1
|
Almeldin YAR, Eldlebshany AE, Elkhalek EA, Abdel-Wareth AAA, Lohakare J. The effect of combining green iron nanoparticles and algae on the sustainability of broiler production under heat stress conditions. Front Vet Sci 2024; 11:1359213. [PMID: 38450028 PMCID: PMC10915037 DOI: 10.3389/fvets.2024.1359213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Background Natural feed additives in broiler feed contribute to the overall health, productivity, and economic viability of broiler chickens while meeting consumer demands and preferences for natural products. The purpose of this research was to determine the effect of green iron nanoparticles (Nano-Fe) and Halimeda opuntia supplementation in broiler diets on performance, ammonia excretion in excreta, Fe retention in tissues and serum, carcass criteria, and meat quality under hot environmental conditions. Methods A total of 256 one-day-old male Ross 308 broiler chicks were randomly assigned to one of four feeding treatments for 42 days. Each treatment had eight replications, with eight chicks per replicate. The treatments were Negative control (CON), positive control (POS) supplemented with 1 g/kg Halimeda opuntia as a carrier, POS + 20 mg/kg Nano-Fe (NFH1), POS + 40 mg/kg Nano-Fe (NFH2). Results When compared to CON and POS, dietary Nano-Fe up to 40 mg/kg enhanced (p < 0.001) growth performance in terms of body weight (BW), body weight gain (BWG), and feed conversion ratio (FCR). Nano-Fe had the highest BWG and the most efficient FCR (linear, p < 0.01, and quadratic, p < 0.01) compared to POS. Without affecting internal organs, the addition of Nano-Fe and POS enhanced dressing and reduced (p < 0.001) abdominal fat compared to control (CON). Notably, the water-holding capacity of breast and leg meat was higher (p < 0.001), and cooking loss was lower in broilers given Nano-Fe and POS diets against CON. In comparison to POS, the ammonia content in excreta dropped linearly as green Nano-Fe levels increased. When compared to CON, increasing levels of Nano-Fe levels boosted Fe content in the breast, leg, liver, and serum. The birds fed on POS showed better performance than the birds fed on CON. Conclusion Green Nano-Fe up to 40 mg/kg fed to broiler diets using 1 g/kg Halimeda opuntia as a carrier or in single can be utilized as an efficient feed supplement for increasing broiler performance, Fe retentions, carcass characteristics, meat quality, and reducing ammonia excretions, under hot conditions.
Collapse
Affiliation(s)
- Yousri A. R. Almeldin
- Poultry Science Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amira E. Eldlebshany
- Poultry Science Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Enass Abd Elkhalek
- Poultry Science Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ahmed A. A. Abdel-Wareth
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A and M University, Prairie View, TX, United States
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Jayant Lohakare
- Poultry Center, Cooperative Agricultural Research Center, Prairie View A and M University, Prairie View, TX, United States
| |
Collapse
|
2
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Mithila M, Islam MR, Khatun MR, Gazi MS, Hossain SJ. Sonneratia apetala (Buch.-Ham.) Fruit Extracts Ameliorate Iron Overload and Iron-Induced Oxidative Stress in Mice. Prev Nutr Food Sci 2023; 28:278-284. [PMID: 37842250 PMCID: PMC10567606 DOI: 10.3746/pnf.2023.28.3.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 10/17/2023] Open
Abstract
Iron overload results in oxidative damage to various biomolecules including DNA, proteins and lipids which ultimately leads to cell death. The Sonneratia apetala fruit contains a high content of antioxidants and displays several bioactive properties. Therefore, the powder of the S. apetala fruit was successively fractionated into n-hexane (Hex), chloroform (Chl), and methanol (Met) fractions to evaluate their efficiency in ameliorating iron overload. In vitro, a colorimetric method was used to assess the Fe-chelating activity of the fractions using ferrozine. The fractions were also used in vivo to examine their efficacy in ameliorating iron overload and iron-induced oxidative stress in mice induced by intraperitoneal injection of ferric carboxymaltose at 100 mg/kg body weight (bw). Among the fractions, Met showed the highest Fe-chelation ability with an inhibitory concentration 50 of 165 μg/mL followed by Hex (270 μg/mL), and Chl (418 μg/mL). In vivo, the results showed a significantly (P<0.05) lower iron profile (iron and ferritin concentrations in serum and liver tissue and total iron-binding capacity of serum) in the Met and the Hex treated mice groups than in the iron-overloaded group. Met at 1,000 μg/kg bw completely ameliorated iron overload in the blood and the liver tissue of mice. At this concentration, Met also prevented iron-induced oxidative stress in the liver tissue of iron-overloaded mice by restoring reducing power, total antioxidant capacity, and total protein. Thus, the S. apetala fruit, especially its Met fraction can be used in treating iron overload and associated toxicity.
