1
|
Liu X, Xiang J, Fan S, Chen X, Peng C, Xu Z. 20S-Ginsenoside Rh2, the major bioactive saponin in Panax notoginseng flowers, ameliorates cough by inhibition of NaV1.7 and TRPV1 channel currents and downregulation of TRPV1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118716. [PMID: 39179055 DOI: 10.1016/j.jep.2024.118716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng flowers, which are the buds of the traditional Chinese medicinal herb Sanqi, are widely used in China for their cough-ameliorating properties, with demonstrated therapeutic effects in the treatment of both acute and chronic coughs. However, both the antitussive mechanism and active compound basis of P. notoginseng flowers remain poorly understood. AIM OF THE STUDY We investigated the antitussive effects of P. notoginseng flowers, identified the bioactive constituents responsible for alleviating cough symptoms, and elucidated the underlying pharmacological mechanisms. MATERIALS AND METHODS We analyzed the major chemical constituents of aqueous extracts of P. notoginseng flowers using liquid chromatography-mass spectrometry and quantitatively analyzed the key component, 20S-ginsenoside Rh2, using high-performance liquid chromatography. Using a cough reflex model in healthy mice and an ovalbumin-induced, highly sensitive guinea pig cough model, we verified the suppressive effects of P. notoginseng flowers and their saponin constituents on coughing. Furthermore, we explored the mechanisms of action of the key ion channels, NaV1.7 and TRPV1, using whole-cell patch-clamp techniques and molecular docking. Finally, the therapeutic mechanisms of P. notoginseng flowers on pathological cough were revealed using hematoxylin and eosin staining, immunohistochemistry, and western blotting. RESULTS The active components of P. notoginseng flowers were primarily protopanaxadiol-type saponins, among which 20S-ginsenoside Rh2 had the highest content (51.46 mg/g). In the mouse model, P. notoginseng flowers exhibited antitussive effects comparable to those of pentoxyverine citrate. Although its main saponin component, 20S-ginsenoside Rh2, showed slightly weaker effects, it still demonstrated concentration-dependent inhibition of channel activity. The whole-cell patch-clamp technique and virtual molecular docking showed that Rh2 might exert its effects by directly binding to the NaV1.7 and TRPV1 channels. In the guinea pig model, P. notoginseng flowers and their saponin components not only reduced cough frequency and prolonged the latency period before cough onset, but also significantly inhibited tracheal and pulmonary inflammation and the overexpression of TRPV1. CONCLUSIONS 20S-Ginsenoside Rh2, the major bioactive saponin in P. notoginseng flowers, exhibits potent antitussive effects. The potential mechanism of action of 20S-Ginsenoside Rh2 in the treatment of cough may involve inhibiting NaV1.7 and TRPV1 channel currents through direct binding to core protein active sites and downregulating TRPV1 expression.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuyuan Fan
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xumin Chen
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chengzhan Peng
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhengxin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, 225009, China; Yeda Institute of Gene and Cell Therapy, Taizhou, 318000, China.
| |
Collapse
|
2
|
Koskimäki S, Tojkander S. TRPV4-A Multifunctional Cellular Sensor Protein with Therapeutic Potential. SENSORS (BASEL, SWITZERLAND) 2024; 24:6923. [PMID: 39517820 PMCID: PMC11548305 DOI: 10.3390/s24216923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channel proteins belong to the superfamily of TRP proteins that form cationic channels in the animal cell membranes. These proteins have various subtype-specific functions, serving, for example, as sensors for pain, pressure, pH, and mechanical extracellular stimuli. The sensing of extracellular cues by TRPV4 triggers Ca2+-influx through the channel, subsequently coordinating numerous intracellular signaling cascades in a spatio-temporal manner. As TRPV channels play such a wide role in various cellular and physiological functions, loss or impaired TRPV protein activity naturally contributes to many pathophysiological processes. This review concentrates on the known functions of TRPV4 sensor proteins and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Sanna Koskimäki
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | | |
Collapse
|
3
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
4
|
Yang Y, Xiao Z, Yang W, Sun Y, Sui X, Lin X, Yang X, Bao Z, Cui Z, Ma Y, Li W, Wang S, Yang J, Wang Y, Luo Y. Role of transient receptor potential ankyrin 1 in idiopathic pulmonary fibrosis: modulation of M2 macrophage polarization. Cell Mol Life Sci 2024; 81:187. [PMID: 38635081 PMCID: PMC11026287 DOI: 10.1007/s00018-024-05219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-β1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shengran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
5
|
Jiang M, Yan L, Li M, Ye F, Shang E, Sun S, Fan X. Computer-aided investigation of Traditional Chinese Medicine mechanisms: A case study of San-Ao decoction in asthma treatment. Comput Biol Med 2024; 169:107868. [PMID: 38211384 DOI: 10.1016/j.compbiomed.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
The San-Ao Decoction (SAD) is a well-known Traditional Chinese Medicine (TCM) formula used to alleviate respiratory symptoms, including asthma. However, its precise mechanisms of action have remained largely unknown. In this study, we utilized computer-aided approaches to explore these mechanisms. Firstly, we conducted a comprehensive analysis of the chemical composition of SAD, which allowed us to identify the 28 main ingredients. Then, we employed computer simulations to investigate the potential active ingredients of SAD and the corresponding binding sites of transient receptor potential vanilloid 1 (TRPV1). The simulations revealed that D509 and D647 were the potential binding sites for TRPV1. Notably, molecular dynamics (MD) studies indicated that site D509 may function as an allosteric site of TRPV1. Furthermore, to validate the computer-aided predictions, we performed experimental studies, including in vitro and in vivo assays. The results of these experiments confirmed the predictions made by our computational models, providing further evidence for the mechanisms of action of San-Ao Decoction in asthma treatment. Our findings demonstrated that: i) D509 and D647 of TRPV1 are the key binding sites for the main ingredients of SAD; ii) SAD or its main ingredients significantly reduce the influx of Ca2+ through TRPV1, following the TCM principle of "Jun, Chen, Zuo, Shi"; iii) SAD shows efficiency in comprehensive in vivo validation. In conclusion, our computer-aided investigation of San-Ao Decoction in asthma treatment has provided valuable insights into the therapeutic mechanisms of this TCM formula. The combination of computational analysis and experimental validation has proven effective in enhancing our understanding of TCM and may pave the way for future discoveries in the field.
