389/fcimb.2021.680025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sophia Martins Simon de Matos
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - André Ferreira Hennigen
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Elis Wachholz
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lavinia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Postgraduate Program in Bioscience, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Teratogen Information Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
47
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
48
|
Auriti C, De Rose DU, Santisi A, Martini L, Piersigilli F, Bersani I, Ronchetti MP, Caforio L. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166198. [PMID: 34118406 PMCID: PMC8883330 DOI: 10.1016/j.bbadis.2021.166198] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Some maternal infections, contracted before or during pregnancy, can be transmitted to the fetus, during gestation (congenital infection), during labor and childbirth (perinatal infection) and through breastfeeding (postnatal infection). The agents responsible for these infections can be viruses, bacteria, protozoa, fungi. Among the viruses most frequently responsible for congenital infections are Cytomegalovirus (CMV), Herpes simplex 1–2, Herpes virus 6, Varicella zoster. Moreover Hepatitis B and C virus, HIV, Parvovirus B19 and non-polio Enteroviruses when contracted during pregnancy may involve the fetus or newborn at birth. Recently, new viruses have emerged, SARS-Cov-2 and Zika virus, of which we do not yet fully know the characteristics and pathogenic power when contracted during pregnancy. Viral infections in pregnancy can damage the fetus (spontaneous abortion, fetal death, intrauterine growth retardation) or the newborn (congenital anomalies, organ diseases with sequelae of different severity). Some risk factors specifically influence the incidence of transmission to the fetus: the timing of the infection in pregnancy, the order of the infection, primary or reinfection or chronic, the duration of membrane rupture, type of delivery, socio-economic conditions and breastfeeding. Frequently infected neonates, symptomatic at birth, have worse outcomes than asymptomatic. Many asymptomatic babies develop long term neurosensory outcomes. The way in which the virus interacts with the maternal immune system, the maternal-fetal interface and the placenta explain these results and also the differences that are observed from time to time in the fetal‑neonatal outcomes of maternal infections. The maternal immune system undergoes functional adaptation during pregnancy, once thought as physiological immunosuppression. This adaptation, crucial for generating a balance between maternal immunity and fetus, is necessary to promote and support the pregnancy itself and the growth of the fetus. When this adaptation is upset by the viral infection, the balance is broken, and the infection can spread and lead to the adverse outcomes previously described. In this review we will describe the main viral harmful infections in pregnancy and the potential mechanisms of the damages on the fetus and newborn.
Collapse
Affiliation(s)
- Cinzia Auriti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Ludovica Martini
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Fiammetta Piersigilli
- Department of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Maria Paola Ronchetti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Leonardo Caforio
- Fetal and Perinatal Medicine and Surgery Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
49
|
Yezli S, Yasir M, Yassin Y, Almazrua A, Al-Subhi T, Othman N, Omar A, Abdoon A, Elamin Y, Abuzaid A, Bafaraj T, Alzahrani H, Almahmoodi S, Alzahrani H, Bieh K, Alotaibi B, Khan A, Alzahrani M, Azhar EI. Lack of Zika Virus and Other Recognized Flaviviruses among the Mosquito Vectors during and Post the Hajj Mass Gathering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126275. [PMID: 34200607 PMCID: PMC8296062 DOI: 10.3390/ijerph18126275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Makkah city, Kingdom of Saudi Arabia (KSA), contains many of the world’s mosquito vectors of parasitic and arboviral disease and is the site of the Hajj mass gathering. As such there is a risk of exportation and globalization of vector-borne viruses, including the re-emerging Zika virus (ZIKV). There was international concern regarding the introduction of ZIKV to KSA and potential international spread of the virus following the 2016 Hajj which took place few days after the Rio summer Olympics at the height of the ZIKV pandemic. We aimed to detect flaviviruses, including ZIKV, circulating among mosquito hosts in the city of Makkah during and post the 2016 Hajj pilgrimage. Mosquitos (adults and larvae) were sampled from 15 sites in Makkah city during and post the 2016 Hajj and identified to species by morphological keys. Mosquitos were pooled according to date of collection, location, and species. A Pan-Flaviviruses RT-PCR assay that enables identification of 51 flaviviruses species and three tentative species was used to detect flavivirus RNA directly from mosquito homogenates. Between the 10 September and 6 October 2016, 9412 female mosquitos were collected. Of these, 81.3% were Aedes aegypti, 18.6% were Culex species, and 0.1% were Anopheles species. Of the total 493 mosquito pools generated, 242 (49%) were positive by the Pan-Flaviviruses primer set. Sequence analysis revealed that none of the mosquitos carried a pathogenic flavivirus, including ZIKV, but were infected with a novel insect-specific flavivirus. We found no pathogenic flaviviruses circulating in Makkah city during and post the 2016 Hajj and no evidence of introduction of ZIKV through the pilgrimage. Enhanced vector-borne diseases surveillance, prevention, and control are crucial in KSA especially during international mass gatherings such as the annual Hajj to prevent outbreaks and the spread of viruses with epidemic and pandemic potentials.
Collapse
Affiliation(s)
- Saber Yezli
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (Y.Y.); (A.A.); (K.B.); (B.A.); (A.K.)