Collapse
Affiliation(s)
- Mehenaz Mithila
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - M Rabiul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Mst Rima Khatun
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - M Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Sheikh Julfikar Hossain
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
4
|
Solnier J, Chang C, Pizzorno J. Consideration for Flavonoid-Containing Dietary Supplements to Tackle Deficiency and Optimize Health. Int J Mol Sci 2023; 24:ijms24108663. [PMID: 37240008 DOI: 10.3390/ijms24108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Randomized clinical trials (RCT) and observational studies have highlighted the importance of flavonoid consumption for human health. Several studies have associated a high intake of dietary flavonoids with (a) enhanced metabolic and cardiovascular health, (b) enhanced cognitive and vascular endothelial functions, (c) an improved glycemic response in type 2 diabetes mellitus, and (d) a reduced risk of breast cancer in postmenopausal women. Since flavonoids belong to a broad and diverse family of polyphenolic plant molecules-with more than 6000 compounds interspersed in the human diet-researchers are still uncertain whether the intake of single, individual polyphenols or a large combination of them (i.e., synergistic action) can produce the greatest health benefits for humans. Furthermore, studies have reported a poor bioavailability of flavonoid compounds in humans, which presents a major challenge for determining their optimal dosage, recommended intake, and, consequently, their therapeutic value. Especially because of their scarce bioavailability from foods-along with the overall declining food quality and nutrient density in foods-the role of flavonoid supplementation may become increasingly important for human health. Although research shows that dietary supplements can be a highly useful tool to complement diets that lack sufficient amounts of important nutrients, some caution is warranted regarding possible interactions with prescription and non-prescription drugs, especially when taken concurrently. Herein, we discuss the current scientific basis for using flavonoid supplementation to improve health as well as the limitations related to high intakes of dietary flavonoids.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | - Chuck Chang
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | | |
Collapse
|
5
|
Sandgruber F, Höger AL, Kunze J, Schenz B, Griehl C, Kiehntopf M, Kipp K, Kühn J, Stangl GI, Lorkowski S, Dawczynski C. Impact of Regular Intake of Microalgae on Nutrient Supply and Cardiovascular Risk Factors: Results from the NovAL Intervention Study. Nutrients 2023; 15:nu15071645. [PMID: 37049486 PMCID: PMC10097350 DOI: 10.3390/nu15071645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
A 14-day randomized controlled study with a parallel design was conducted with 80 healthy participants. Intervention groups I (IG1) and II (IG2) received a defined background diet and consumed a smoothie enriched with either 15 g of Chlorella dry weight (d.w.) or 15 g of Microchloropsis d.w. daily. Control group II (CG2) received a defined background diet without the smoothie. Control group I (CG1) received neither. Blood samples and 24-h urine were collected at the beginning and the end of the study. Serum concentrations of 25-hydroxyvitamin D3, vitamin D3, selenium, iron, ferritin, transferrin saturation, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL cholesterol and the LDL-cholesterol/HDL cholesterol ratio decreased in IG1 (p < 0.05), while 25-hydroxyvitamin D2 increased (p < 0.05). In IG2, vitamin D3, 25-hydroxyvitamins D2 and D3 decreased (p < 0.05), while concentrations of fatty acids C20:5n3 and C22:5n3 increased. Serum and urine uric acid increased in IG1 and IG2 (p < 0.05). Microchloropsis is a valuable source of n3 fatty acids, as is Chlorella of vitamin D2. Regular consumption of Chlorella may affect the iron and selenium status negatively but may impact blood lipids positively. An elevated uric acid concentration in blood and urine following the regular consumption of microalgae poses potential risks for human health.