Collapse
Affiliation(s)
- Minyue Jiang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lu Yan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Kudsi SQ, Viero FT, Pereira LG, Trevisan G. Involvement of the Transient Receptor Channels in Preclinical Models of Musculoskeletal Pain. Curr Neuropharmacol 2024; 22:72-87. [PMID: 37694792 PMCID: PMC10716882 DOI: 10.2174/1570159x21666230908094159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation. OBJECTIVE In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models. METHODS This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles. RESULTS The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice. CONCLUSION Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Fernanda Tibolla Viero
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Leonardo Gomes Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| |
Collapse
|
7
|
Zhou L, Jian T, Wan Y, Huang R, Fang H, Wang Y, Liang C, Ding X, Chen J. Luteolin Alleviates Oxidative Stress in Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke via Modulation of the TRPV1 and CYP2A13/NRF2 Signaling Pathways. Int J Mol Sci 2023; 25:369. [PMID: 38203542 PMCID: PMC10779282 DOI: 10.3390/ijms25010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The current study aims to investigate the therapeutic potential of luteolin (Lut), a naturally occurring flavonoid found in various medicinal plants, for treating chronic obstructive pulmonary disease (COPD) through both in vitro and in vivo studies. The results demonstrated that Lut increased body weight, reduced lung tissue swelling and lung damage indices, mitigated systemic oxidative stress levels, and decreased alveolar fusion in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD mice. Additionally, Lut was observed to downregulate the expression of the TRPV1 and CYP2A13 proteins while upregulating SIRT6 and NRF2 protein expression in CS + LPS-induced COPD mice and cigarette smoke extract (CSE)-treated A549 cells. The concentrations of total reactive oxygen species (ROS) and mitochondrial ROS in A549 cells induced by CSE significantly increased. Moreover, CSE caused a notable elevation of intracellular Ca2+ levels in A549 cells. Importantly, Lut exhibited inhibitory effects on the inward flow of Ca2+ and attenuated the overproduction of mitochondrial and intracellular ROS in A549 cells treated with CSE. In conclusion, Lut demonstrated a protective role in alleviating oxidative stress and inflammation in CS + LPS-induced COPD mice and CSE-treated A549 cells by regulating TRPV1/SIRT6 and CYP2A13/NRF2 signaling pathways.
Collapse
Affiliation(s)
- Lina Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
| | - Yan Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Rizhong Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Hailing Fang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Yiwei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| |
Collapse
|
8
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
9
|
Levy E, Meyer NJ. Failure of TRPC6 inhibition to prevent COVID-19 deterioration: more questions than answers. Thorax 2023; 78:741-742. [PMID: 37286238 PMCID: PMC10714422 DOI: 10.1136/thorax-2023-220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Elizabeth Levy
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Ware LB, Soleymanlou N, McAuley DF, Estrada V, Diaz GA, Lacamera P, Kaste R, Choi W, Gupta A, Welte T. TRPC6 inhibitor (BI 764198) to reduce risk and severity of ARDS due to COVID-19: a phase II randomised controlled trial. Thorax 2023; 78:816-824. [PMID: 37024277 PMCID: PMC10359525 DOI: 10.1136/thorax-2022-219668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Despite the availability of COVID-19 vaccinations, there remains a need to investigate treatments to reduce the risk or severity of potentially fatal complications of COVID-19, such as acute respiratory distress syndrome (ARDS). This study evaluated the efficacy and safety of the transient receptor potential channel C6 (TRPC6) inhibitor, BI 764198, in reducing the risk and/or severity of ARDS in patients hospitalised for COVID-19 and requiring non-invasive, supplemental oxygen support (oxygen by mask or nasal prongs, oxygen by non-invasive ventilation or high-flow nasal oxygen). METHODS Multicentre, double-blind, randomised phase II trial comparing once-daily oral BI 764198 (n=65) with placebo (n=64) for 28 days (+2-month follow-up). PRIMARY ENDPOINT proportion of patients alive and free of mechanical ventilation at day 29. Secondary endpoints: proportion of patients alive and discharged without oxygen (day 29); occurrence of either in-hospital mortality, intensive care unit admission or mechanical ventilation (day 29); time to first response (clinical improvement/recovery); ventilator-free days (day 29); and mortality (days 15, 29, 60 and 90). RESULTS No difference was observed for the primary endpoint: BI 764198 (83.1%) versus placebo (87.5%) (estimated risk difference -5.39%; 95% CI -16.08 to 5.30; p=0.323). For secondary endpoints, a longer time to first response (rate ratio 0.67; 95% CI 0.46 to 0.99; p=0.045) and longer hospitalisation (+3.41 days; 95% CI 0.49 to 6.34; p=0.023) for BI 764198 versus placebo was observed; no other significant differences were observed. On-treatment adverse events were similar between trial arms and more fatal events were reported for BI 764198 (n=7) versus placebo (n=2). Treatment was stopped early based on an interim observation of a lack of efficacy and an imbalance of fatal events (Data Monitoring Committee recommendation). CONCLUSIONS TRPC6 inhibition was not effective in reducing the risk and/or severity of ARDS in patients with COVID-19 requiring non-invasive, supplemental oxygen support. TRIAL REGISTRATION NUMBER NCT04604184.
Collapse
Affiliation(s)
- Lorraine B Ware
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nima Soleymanlou
- TA Cardio-Metabolism & Respiratory, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Danny Francis McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - Vicente Estrada
- Hospital Clínico San Carlos, IdISSC; CIBERINFE, Madrid, Spain
| | - George A Diaz
- Section of Infectious Diseases, Providence Regional Medical Center Everett, Everett, Washington, USA
| | - Peter Lacamera
- Division of Pulmonary and Critical Care Medicine, St Elizabeth's Medical Center, Boston, Massachusetts, USA
| | - Renee Kaste
- TA Cardio-Metabolism & Respiratory, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Wansuk Choi
- TA Cardio-Metabolism & Respiratory, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Abhya Gupta
- TA Inflammation Medicine, Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | - Tobias Welte
- Department of Pneumology, Hannover Medical School, Hannover, Niedersachsen, Germany
| |
Collapse
|
11
|
Nie Y, Feng F, Luo W, Sanders AJ, Zhang Y, Liang J, Chen C, Feng W, Gu W, Liao W, Wang W, Chen J, Zhang L, Jiang WG, Li J. Overexpressed transient receptor potential vanilloid 1 (TRPV1) in lung adenocarcinoma harbours a new opportunity for therapeutic targeting. Cancer Gene Ther 2022; 29:1405-1417. [PMID: 35354949 PMCID: PMC9576597 DOI: 10.1038/s41417-022-00459-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
The specific biological function of transient receptor potential vanilloid 1 (TRPV1) in pathogenesis of lung adenocarcinoma (LUAD) remains unclear. In this study, TRPV1 expression in tumor tissues, primary cells and cell lines of LUAD, as well as the mechanism mediating its hyperexpression were systematically studied. Multiple models and techniques were adopted to elucidate the relationship between TRPV1 hyperexpression and tumor recurrence and metastasis. Results showed that TRPV1 expression was increased in tumor tissues and primary tumor cells of LUAD patients. The increased expression was associated with worse overall survival outcome and raised HIF1α levels. TRPV1 expression in A549 and NCI-H292 cells was increased after pretreatment with cigarette smoke extract or spermine NONOate. Moreover, A549 cells with TRPV1 overexpression has enhanced tumor growth rates in subcutaneous grafted tumor models, and increased intrapulmonary metastasis after tail vein infusion in nude BALB/c nude mice. Mechanistically, TRPV1 overexpression in A549 cells promoted HIF1α expression and nuclear translocation by promoting CREB phosphorylation and activation of NOS1-NO pathway, ultimately leading to accelerated cell proliferation and stronger invasiveness. In addition, based on photothermal effects, CuS-TRPV1 mAb effectively targeted and induced apoptosis of TRPV1-A549 cells both in vivo and in vitro, thereby mitigating tumor growth and metastasis induced by xenotransplantation of TRPV1-A549 cells. In conclusion, TRPV1 hyperexpression in LUAD is a risk factor for tumor progression and is involved in proliferation and migration of tumor cells through activation of HIF1α. Our study also attempted a new strategy inhibiting the recurrence and metastasis of LUAD: by CuS-TRPV1 mAb precisely kill TRPV1 hyperexpression cells through photothermal effects.