- Correspondence: (S.Y.); (E.I.A.); Tel.: +966-114-01555 (ext. 1863) (S.Y.); +966-566-615-222 (E.I.A.)
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (M.Y.); (T.A.-S.); (N.O.)
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia
| | - Yara Yassin
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (Y.Y.); (A.A.); (K.B.); (B.A.); (A.K.)
| | - Afnan Almazrua
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (Y.Y.); (A.A.); (K.B.); (B.A.); (A.K.)
- Infection Control and Hospital Epidemiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Tagreed Al-Subhi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (M.Y.); (T.A.-S.); (N.O.)
| | - Norah Othman
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (M.Y.); (T.A.-S.); (N.O.)
| | - Abdiasiis Omar
- General Directorate of Vector-Borne & Zoonotic Diseases, Ministry of Health, Riyadh 12613, Saudi Arabia; (A.O.); (A.A.); (Y.E.); (A.A.); (M.A.)
| | - Abdelmohsin Abdoon
- General Directorate of Vector-Borne & Zoonotic Diseases, Ministry of Health, Riyadh 12613, Saudi Arabia; (A.O.); (A.A.); (Y.E.); (A.A.); (M.A.)
| | - Yousif Elamin
- General Directorate of Vector-Borne & Zoonotic Diseases, Ministry of Health, Riyadh 12613, Saudi Arabia; (A.O.); (A.A.); (Y.E.); (A.A.); (M.A.)
| | - Abuzaid Abuzaid
- General Directorate of Vector-Borne & Zoonotic Diseases, Ministry of Health, Riyadh 12613, Saudi Arabia; (A.O.); (A.A.); (Y.E.); (A.A.); (M.A.)
| | - Turki Bafaraj
- Vector-Born and Zoonotic Diseases Department, Public Health Administration, Ministry of Health, Makkah 24321, Saudi Arabia; (T.B.); (S.A.)
| | - Hassen Alzahrani
- Department of Clinical Laboratory, King Khalid University Hospital, Riyadh 12372, Saudi Arabia;
| | - Sameer Almahmoodi
- Vector-Born and Zoonotic Diseases Department, Public Health Administration, Ministry of Health, Makkah 24321, Saudi Arabia; (T.B.); (S.A.)
| | - Hussam Alzahrani
- Vision Colleges, Faculty of Medicine, Alfarabi College, Riyadh 13226, Saudi Arabia;
| | - Kingsley Bieh
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (Y.Y.); (A.A.); (K.B.); (B.A.); (A.K.)
| | - Badriah Alotaibi
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (Y.Y.); (A.A.); (K.B.); (B.A.); (A.K.)
| | - Anas Khan
- The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh 12341, Saudi Arabia; (Y.Y.); (A.A.); (K.B.); (B.A.); (A.K.)
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alzahrani
- General Directorate of Vector-Borne & Zoonotic Diseases, Ministry of Health, Riyadh 12613, Saudi Arabia; (A.O.); (A.A.); (Y.E.); (A.A.); (M.A.)
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Jeddah 21362, Saudi Arabia; (M.Y.); (T.A.-S.); (N.O.)
- Correspondence: (S.Y.); (E.I.A.); Tel.: +966-114-01555 (ext. 1863) (S.Y.); +966-566-615-222 (E.I.A.)
| |
Collapse
|
50
|
Jin H, Jiao C, Cao Z, Huang P, Chi H, Bai Y, Liu D, Wang J, Feng N, Li N, Zhao Y, Wang T, Gao Y, Yang S, Xia X, Wang H. An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Negl Trop Dis 2021; 15:e0009484. [PMID: 34086672 PMCID: PMC8208564 DOI: 10.1371/journal.pntd.0009484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of Zika virus (ZIKV), which caused a pandemic associated with Congenital Zika Syndrome and neuropathology in newborns and adults, prompted the pursuit of a safe and effective vaccine. Here, three kinds of recombinant rabies virus (RABV) encoding the prM-E protein of ZIKV were constructed: ZI-D (prM-E), ZI-E (transmembrane domain (TM) of prM-E replaced with RABV G) and ZI-F (signal peptide and TM domain of prM-E replaced with the region of RABV G). When the TM of prM-E was replaced with the region of RABV G (termed ZI-E), it promoted ZIKV E protein localization on the cell membrane and assembly on recombinant viruses. In addition, the change in the signal peptide with RABV G (termed ZI-F) was not conducive to foreign protein expression. The immunogenicity of recombinant viruses mixed with a complex adjuvant of ISA 201 VG and poly(I:C) was tested in BALB/c mice. After immunization with ZI-E, the anti-ZIKV IgG antibody lasted for at least 10 weeks. The titers of neutralizing antibodies (NAbs) against ZIKV and RABV at week 6 were all greater than the protective titers. Moreover, ZI-E stimulated the proliferation of splenic lymphocytes and promoted the secretion of cytokines. It also promoted the production of central memory T cells (TCMs) among CD4+/CD8+ T cells and stimulated B cell activation and maturation. These results indicate that ZI-E could induce ZIKV-specific humoral and cellular immune responses, which have the potential to be developed into a promising vaccine for protection against both ZIKV and RABV infections.
Collapse
Affiliation(s)
- Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Cuicui Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (XX); (HW)
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (XX); (HW)
| |
Collapse
|