Collapse
Affiliation(s)
- Fabian Sandgruber
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 29, 07743 Jena, Germany; (F.S.); (J.K.); (B.S.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
| | - Anna-Lena Höger
- Competence Center Algal Biotechnology, Anhalt University of Applied Science, Bernburger Str. 55, 06366 Köthen, Germany; (A.-L.H.); (C.G.)
| | - Julia Kunze
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 29, 07743 Jena, Germany; (F.S.); (J.K.); (B.S.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
| | - Benjamin Schenz
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 29, 07743 Jena, Germany; (F.S.); (J.K.); (B.S.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Science, Bernburger Str. 55, 06366 Köthen, Germany; (A.-L.H.); (C.G.)
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Kristin Kipp
- Department of Pediatrics and Adolescent Medicine, Sophien- and Hufeland Hospital, Henry-Van-De-Velde-Str. 1, 99425 Weimar, Germany;
| | - Julia Kühn
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle, Germany
| | - Gabriele I. Stangl
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 29, 07743 Jena, Germany; (F.S.); (J.K.); (B.S.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany; (J.K.); (G.I.S.); (S.L.)
- Correspondence:
| |
Collapse
|
6
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
7
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
8
|
Iron biofortification in quinoa: Effect of iron application methods on nutritional quality, anti-nutrient composition, and grain productivity. Food Chem 2023; 404:134573. [DOI: 10.1016/j.foodchem.2022.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
9
|
Hitchhiking into a cell: flavonoids may produce complexes with transition metals for transmembrane translocation. Biometals 2022; 35:1299-1306. [PMID: 36161545 DOI: 10.1007/s10534-022-00445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Flavonoids are a group of food polyphenols that are delivered to the human body with plant foods. In recent years, these substances have attracted the attention of researchers due to their effectiveness in preventing a wide variety of diseases, including neurodegenerative, oncological, autoimmune, and cardiovascular. Similar pathologies may also occur with a lack of some first-row transition metals, including Cu(II), Zn(II), Mn(II), Fe(II/III). It is noteworthy that flavonoids are known as transition metal chelators. When a complex with these metals is formed, the therapeutic effect of flavonoids can be enhanced, assuming the possibility of synergy. Molecular models have shown that the lipophilicity of flavonoid-metal complexes can vary significantly depending on their binding stoichiometry. Therefore, a unique process of translocation of flavonoid-metal complexes of various lipophilicity through cell membranes is assumed, based on the possibility of their sequential association and dissociation, called "hitchhiking". It is expected that studies of the interaction of flavonoids with metals will improve the effectiveness of drugs based on flavonoids.
Collapse
|
10
|
Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022; 27:molecules27196545. [PMID: 36235082 PMCID: PMC9571766 DOI: 10.3390/molecules27196545] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin, as a flavonol compound found in plants, has a variety of biological activities. It is widely present in nature and the human diet, with powerful oxidative properties and biological activities. In this review, the antioxidant mechanism and broad-spectrum antibacterial properties of quercetin are revealed; the intervention effects of quercetin on pesticide poisoning and the pathway of action are investigated; the toxic effects of main mycotoxins on the collection and the detoxification process of quercetin are summarized; whether it is able to reduce the toxicity of mycotoxins is proved; and the harmful effects of heavy metal poisoning on the collection, the prevention, and control of quercetin are evaluated. This review is expected to enrich the understanding of the properties of quercetin and promote its better application in clinical practice.