Collapse
Affiliation(s)
- Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fenglan Feng
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
| | | | - Yidi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jiaming Liang
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Cheng Chen
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Weineng Feng
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
| | - Weiquan Gu
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
| | - Weiping Liao
- Foshan Fourth People's Hospital, Foshan, 528000, PR China
| | - Wei Wang
- Foshan Fourth People's Hospital, Foshan, 528000, PR China
| | - Jinfeng Chen
- Peking University Cancer Hospital and Beijing Cancer Institute, Department of Thoracic Surgery, Fucheng Road, Haidian District, Beijing, China
| | - Lijian Zhang
- Peking University Cancer Hospital and Beijing Cancer Institute, Department of Thoracic Surgery, Fucheng Road, Haidian District, Beijing, China
| | - Wen G Jiang
- CCMRC, Cardiff University School of Medicine, Cardiff, UK
| | - Jin Li
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China.
| |
Collapse
|
12
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
13
|
Kudsi SQ, Piccoli BC, Ardisson-Araújo D, Trevisan G. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues. Life Sci 2022; 308:120977. [PMID: 36126722 DOI: 10.1016/j.lfs.2022.120977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS This article aims to analyze the baseline distribution of TRPA1, TRPV1, TRPV4, and TRPM8 channels in human systems at the transcriptional level. MAIN METHODS Using the RNA-seq dataset from the National Center for Biotechnology Information (NCBI) gene database, we investigated and compared the transcriptional levels of TRPV1, TRPA1, TRPV4 and TRPM8 found in 95 human subjects representing 33 different tissues to determine the tissue specificity of all protein-coding genes. KEY FINDING In this study, we observed higher transcriptional levels for TRPV1 (duodenum), TRPA1 (Urinary bladder), TRPV4 (Kidney) and TRPM8 (Prostate) compared to the other TRPs. SIGNIFICANCE These channels are involved in developing inflammatory and painful pathologies and seem to participate in cancer development. This information on transcriptional levels of TRPV1, TRPA1, TRPV4 and TRPM8 in human systems may provide essential suggestions for further studies on these proteins.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Bruna Candia Piccoli
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Yuan Y, Fang X, Ye W. Acrid and Bitter Chinese Herbs in Decoction Effectively Relieve Lung Inflammation and Regulation of TRPV1/TAS2R14 Channels in a Rat Asthmatic Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8061740. [PMID: 36045655 PMCID: PMC9423947 DOI: 10.1155/2022/8061740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
Abstract
Background Shegan Mahuang decoction (SGMHD) was widely used as a classic prescription of traditional Chinese medicine to treat asthma. However, there is no research on the acrid and bitter Chinese herbs in the SGMHD to treat asthma. This study aimed to investigate the effects of SGMHD and its acrid-bitter Chinese herbs composition on airway inflammation and the expression of TRPV1 and TAS2R14 genes and proteins in asthmatic rats. Methods SD (Sprague Dawley) rats of asthma were induced by ovalbumin and aluminum hydroxide, then randomly divided into the Normal group, Model group, SGMHD group, Dexamethasone (Dex) group, Guilongkechuangning (GLKC) group, The Acrid Chinese Herbs group (ACH), and The Bitter Chinese Herbs group (BCH). The rats were given intragastric gavage after 21 days for 4 weeks. The bronchoalveolar lavage fluid (BALF) was collected, and the levels of IL-4, IL-13, nerve factors SP, CGRP, PGE2, and serum of IgE were determined by ELISA. Pathological changes in the lungs were determined by hematoxylin-eosin (HE) staining. The expression of TRPV1 and TAS2R14 in the rat lung group was detected by immunofluorescence (IF). The expression levels of TRPV1 and TAS2R14 were measured using western blotting. The mRNA levels of TRPV1 and TAS2R14 were measured using RT-qPCR. Results The levels of serum IgE in treated rats and the cytokines IL-4, IL-13, SP, CGRP, and PGE2 were all decreased. HE-staining showed that significantly reduced inflammatory cell infiltration in lung tissue. IF-staining showed the expression levels except those of the normal group were enhanced. Acrid Chinese herbs inhibited TRPV1, and bitter Chinese herbs activated the gene and protein expression of TAS2R in the lung. Conclusion The acrid Chinese herbs regulate TRPV1, and bitter Chinese herbs regulate the gene and protein expression of TAS2R14, through nerve and immune-inflammatory factors, reduced airway inflammation, reduced airway reactivity, promoted airway remodeling, and the combination of acrid-bitter Chinese herbs can enhance the above effects. This will lay a foundation for further in vivo study of specific compounds of acrid-bitter Chinese herbs.
Collapse
Affiliation(s)
- Yamei Yuan
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xiangming Fang
- Clinical College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Weidong Ye
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
15
|
Leidinger G, Flockerzi F, Hohneck J, Bohle RM, Fieguth A, Tschernig T. TRPC6 is altered in COVID-19 pneumonia. Chem Biol Interact 2022; 362:109982. [PMID: 35598647 PMCID: PMC9119708 DOI: 10.1016/j.cbi.2022.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
In this Letter to the Editor supportive data were presented to a recent paper published in this journal reporting the involvement of TRP channels in COVID-19 pneumonia and its role for new therapies. Since gene expression of TRP channels was found in human lung tissues the protein was not being reported so far. TRP channels are supposed to be involved in the pulmonary inflammation and its symptoms such as fever, cough and others. Here, TRPC6 was investigated in tissues of normal human lungs and of SARS-Cov-2 infected lungs in a preliminary study. Tissue was obtained post mortem from anatomical body donations during dissections and during pathological dissections (13 normal, 4 COVID-19 pneumoniae) and processed for immunohistochemistry. In normal lungs TRPC6 was found in the ciliated epithelium, in the wall of larger lung vessels and in the alveolar septa. In COVID-19 pneumonia the distribution of TRPC6 was different. Inflammatory lesions, cellular infiltrates, hyaline membranes and fibrosis were labelled intensively as well as dilated capillaries. These observations are from four patients with COVID-19 pneumonia.The observations do not elucidate the molecular mechanisms but support the view that TRPC6 channels are involved in normal physiology of normal human lungs and in COVID-19 pneumonia. TRPC6 might aggravate SARS-2 induced inflammation and could be a target for inhibiting drugs.
Collapse
Affiliation(s)
- Gina Leidinger
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany
| | - Fidelis Flockerzi
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Johannes Hohneck
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Rainer M Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Armin Fieguth
- Institute of Forensic Medicine, Hanover Medical School, Hannover, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany.
| |
Collapse
|
16
|
Transient Receptor Potential Vanilloid-1 (TRPV1) Alleviates Hepatic Fibrosis via TGF-β Signaling. DISEASE MARKERS 2022; 2022:3100943. [PMID: 35909891 PMCID: PMC9334033 DOI: 10.1155/2022/3100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022]
Abstract
Hepatic fibrosis is a major global health problem and considered a leading cause of liver-related morbidity and mortality worldwide. Although previous studies have suggested that transient receptor potential vanilloid-1 (TRPV1) is protective against cardiac and renal fibrosis, its functional role in hepatic fibrosis has remained elusive. Herein, we characterize the effects of TRPV1 on carbon tetrachloride- (CCl4-) induced mice, in vitro transforming growth factor-β- (TGF-β-) treated hepatic stellate cells (HSCs), and human fibrosis specimens. Finally, our results demonstrated the significant TRPV1 downregulation in human liver fibrosis tissues. Knocking out TRPV1 significantly increased the expression of various hepatic fibrosis markers, while the expression of these biomarkers declined markedly in capsaicin-activated mice. Moreover, our study revealed that knocking down TRPV1 would enhance the promotive effect of TGF-β on HSC proliferation, cell cycle, cell apoptosis, and ECM expression. Also, such promotive effect can be partially reversible by capsaicin, an exogenous activator of TRPV1. Collectively, the obtained data suggest that TRPV1 may alleviate CCl4-induced hepatic fibrosis and attenuate the effect of TGF-β on HSC activation, proliferation, and apoptosis, which overall implies that targeting TRPV1 channel activity may be an effective therapeutic strategy for treating hepatic fibrosis.
Collapse
|
17
|
Qian Z, Wang Q, Qiu Z, Li D, Zhang C, Xiong X, Zheng Z, Ruan Q, Guo Y, Guo J. Protein nanoparticle-induced osmotic pressure gradients modify pulmonary edema through hyperpermeability in acute respiratory distress syndrome. J Nanobiotechnology 2022; 20:314. [PMID: 35794575 PMCID: PMC9257569 DOI: 10.1186/s12951-022-01519-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
AbstractAcute respiratory distress syndrome (ARDS), caused by noncardiogenic pulmonary edema (PE), contributes significantly to Coronavirus 2019 (COVID-19)-associated morbidity and mortality. We explored the effect of transmembrane osmotic pressure (OP) gradients in PE using a fluorescence resonance energy transfer-based Intermediate filament (IF) tension optical probe. Angiotensin-II- and bradykinin-induced increases in intracellular protein nanoparticle (PN)-OP were associated with inflammasome production and cytoskeletal depolymerization. Intracellular protein nanoparticle production also resulted in cytomembrane hyperpolarization and L-VGCC-induced calcium signals, which differed from diacylglycerol-induced calcium increment via TRPC6 activation. Both pathways involve voltage-dependent cation influx and OP upregulation via SUR1-TRPM4 channels. Meanwhile, intra/extracellular PN-induced OP gradients across membranes upregulated pulmonary endothelial and alveolar barrier permeability. Attenuation of intracellular PN, calcium signals, and cation influx by drug combinations effectively relieved intracellular OP and pulmonary endothelial nonselective permeability, and improved epithelial fluid absorption and PE. Thus, PN-OP is pivotal in pulmonary edema in ARDS and COVID-19, and transmembrane OP recovery could be used to treat pulmonary edema and develop new drug targets in pulmonary injury.
Graphical Abstract
Collapse
|
18
|
Wang X, Sun Y, Wang Q, Liu F, Yang W, Sui X, Yang J, Zhang M, Wang S, Xiao Z, Luo Y, Wang Y, Zhu T. Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7985. [PMID: 35805655 PMCID: PMC9266004 DOI: 10.3390/ijerph19137985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
The “Multi-Threat Medical Countermeasure (MTMC)” strategy was proposed to develop a single drug with therapeutic efficacy against multiple pathologies or broad-spectrum protection against various toxins with common biochemical signals, molecular mediators, or cellular processes. This study demonstrated that cytotoxicity, expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) mRNA, and intracellular calcium influx were increased in A549 cells exposed to amide herbicides (AHs), in which the order of cytotoxicity was metolachlor > acetochlor > propisochlor > alachlor > butachlor > propanil > pretilachlor, based on IC50 values of 430, 524, 564, 565, 619, 831, and 2333 μM, respectively. Inhibition/knockout of TRPA1 efficiently protected against cytotoxicity, decreased TRPA1 mRNA expression, and reduced calcium influx. The results suggested that the TRPA1 channel could be a key common target for AHs poisoning. The order of TRPA1 affinity for AHs was propanil > pretilachlor > metolachlor > (propiso/ala/aceto/butachlor), based on KD values of 16.2, 309, and 364 μM, respectively. The common molecular mechanisms of TRPA1-AHs interactions were clarified, including toxicity-effector groups (benzene ring, nitrogen/oxygen-containing functional groups, halogen) and residues involved in interactions (Lys787, Leu982). This work provides valuable information for the development of TRPA1 as a promising therapeutic target for broad-spectrum antitoxins.
Collapse
Affiliation(s)
- Xiaoning Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Qian Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Minmin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Shuai Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
| |
Collapse
|
19
|
Chai XN, Ludwig FA, Müglitz A, Gong Y, Schaefer M, Regenthal R, Krügel U. A Pharmacokinetic and Metabolism Study of the TRPC6 Inhibitor SH045 in Mice by LC-MS/MS. Int J Mol Sci 2022; 23:ijms23073635. [PMID: 35408998 PMCID: PMC8998618 DOI: 10.3390/ijms23073635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
TRPC6, the sixth member of the family of canonical transient receptor potential (TRP) channels, contributes to a variety of physiological processes and human pathologies. This study extends the knowledge on the newly developed TRPC6 blocker SH045 with respect to its main target organs beyond the description of plasma kinetics. According to the plasma concentration-time course in mice, SH045 is measurable up to 24 h after administration of 20 mg/kg BW (i.v.) and up to 6 h orally. The short plasma half-life and rather low oral bioavailability are contrasted by its reported high potency. Dosage limits were not worked out, but absence of safety concerns for 20 mg/kg BW supports further dose exploration. The disposition of SH045 is described. In particular, a high extravascular distribution, most prominent in lung, and a considerable renal elimination of SH045 were observed. SH045 is a substrate of CYP3A4 and CYP2A6. Hydroxylated and glucuronidated metabolites were identified under optimized LC-MS/MS conditions. The results guide a reasonable selection of dose and application route of SH045 for target-directed preclinical studies in vivo with one of the rare high potent and subtype-selective TRPC6 inhibitors available.