Collapse
|
11
|
Abe C, Miyazawa T, Miyazawa T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022; 27:molecules27175451. [PMID: 36080218 PMCID: PMC9457891 DOI: 10.3390/molecules27175451] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is the most abundant mineral in the human body and plays essential roles in sustaining life, such as the transport of oxygen to systemic organs. The Fenton reaction is the reaction between iron and hydrogen peroxide, generating hydroxyl radical, which is highly reactive and highly toxic to living cells. “Ferroptosis”, a programmed cell death in which the Fenton reaction is closely involved, has recently received much attention. Furthermore, various applications of the Fenton reaction have been reported in the medical and nutritional fields, such as cancer treatment or sterilization. Here, this review summarizes the recent growing interest in the usefulness of iron and its biological relevance through basic and practical information of the Fenton reaction and recent reports.
Collapse
|
12
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
13
|
Bijlsma J, de Bruijn WJC, Velikov KP, Vincken JP. Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chem 2022; 370:131292. [PMID: 34788954 DOI: 10.1016/j.foodchem.2021.131292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Iron-flavonoid interactions in iron-fortified foods lead to undesirable discolouration. This study aimed to investigate iron-mediated complexation, oxidation, and resulting discolouration of flavonoids by spectrophotometric and mass spectrometric techniques. At pH 6.5, iron complexation to the 3-4 or 4-5 site instantly resulted in bathochromic shifting of the π → π* transition bands, and complexation to the 3'-4' site (i.e. catechol moiety) induced a π → dπ transition band. Over time, iron-mediated oxidative degradation and coupling reactions led to the formation of hydroxybenzoic acid derivatives and dehydrodimers, respectively resulting in a decrease or increase in discolouration. Additionally, we employed XRD, SEM, and TEM to reveal the formation of insoluble black metal-phenolic networks (MPNs). This integrated study on iron-mediated complexation and oxidation of flavonoids showed that the presence of the C2-C3 double bond in combination with the catechol moiety and either the 4-carbonyl or 3-hydroxyl increased the intensity of discolouration, extent of oxidation, and formation of MPNs.
Collapse
Affiliation(s)
- Judith Bijlsma
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Krassimir P Velikov
- Unilever Innovation Centre B.V. Bronland 14, 6708 WH Wageningen, the Netherlands; Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
14
|
|
15
|
CHEN SP, HU TH, ZHOU Q, CHEN TP, YIN D, HE H, HUANG Q, HE M. Luteoloside protects the vascular endothelium against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway. Chin J Nat Med 2022; 20:22-32. [DOI: 10.1016/s1875-5364(21)60110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/03/2022]
|
16
|
Avcı B, Günaydın C, Külbay M, Kuruca N, Güvenç T, Bilge SS. Neuroprotective effects of sinapic acid involve the iron regulatory role on the rotenone-induced Parkinson’s disease model. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
17
|
Bardestani A, Ebrahimpour S, Esmaeili A, Esmaeili A. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. J Nanobiotechnology 2021; 19:327. [PMID: 34663344 PMCID: PMC8522232 DOI: 10.1186/s12951-021-01059-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) have been proposed as targeted carriers to deliver therapeutic molecules in the central nervous system (CNS). However, IONPs may damage neural tissue via free iron accumulation, protein aggregation, and oxidative stress. Neuroprotective effects of quercetin (QC) have been proven due to its antioxidant and anti-inflammatory properties. However, poor solubility and low bioavailability of QC have also led researchers to make various QC-involved nanoparticles to overcome these limitations. We wondered how high doses or prolonged treatment with quercetin conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) could improve cognitive dysfunction and promote neurogenesis without any toxicity. It can be explained that the QC inhibits protein aggregation and acts against iron overload via iron-chelating activity, iron homeostasis genes regulation, radical scavenging, and attenuation of Fenton/Haber-Weiss reaction. In this review, first, we present brain iron homeostasis, molecular mechanisms of iron overload that induced neurotoxicity, and the role of iron in dementia-associated diseases. Then by providing evidence of IONPs neurotoxicity, we discuss how QC neutralizes IONPs neurotoxicity, and finally, we make a brief comparison between QC and conventional iron chelators. In this review, we highlight that QC as supplementation and especially in conjugated form reduces iron oxide nanoparticles neurotoxicity in clinical application.
Collapse
Affiliation(s)
- Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Ali Esmaeili
- School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| |
Collapse
|
18
|
Associations of Food and Nutrient Intake with Serum Hepcidin and the Risk of Gestational Iron-Deficiency Anemia among Pregnant Women: A Population-Based Study. Nutrients 2021; 13:nu13103501. [PMID: 34684502 PMCID: PMC8537751 DOI: 10.3390/nu13103501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Hepcidin is a regulator of iron metabolism. Diet affects the body's iron status, but how it influences hepcidin concentrations and the risk of gestational iron-deficiency anemia (IDA) remains unclear. We investigated relationships of food and nutrient intake with serum hepcidin levels in relation to the iron status at a population scale. A retrospective cross-sectional study was conducted based on data obtained from the Nationwide Nutrition and Health Survey in pregnant women, Taiwan (2017~2020). In total, 1430 pregnant women aged 20~45 years with a singleton pregnancy were included. Data from blood biochemistry, 24-h dietary recall, and a food frequency questionnaire were collected during a prenatal checkup. Adjusted multivariate linear and logistic regression analyses were employed to measure the beta coefficient (ß) and 95% confidence interval (CI) of serum hepcidin and the odds ratio (OR) of IDA. In IDA women, serum hepcidin levels were positively correlated with the intake frequency of Chinese dim sum and related foods (β = 0.037 (95% CI = 0.015~0.058), p = 0.001) and dark leafy vegetables (β = 0.013 (0.001~0.025), p = 0.040), but they were negatively correlated with noodles and related products (β = -0.022 (-0.043~-0.001), p = 0.038). An adjusted multivariate logistic regression analysis showed that dietary protein [OR: 0.990 (0.981~1.000), p = 0.041], total fiber [OR: 0.975 (0.953~0.998), p = 0.031], and rice/rice porridge [OR: 1.007 (1.00~1.014), p = 0.041] predicted gestational IDA. Total carbohydrates [OR: 1.003 (1.000~1.006), p = 0.036], proteins [OR: 0.992 (0.985~0.999), p = 0.028], gourds/shoots/root vegetables [OR: 1.007 (0.092~1.010), p = 0.005], and to a lesser extent, savory and sweet glutinous rice products [OR: 0.069 (0.937~1.002), p = 0.067] and dark leafy vegetables [OR: 1.005 (0.999~1.011), p = 0.088] predicted IDA. The risk of IDA due to vegetable consumption decreased with an increasing vitamin C intake (p for trend = 0.024). Carbohydrates and vegetables may affect the gestational iron status through influencing hepcidin levels. Vitamin C may lower the risk of gestational IDA due to high vegetable consumption.