Collapse
Affiliation(s)
- Xiao-Ning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany;
| | - Anne Müglitz
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Yuanyuan Gong
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Ralf Regenthal
- Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany;
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
- Correspondence:
| |
Collapse
|
20
|
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A, Mahavadi P. PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci 2022; 79:151. [PMID: 35212819 PMCID: PMC8881280 DOI: 10.1007/s00018-022-04189-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER–mito cross talk and tethering under conditions of IPF. We here demonstrate that ER–mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is—at least in part—due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2–TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.
Collapse
Affiliation(s)
- Jessica Knoell
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Shashi Chillappagari
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,Department of Biochemistry, Faculty of Medicine, JLU, Giessen, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martina Korfei
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Ruth Dartsch
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria.,European IPF/ILD Registry and Biobank, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,European IPF/ILD Registry and Biobank, Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), JLU, Giessen, Germany.,Lung Clinic, Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
21
|
Spix B, Jeridi A, Ansari M, Yildirim AÖ, Schiller HB, Grimm C. Endolysosomal Cation Channels and Lung Disease. Cells 2022; 11:304. [PMID: 35053420 PMCID: PMC8773812 DOI: 10.3390/cells11020304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/28/2022] Open
Abstract
Endolysosomal cation channels are emerging as key players of endolysosomal function such as endolysosomal trafficking, fusion/fission, lysosomal pH regulation, autophagy, lysosomal exocytosis, and endocytosis. Diseases comprise lysosomal storage disorders (LSDs) and neurodegenerative diseases, metabolic diseases, pigmentation defects, cancer, immune disorders, autophagy related diseases, infectious diseases and many more. Involvement in lung diseases has not been a focus of attention so far but recent developments in the field suggest critical functions in lung physiology and pathophysiology. Thus, loss of TRPML3 was discovered to exacerbate emphysema formation and cigarette smoke induced COPD due to dysregulated matrix metalloproteinase 12 (MMP-12) levels in the extracellular matrix of the lung, a known risk factor for emphysema/COPD. While direct lung function measurements with the exception of TRPML3 are missing for other endolysosomal cation channels or channels expressed in lysosome related organelles (LRO) in the lung, links between those channels and important roles in lung physiology have been established such as the role of P2X4 in surfactant release from alveolar epithelial Type II cells. Other channels with demonstrated functions and disease relevance in the lung such as TRPM2, TRPV2, or TRPA1 may mediate their effects due to plasma membrane expression but evidence accumulates that these channels might also be expressed in endolysosomes, suggesting additional and/or dual roles of these channels in cell and intracellular membranes. We will discuss here the current knowledge on cation channels residing in endolysosomes or LROs with respect to their emerging roles in lung disease.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| | - Aicha Jeridi
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Meshal Ansari
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Ali Önder Yildirim
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Herbert B. Schiller
- Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Munich, Germany; (A.J.); (M.A.); (A.Ö.Y.); (H.B.S.)
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
22
|
Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021; 21:41-59. [PMID: 34526696 PMCID: PMC8442523 DOI: 10.1038/s41573-021-00268-4] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.
Collapse
|
23
|
Thermosensory Transient Receptor Potential Ion Channels and Asthma. Biomedicines 2021; 9:biomedicines9070816. [PMID: 34356881 PMCID: PMC8301310 DOI: 10.3390/biomedicines9070816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a widespread chronic disease of the bronchopulmonary system with a heterogeneous course due to the complex etiopathogenesis. Natural-climatic and anthropogenic factors play an important role in the development and progression of this pathology. The reception of physical and chemical environmental stimuli and the regulation of body temperature are mediated by thermosensory channels, members of a subfamily of transient receptor potential (TRP) ion channels. It has been found that genes encoding vanilloid, ankyrin, and melastatin TRP channels are involved in the development of some asthma phenotypes and in the formation of exacerbations of this pathology. The review summarizes modern views on the role of high and low temperatures in airway inflammation in asthma. The participation of thermosensory TRP channels (vanilloid, ankyrin, and melastatin TRP channels) in the reaction to high and low temperatures and air humidity as well as in the formation of bronchial hyperreactivity and respiratory symptoms accompanying asthma is described. The genetic aspects of the functioning of thermosensory TRP channels are discussed. It is shown that new methods of treatment of asthma exacerbations caused by the influence of temperature and humidity should be based on the regulation of channel activity.
Collapse
|
24
|
Retamal JS, Grace MS, Dill LK, Ramirez-Garcia P, Peng S, Gondin AB, Bennetts F, Alvi S, Rajasekhar P, Almazi JG, Carbone SE, Bunnett NW, Davis TP, Veldhuis NA, Poole DP, McIntyre P. Serotonin-induced vascular permeability is mediated by transient receptor potential vanilloid 4 in the airways and upper gastrointestinal tract of mice. J Transl Med 2021; 101:851-864. [PMID: 33859334 PMCID: PMC8047529 DOI: 10.1038/s41374-021-00593-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023] Open
Abstract
Endothelial and epithelial cells form physical barriers that modulate the exchange of fluid and molecules. The integrity of these barriers can be influenced by signaling through G protein-coupled receptors (GPCRs) and ion channels. Serotonin (5-HT) is an important vasoactive mediator of tissue edema and inflammation. However, the mechanisms that drive 5-HT-induced plasma extravasation are poorly defined. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an established enhancer of signaling by GPCRs that promote inflammation and endothelial barrier disruption. Here, we investigated the role of TRPV4 in 5-HT-induced plasma extravasation using pharmacological and genetic approaches. Activation of either TRPV4 or 5-HT receptors promoted significant plasma extravasation in the airway and upper gastrointestinal tract of mice. 5-HT-mediated extravasation was significantly reduced by pharmacological inhibition of the 5-HT2A receptor subtype, or with antagonism or deletion of TRPV4, consistent with functional interaction between 5-HT receptors and TRPV4. Inhibition of receptors for the neuropeptides substance P (SP) or calcitonin gene-related peptide (CGRP) diminished 5-HT-induced plasma extravasation. Supporting studies assessing treatment of HUVEC with 5-HT, CGRP, or SP was associated with ERK phosphorylation. Exposure to the TRPV4 activator GSK1016790A, but not 5-HT, increased intracellular Ca2+ in these cells. However, 5-HT pre-treatment enhanced GSK1016790A-mediated Ca2+ signaling, consistent with sensitization of TRPV4. The functional interaction was further characterized in HEK293 cells expressing 5-HT2A to reveal that TRPV4 enhances the duration of 5-HT-evoked Ca2+ signaling through a PLA2 and PKC-dependent mechanism. In summary, this study demonstrates that TRPV4 contributes to 5-HT2A-induced plasma extravasation in the airways and upper GI tract, with evidence supporting a mechanism of action involving SP and CGRP release.