Collapse
|
19
|
Wang Z, Ding Z, Li Z, Ding Y, Jiang F, Liu J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb Pathog 2021; 159:105121. [PMID: 34343655 DOI: 10.1016/j.micpath.2021.105121] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The emergence of multidrug resistance (MDR) and extensive drug resistance (XDR) in Klebsiella pneumoniae strains has posed great threats to conventional antibiotics. Previous studies have shown that plant-derived flavonoids have inhibitory functions against pathogens. However, in K. pneumoniae, the antibacterial activity of different flavonoids against growth and biofilm formation remains a mystery. The aim of the present study was to evaluate the antioxidant abilities of different flavonoids, to screen active ingredients and to identify their inhibitory effects on K. pneumoniae growth and biofilm formation. In total, 10 flavonoids representing 4 major categories were screened and used in this study. The antioxidant capacity of each flavonoid was evaluated through a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Rutin showed the highest level of free radical scavenging capacity, followed by kaempferol, luteolin, quercetin, apigenin, hesperidin, sinensetin, naringenin, naringin and 3,5,6,7,8,3',4'-heptamethoxyflavone. The inhibitory effects of rutin and naringin on bacterial growth were also compared. The lowest MICs of rutin were found against K. pneumoniae ATCC700603 (1024 μg/mL) and E. coli ATCC25922 (512 μg/mL). However, the MBICs were not found. Rutin showed strong inhibitory ability against both the growth curve and biofilm production. The expression profiles of 15 biofilm-related genes were analyzed in biofilm cells both with and without rutin treatment. The luxS gene and wabG gene were downregulated significantly by rutin treatment. Correlation analysis showed that mrkA gene expression was positively correlated with biofilm biomass accumulation. Our study indicated that biofilm production is correlated with the expression of several genes rather than one. MrkA gene expression was positively correlated with biofilm biomass accumulation. Our study screened rutin as a potential agent to inhibit K. pneumoniae biofilm formation.
Collapse
Affiliation(s)
- Zhibin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zixuan Ding
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zhaoyinqian Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yinhuan Ding
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Fan Jiang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
20
|
Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front Cell Dev Biol 2021; 9:685364. [PMID: 34291050 PMCID: PMC8287860 DOI: 10.3389/fcell.2021.685364] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Iron overload, a high risk factor for many diseases, is seen in almost all human chronic and common diseases. Iron chelating agents are often used for treatment but, at present, most of these have a narrow scope of application, obvious side effects, and other disadvantages. Recent studies have shown that flavonoids can affect iron status, reduce iron deposition, and inhibit the lipid peroxidation process caused by iron overload. Therefore, flavonoids with iron chelating and antioxidant activities may become potential complementary therapies. In this study, we not only reviewed the research progress of iron overload and the regulation mechanism of flavonoids, but also studied the structural basis and potential mechanism of their function. In addition, the advantages and disadvantages of flavonoids as plant iron chelating agents are discussed to provide a foundation for the prevention and treatment of iron homeostasis disorders using flavonoids.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Han
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
21
|
Sandu N, Chilom CG, Popescu AI. Structural and molecular aspects of flavonoids as ligands for serum transferrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119600. [PMID: 33677206 DOI: 10.1016/j.saa.2021.119600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Human serum transferrin (HST) acts as a carrier for Fe3+ and other ions. Binding of flavonoids to HST produces changes in the protein structure with direct implication on iron delivery into cells. We investigate the binding mechanism and affinity towards HST of three flavonoids: rutin, luteolin, and apigenin by different techniques: UV-Vis, fluorescence, fluorescence resonance energy transfer (FRET) combined with molecular docking. UV-Vis results indicate an interaction between flavonoids and HST. It was observed that HST fluorescence was quenched by these three flavonoids via a static process. All the interactions were moderate and the main driving forces are hydrophobic (ΔH > 0 and ΔS > 0) for rutin and luteolin binding or electrostatic (ΔH < 0 and ΔS > 0) for apigenin binding. FRET and molecular docking studies confirm the fluorescence static quenching mechanism by flavonoid binding. The binding of all three flavonoids increases HST stability. These results present the potential use of HST in target-oriented delivery of flavonoids and possibly other drugs into cells.
Collapse
Affiliation(s)
- Nicoleta Sandu
- Department of Electricity, Solid State and Biophysics, Faculty of Physics, University of Bucharest, Măgurele, Romania
| | - Claudia G Chilom
- Department of Electricity, Solid State and Biophysics, Faculty of Physics, University of Bucharest, Măgurele, Romania.