Collapse
Affiliation(s)
- Jeffri S Retamal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Megan S Grace
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- Department of Physiology, School of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Larissa K Dill
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paulina Ramirez-Garcia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Scott Peng
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Felix Bennetts
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sadia Alvi
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Pradeep Rajasekhar
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Juhura G Almazi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | - Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia.
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia.
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
25
|
Dumitrache MD, Jieanu AS, Scheau C, Badarau IA, Popescu GDA, Caruntu A, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp Ther Med 2021; 22:917. [PMID: 34306191 PMCID: PMC8280727 DOI: 10.3892/etm.2021.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are chronic respiratory diseases with high prevalence and mortality that significantly alter the quality of life in affected patients. While the cellular and molecular mechanisms engaged in the development and evolution of these two conditions are different, COPD and asthma share a wide array of symptoms and clinical signs that may impede differential diagnosis. However, the distinct signaling pathways regulating cough and airway hyperresponsiveness employ the interaction of different cells, molecules, and receptors. Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a major role in cough and airway inflammation. Consequently, its agonist, capsaicin, is of substantial interest in exploring the cellular effects and regulatory pathways that mediate these respiratory conditions. Increasingly more studies emphasize the use of capsaicin for the inhalation cough challenge, yet the involvement of TRPV1 in cough, bronchoconstriction, and the initiation of inflammation has not been entirely revealed. This review outlines a comparative perspective on the effects of capsaicin and its receptor in the pathophysiology of COPD and asthma, underlying the complex entanglement of molecular signals that bridge the alteration of cellular function with the multitude of clinical effects.
Collapse
Affiliation(s)
- Mihai-Daniel Dumitrache
- Department of Pneumology IV, 'Marius Nasta' Institute of Pneumophtysiology, 050159 Bucharest, Romania
| | - Ana Stefania Jieanu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Internal Medicine and Gastroenterology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Prof. N.C. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
26
|
Endothelial Transient Receptor Potential V4 Channels Mediate Lung Ischemia-Reperfusion Injury. Ann Thorac Surg 2021; 113:1256-1264. [PMID: 33961815 DOI: 10.1016/j.athoracsur.2021.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (IRI), involving severe inflammation and edema, is a major cause of primary graft dysfunction following transplant. Activation of transient receptor potential vanilloid 4 (TRPV4) channels modulates vascular permeability. Thus, this study tests the hypothesis that endothelial TRPV4 channels mediate lung IRI. METHODS C57BL/6 wild-type (WT), TRPV4-/-, tamoxifen-inducible endothelial TRPV4 knockout (TRPV4EC-/-), and tamoxifen-treated control (TRPV4fl/fl) mice underwent lung IR using a left lung hilar-ligation model (n≥6 mice/group). WT mice were also treated with a TRPV4-specific inhibitor (GSK2193874; 1mg/kg) (WT+GSK219). Partial pressure of oxygen (PaO2), edema (wet-to-dry weight ratio), compliance, neutrophil infiltration, and cytokine concentrations in bronchioalveolar lavage fluid were assessed. Pulmonary microvascular endothelial cells (PMVECs) were characterized in vitro following exposure to hypoxia-reoxygenation. RESULTS Compared to WT, PaO2 following IR was significantly improved in TRPV4-/- mice (133.1±43.9 vs 427.8±83.1 mmHg, p<0.001) and WT+GSK219 mice (133.1±43.9 vs 447.0±67.6 mmHg, p<0.001). Pulmonary edema and neutrophil infiltration were also significantly reduced after IR in TRPV4-/- and WT+GSK219 mice versus WT. TRPV4EC-/- mice following IR demonstrated significantly improved oxygenation versus control (109.2±21.6 vs 405.3±41.4 mmHg, p<0.001) as well as significantly improved compliance, and significantly less edema, neutrophil infiltration and proinflammatory cytokine production (TNF-α, CXCL1, IL-17, IFN-γ). Hypoxia-reoxygenation-induced permeability and CXCL1 expression by PMVECs was significantly attenuated by TRPV4 inhibitors. CONCLUSIONS Endothelial TRPV4 plays a key role in vascular permeability and lung inflammation following IR. TRPV4 channels may be a promising therapeutic target to mitigate lung IRI and decrease the incidence of primary graft dysfunction following transplant. (Word Count: 249/250).
Collapse
|
27
|
Rajan S, Schremmer C, Weber J, Alt P, Geiger F, Dietrich A. Ca 2+ Signaling by TRPV4 Channels in Respiratory Function and Disease. Cells 2021; 10:cells10040822. [PMID: 33917551 PMCID: PMC8067475 DOI: 10.3390/cells10040822] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Members of the transient receptor potential (TRP) superfamily are broadly expressed in our body and contribute to multiple cellular functions. Most interestingly, the fourth member of the vanilloid family of TRP channels (TRPV4) serves different partially antagonistic functions in the respiratory system. This review highlights the role of TRPV4 channels in lung fibroblasts, the lung endothelium, as well as the alveolar and bronchial epithelium, during physiological and pathophysiological mechanisms. Data available from animal models and human tissues confirm the importance of this ion channel in cellular signal transduction complexes with Ca2+ ions as a second messenger. Moreover, TRPV4 is an excellent therapeutic target with numerous specific compounds regulating its activity in diseases, like asthma, lung fibrosis, edema, and infections.
Collapse
|
28
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
29
|
Chai XN, Ludwig FA, Müglitz A, Schaefer M, Yin HY, Brust P, Regenthal R, Krügel U. Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice. Pharmaceuticals (Basel) 2021; 14:ph14030259. [PMID: 33805686 PMCID: PMC8000919 DOI: 10.3390/ph14030259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2–1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.
Collapse
Affiliation(s)
- Xiao-Ning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
- Acupuncture and Tuina School, Chengdu University of Traditional, Chinese Medicine, Chengdu 610075, China;
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (F.-A.L.); (P.B.)
| | - Anne Müglitz
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional, Chinese Medicine, Chengdu 610075, China;
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (F.-A.L.); (P.B.)
| | - Ralf Regenthal
- Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany;
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
- Correspondence:
| |
Collapse
|
30
|
Analysis of the clinical characteristics of arthritis with renal disease caused by a NPHS2 gene mutation. Clin Rheumatol 2021; 40:3335-3343. [PMID: 33428103 DOI: 10.1007/s10067-020-05574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The co-existence of juvenile idiopathic arthritis (JIA)/rheumatoid arthritis (RA) and focal segmental glomerulosclerosis (FSGS) is rare, and the existence of co-pathogenesis remains unknown. In this study, we analyzed the clinical and gene mutation characteristics of a patient with JIA and FSGS caused by a NPHS2 gene mutation, and evaluated the potential connections between these two diseases. We summarized the clinical manifestations, related examination results, and gene mutation characteristics of the patient who presented at our center and six reported cases of arthritis with renal disease. Most of the cases were polyarticular arthritis with varying degrees of renal damage (hematuria, proteinuria, and renal dysfunction) and different prognoses. Among these patients, two developed end-stage renal disease (ESRD), with one dying as a result, while the other patients had a relatively good prognosis. Patients with a family history of renal disease had a poor prognosis. After excluding occasional factors and drug influences, our analysis indicated the existence of co-pathogenesis of arthritis with renal damage (especially FSGS). NPHS2 mutations might account for the family aggregation. Therefore, evaluation of more clinical cases is necessary to further clarify the underlying co-pathogenesis of these diseases.