| | - Aurel I Popescu
- Department of Electricity, Solid State and Biophysics, Faculty of Physics, University of Bucharest, Măgurele, Romania
| |
Collapse
|
22
|
Skolmowska D, Głąbska D. Analysis of Environmental Determinants of Heme and Nonheme Iron Intake in a National Sample of Polish Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5252. [PMID: 34069219 PMCID: PMC8156536 DOI: 10.3390/ijerph18105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Intake of sufficient amounts of iron by adolescents is a matter of great concern. Therefore, it is crucial to determine the factors that may influence iron intake in this specific population. The present study aimed to analyze the environmental determinants of the intake of heme and nonheme iron in a national homogenous sample of Polish adolescents. Adolescents (aged 15-20 years) were randomly chosen from all the regions of Poland by performing a sampling of secondary schools (random quota sampling). The total iron intake, as well as the intake of heme iron, nonheme iron, animal iron, plant iron, and iron from various food products, was assessed among 1385 female respondents and 1025 male respondents using the validated IRON Intake Calculation-Food Frequency Questionnaire (IRONIC-FFQ). The intake was compared between the subgroups stratified by meat intake in the region, gross domestic product (GDP) in the region, and size of the city (rural vs. urban environment). It was observed that meat intake in the region did not influence the intake of total iron, as well as the intake of heme iron, nonheme iron, animal iron, plant iron, and iron from various food products (p > 0.05). However, GDP and the size of the city were determined as the most influencing factors, as they were associated with iron intake in both female and male adolescents, with the most prominent differences between the subgroups found in the case of females. Female adolescents from high-GDP regions had significantly higher intake of heme iron (p = 0.0047) and animal iron (p = 0.0029), and lower intake of nonheme iron compared to those from low-GDP regions (p = 0.0342). The total iron intake was higher among female adolescents who were from medium cities than those from big cities (p = 0.0350), but significantly higher animal iron intake (p = 0.0404) and plant iron intake (p = 0.0385) were observed among females from villages and small towns compared to females from other groups. Based on the results, it may be concluded that size of the city and the economic status of the region are the most important environmental determinants of iron intake in adolescents and, hence, they should be taken into account while developing educational programs, especially for the female adolescent population.
Collapse
Affiliation(s)
| | - Dominika Głąbska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| |
Collapse
|
23
|
Dora MF, Taha NM, Lebda MA, Hashem AE, Elfeky MS, El-Sayed YS, Jaouni SA, El-Far AH. Quercetin Attenuates Brain Oxidative Alterations Induced by Iron Oxide Nanoparticles in Rats. Int J Mol Sci 2021; 22:3829. [PMID: 33917107 PMCID: PMC8067875 DOI: 10.3390/ijms22083829] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/20/2023] Open
Abstract
Iron oxide nanoparticle (IONP) therapy has diverse health benefits but high doses or prolonged therapy might induce oxidative cellular injuries especially in the brain. Therefore, we conducted the current study to investigate the protective role of quercetin supplementation against the oxidative alterations induced in the brains of rats due to IONPs. Forty adult male albino rats were allocated into equal five groups; the control received a normal basal diet, the IONP group was intraperitoneally injected with IONPs of 50 mg/kg body weight (B.W.) and quercetin-treated groups had IONPs + Q25, IONPs + Q50 and IONPs + Q100 that were orally supplanted with quercetin by doses of 25, 50 and 100 mg quercetin/kg B.W. daily, respectively, administrated with the same dose of IONPs for 30 days. IONPs induced significant increases in malondialdehyde (MDA) and significantly decreased reduced glutathione (GSH) and oxidized glutathione (GSSG). Consequently, IONPs significantly induced severe brain tissue injuries due to the iron deposition leading to oxidative alterations with significant increases in brain creatine phosphokinase (CPK) and acetylcholinesterase (AChE). Furthermore, IONPs induced significant reductions in brain epinephrine, serotonin and melatonin with the downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (mtTFA) mRNA expressions. IONPs induced apoptosis in the brain monitored by increases in caspase 3 and decreases in B-cell lymphoma 2 (Bcl2) expression levels. Quercetin supplementation notably defeated brain oxidative damages and in a dose-dependent manner. Therefore, quercetin supplementation during IONPs is highly recommended to gain the benefits of IONPs with fewer health hazards.