Collapse
|
31
|
Ba G, Tang R, Sun X, Li Z, Lin H, Zhang W. Therapeutic effects of SKF-96365 on murine allergic rhinitis induced by OVA. Int J Immunopathol Pharmacol 2021; 35:20587384211015054. [PMID: 33983057 PMCID: PMC8127738 DOI: 10.1177/20587384211015054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION SKF-96365 is regarded as an inhibitor of receptor-mediated calcium ion (Ca2+) entry. The current study aimed to explore the effects of SKF-96365 on murine allergic rhinitis (AR). METHODS Intranasal SKF-96365 administration was performed on OVA induced murine AR. Serum and nasal lavage fluid (NLF) from mice were harvested to assay IgE and inflammatory cytokines using ELISA method. Inflammatory cells were counted and analyzed in NLF. Nasal mucosa tissues were collected from mice and used for HE staining, immunohistochemistry (IHC) staining, and real-time PCR detection. RESULTS SKF-96365 had therapeutic effects on murine AR manifesting attenuation of sneezing, nasal rubbing, IgE, inflammatory cytokines, inflammatory cells, TRPC6 immunolabeling, and TRPC6, STIM1 and Orai1 mRNA levels in AR mice. CONCLUSION SKF-96365 could effectively alleviate the symptoms of murine AR. SKF-96365 could suppress TRPC6, STIM1, and Orai1 activities, leading to the downregulation of inflammatory cytokines and inflammatory cells in murine AR.
Collapse
Affiliation(s)
- Guangyi Ba
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology—Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
32
|
Weber J, Rajan S, Schremmer C, Chao YK, Krasteva-Christ G, Kannler M, Yildirim AÖ, Brosien M, Schredelseker J, Weissmann N, Grimm C, Gudermann T, Dietrich A. TRPV4 channels are essential for alveolar epithelial barrier function as protection from lung edema. JCI Insight 2020; 5:134464. [PMID: 32931478 PMCID: PMC7605532 DOI: 10.1172/jci.insight.134464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Ischemia/reperfusion-induced edema (IRE), one of the most significant causes of mortality after lung transplantation, can be mimicked ex vivo in isolated perfused mouse lungs (IPL). Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel studied in endothelium; however, its role in the lung epithelium remains elusive. Here, we show enhanced IRE in TRPV4-deficient (TRPV4–/–) IPL compared with that of WT controls, indicating a protective role of TRPV4 in maintenance of the alveolar epithelial barrier. By immunohistochemistry, mRNA profiling, and electrophysiological characterization, we detected TRPV4 in bronchial epithelium, alveolar epithelial type I (ATI), and alveolar epithelial type II (ATII) cells. Genetic ablation of TRPV4 resulted in reduced expression of the water-conducting aquaporin-5 (AQP-5) channel in ATI cells. Migration of TRPV4–/– ATI cells was reduced, and cell barrier function was impaired. Analysis of isolated primary TRPV4–/– ATII cells revealed a reduced expression of surfactant protein C, and the TRPV4 activator GSK1016790A induced increases in current densities only in WT ATII cells. Moreover, TRPV4–/– lungs of adult mice developed significantly larger mean chord lengths and altered lung function compared with WT lungs. Therefore, our data illustrate essential functions of TRPV4 channels in alveolar epithelial cells and in protection from edema formation. TRPV4, a non-selective cation channel, is essential for alveolar epithelial function and protects from ischemia-reperfusion-induced lung edema.
Collapse
Affiliation(s)
- Jonas Weber
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Suhasini Rajan
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Christian Schremmer
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, School of Medicine, Saarland University, Homburg, Germany
| | - Martina Kannler
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, a member of the DZL, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Monika Brosien
- Justus Liebig University Giessen, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, a member of the DZL, Giessen, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Norbert Weissmann
- Justus Liebig University Giessen, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, a member of the DZL, Giessen, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, a member of the German Center for Lung Research (DZL), Ludwig Maximilian University of Munich, Munich Germany
| |
Collapse
|
33
|
Käsmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, Jeremic B, Senan S, De Ruysscher D, Lauber K, Belka C. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol 2020; 15:214. [PMID: 32912295 PMCID: PMC7488099 DOI: 10.1186/s13014-020-01654-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lung, breast, and esophageal cancer represent three common malignancies with high incidence and mortality worldwide. The management of these tumors critically relies on radiotherapy as a major part of multi-modality care, and treatment-related toxicities, such as radiation-induced pneumonitis and/or lung fibrosis, are important dose limiting factors with direct impact on patient outcomes and quality of life. In this review, we summarize the current understanding of radiation-induced pneumonitis and pulmonary fibrosis, present predictive factors as well as recent diagnostic and therapeutic advances. Novel candidates for molecularly targeted approaches to prevent and/or treat radiation-induced pneumonitis and pulmonary fibrosis are discussed.
Collapse
Affiliation(s)
- Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Claudia A Staab-Weijnitz
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Behr
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Department of Internal Medicine V, LMU Munich, Munich, Germany
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| |
Collapse
|
34
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
35
|
Giorgi M, Cardarelli S, Ragusa F, Saliola M, Biagioni S, Poiana G, Naro F, Massimi M. Phosphodiesterase Inhibitors: Could They Be Beneficial for the Treatment of COVID-19? Int J Mol Sci 2020; 21:ijms21155338. [PMID: 32727145 PMCID: PMC7432892 DOI: 10.3390/ijms21155338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
In March 2020, the World Health Organization declared the severe acute respiratory syndrome corona virus 2 (SARS-CoV2) infection to be a pandemic disease. SARS-CoV2 was first identified in China and, despite the restrictive measures adopted, the epidemic has spread globally, becoming a pandemic in a very short time. Though there is growing knowledge of the SARS-CoV2 infection and its clinical manifestations, an effective cure to limit its acute symptoms and its severe complications has not yet been found. Given the worldwide health and economic emergency issues accompanying this pandemic, there is an absolute urgency to identify effective treatments and reduce the post infection outcomes. In this context, phosphodiesterases (PDEs), evolutionarily conserved cyclic nucleotide (cAMP/cGMP) hydrolyzing enzymes, could emerge as new potential targets. Given their extended distribution and modulating role in nearly all organs and cellular environments, a large number of drugs (PDE inhibitors) have been developed to control the specific functions of each PDE family. These PDE inhibitors have already been used in the treatment of pathologies that show clinical signs and symptoms completely or partially overlapping with post-COVID-19 conditions (e.g., thrombosis, inflammation, fibrosis), while new PDE-selective or pan-selective inhibitors are currently under study. This review discusses the state of the art of the different pathologies currently treated with phosphodiesterase inhibitors, highlighting the numerous similarities with the disorders linked to SARS-CoV2 infection, to support the hypothesis that PDE inhibitors, alone or in combination with other drugs, could be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
- Correspondence: (M.G.); (M.M.)
| | - Silvia Cardarelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy; (S.C.); (F.N.)
| | - Federica Ragusa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Michele Saliola
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Stefano Biagioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Giancarlo Poiana
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy; (S.C.); (F.N.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: (M.G.); (M.M.)
| |
Collapse
|
36
|
Complex Regulatory Role of the TRPA1 Receptor in Acute and Chronic Airway Inflammation Mouse Models. Int J Mol Sci 2020; 21:ijms21114109. [PMID: 32526913 PMCID: PMC7312832 DOI: 10.3390/ijms21114109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 (TRPA1) cation channel expressed on capsaicin-sensitive afferents, immune and endothelial cells is activated by inflammatory mediators and exogenous irritants, e.g., endotoxins, nicotine, crotonaldehyde and acrolein. We investigated its involvement in acute and chronic pulmonary inflammation using Trpa1 gene-deleted (Trpa1-/-) mice. Acute pneumonitis was evoked by intranasal Escherichia coli endotoxin (lipopolysaccharide: LPS) administration, chronic bronchitis by daily cigarette smoke exposure (CSE) for 4 months. Frequency, peak inspiratory/expiratory flows, minute ventilation determined by unrestrained whole-body plethysmography were significantly greater, while tidal volume, inspiratory/expiratory/relaxation times were smaller in Trpa1-/- mice. LPS-induced bronchial hyperreactivity, myeloperoxidase activity, frequency-decrease were significantly greater in Trpa1-/- mice. CSE significantly decreased tidal volume, minute ventilation, peak inspiratory/expiratory flows in wildtypes, but not in Trpa1-/- mice. CSE remarkably increased the mean linear intercept (histopathology), as an emphysema indicator after 2 months in wildtypes, but only after 4 months in Trpa1-/- mice. Semiquantitative histopathological scores were not different between strains in either models. TRPA1 has a complex role in basal airway function regulation and inflammatory mechanisms. It protects against LPS-induced acute pneumonitis and hyperresponsiveness, but is required for CSE-evoked emphysema and respiratory deterioration. Further research is needed to determine TRPA1 as a potential pharmacological target in the lung.
Collapse
|
37
|
A Novel, Pan-PDE Inhibitor Exerts Anti-Fibrotic Effects in Human Lung Fibroblasts via Inhibition of TGF-β Signaling and Activation of cAMP/PKA Signaling. Int J Mol Sci 2020; 21:ijms21114008. [PMID: 32503342 PMCID: PMC7312375 DOI: 10.3390/ijms21114008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832—a pan-PDE inhibitor, 869—a TRPA1 modulator, and 145—a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type β1 (TGF-β1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-β pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research.
Collapse
|
38
|
Liu Z, Wang P, Lu S, Guo R, Gao W, Tong H, Yin Y, Han X, Liu T, Chen X, Zhu MX, Yang Z. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 2020; 88:102198. [PMID: 32388008 DOI: 10.1016/j.ceca.2020.102198] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.
Collapse
Affiliation(s)
- Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shanshan Lu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiying Tong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yin Yin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuezhen Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangyun Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhen Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
39
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Dysfunction of transient receptor potential ion channels as an important pathophysiological mechanism in asthma. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic heterogeneous disease characterized by chronic inflammation and bronchial hyperreactivity. Neurogenic inflammation is one of the important causes of hyperreactivity. Dysfunction of transient receptor potential (TRP) ion channels underlies the development of neurogenic inflammation, bronchial hyperreactivity and respiratory symptoms of asthma such as bronchospasm and cough. TRP channels are expressed in the respiratory tract. Their activation is mediated by endogenous and exogenous factors involved in the pathogenesis of asthma. The study of functioning and regulation of TRP channels is relevant, as they could be important therapeutic targets for asthma. The aim of the review is to summarize modern ideas about the mechanisms of functioning and regulation of members of the TRP channel superfamily, the role of which in lung pathology and physiology are the best studied.
Collapse
Affiliation(s)
- Oxana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| |
Collapse
|
40
|
Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao L, Li S, Chen Y, Wu Y, Ling Z, Wang Y, Huang J, Li J. TRPC6-dependent Ca 2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis 2020; 11:170. [PMID: 32139669 PMCID: PMC7058000 DOI: 10.1038/s41419-020-2360-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Ozone (O3) plays an extremely important role in airway inflammation by generating reactive oxygen species (ROS) including hydrogen peroxide, then promoting redox actions and causing oxidative stress. Evidences indicate that TRPC6 (canonical transient receptor potential channel 6) is a redox-regulated Ca2+ permeable nonselective cation channel, but its role in the setting of oxidative stress-related airway inflammation remains unknown. Here, we found that both TRPC6-/- mice and mice pretreated with SAR7334, a potent TRPC6 inhibitor, were protected from O3-induced airway inflammatory responses. In vitro, both knockdown of TRPC6 expression with shRNA and TRPC6 blockage markedly attenuated the release of cytokines IL-6 and IL-8 induced by O3 or H2O2 in 16HBE cells (human bronchial epithelial cell line). Treatment with O3 or H2O2 enhanced TRPC6 protein expression in vivo and vitro. We also observed that TRPC6-dependent increase of intracellular Ca2+ concentration ([Ca2+]i) was triggered by H2O2, which consisted of the release from intracellular calcium store and the influx of extracellular Ca2+ and could be further strengthened by 6-h O3 exposure in both 16HBE cells and HBEpiCs (primary human bronchial epithelial cells). Moreover, we confirmed that the activation of MAPK signals (ERK1/2, p38, JNK) was required for the inflammatory response induced by O3 or H2O2 while only the phosphorylation of ERK pathway was diminished in the TRPC6-knockdown situation. These results demonstrate that oxidative stress regulates TRPC6-mediated Ca2+ cascade, which leads to the activation of ERK pathway and inflammation and could become a potential target to treat oxidative stress-associated airway inflammatory diseases.
Collapse
Affiliation(s)
- Qingzi Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lifen Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaodi Fu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuntao Yang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Zhao
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuni Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yousen Wu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Ling
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Wang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianrong Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jianhua Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Grebert C, Becq F, Vandebrouck C. Focus on TRP channels in cystic fibrosis. Cell Calcium 2019; 81:29-37. [DOI: 10.1016/j.ceca.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
|
42
|
Transient Receptor Potential (TRP) Channels in Health and Disease. Cells 2019; 8:cells8050413. [PMID: 31060230 PMCID: PMC6562812 DOI: 10.3390/cells8050413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
|