Collapse
Affiliation(s)
- Mohamed F. Dora
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt; (M.F.D.); (N.M.T.); (A.E.H.); (M.S.E.)
| | - Nabil M. Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt; (M.F.D.); (N.M.T.); (A.E.H.); (M.S.E.)
| | - Mohamed A. Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt; (M.F.D.); (N.M.T.); (A.E.H.); (M.S.E.)
| | - Aml E. Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt; (M.F.D.); (N.M.T.); (A.E.H.); (M.S.E.)
| | - Mohamed S. Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt; (M.F.D.); (N.M.T.); (A.E.H.); (M.S.E.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Damanhour 22511, Egypt;
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
24
|
The Effect of Different Extracts of Beetroots as Antioxidant and Anti-Anaemia On Phenylhydrazine-Induced Rats. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2020-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim
evaluate antioxidant and anti-anaemia activity of dichloromethane, hydroethanolic, and alkaloids-free hydroethanolic extracts of beetroot (Beta vulgaris (L.) subsp. vulgaris) on phenylhydrazine-induced rats.
Methods
Male rats were divided into five groups: normal control group, negative control group, dichloromethane extract group, hydroethanolic extract group, and alkaloids-free hydroethanolic extract group. All groups were induced with phenylhydrazine (30 mg.Kg−1 BW) for three days, except for the normal control group. After induction, each treatment group received each extract (200 mg.Kg−1 BW) for 21 days. The haematology parameters (haemoglobin levels, the number of erythrocytes, and haematocrit levels) were measured using Haematology Analyzer, and the antioxidant activity was measured through MDA level parameters in rats. Data were analysed using one-way ANOVA and then continued with the Tukey test.
Results
The results showed that the hydroethanolic extract of beetroot increased the percentage of erythrocytes (33.5%), haemoglobin (25%), and haematocrit (24.4%) to the negative control group, which was comparable to the normal control group (p > 0.05). In addition, the best antioxidant activity was shown in the hydroethanolic extract of beetroot, which is comparable to the normal group (p > 0.05).
Conclusion
The beetroot hydroethanolic crude extract could be potentially produced in a natural pharmaceutical product as a beneficial resource within anti-anaemia and antioxidant activities.
Collapse
|
25
|
Ahmad AMR, Ahmed W, Iqbal S, Javed M, Rashid S, Iahtisham-ul-Haq. Prebiotics and iron bioavailability? Unveiling the hidden association - A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anemia Treatment. Int J Mol Sci 2021; 22:ijms22041883. [PMID: 33668657 PMCID: PMC7918704 DOI: 10.3390/ijms22041883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
- Correspondence:
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
27
|
Bowman R, Taylor J, Muggleton S, Davis D. Biophysical effects, safety and efficacy of raspberry leaf use in pregnancy: a systematic integrative review. BMC Complement Med Ther 2021; 21:56. [PMID: 33563275 PMCID: PMC7871383 DOI: 10.1186/s12906-021-03230-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background Childbearing women have been using various herbs to assist with pregnancy, labour and birth for centuries. One of the most common is raspberry leaf. The evidence base for the use of raspberry leaf is however under-developed. It is incumbent on midwives and other maternity care providers to provide women with evidence-based information so they can make informed choices. The aim of this study was to review the research literature to identify the evidence base on the biophysical effects, safety and efficacy of raspberry leaf in pregnancy. Methods A systematic, integrative review was undertaken. Six databases were searched to identify empirical research papers published in peer reviewed journals including in vitro, in vivo, human and animal studies. The search included the databases CINAHL, MEDLINE, Cochrane Library, Scopus and Web of Science Core Collection and AMED. Identified studies were appraised independently by two reviewers using the MMAT appraisal instrument. An integrative approach was taken to analysis. Results Thirteen studies were included. Five were laboratory studies using animal and human tissue, two were experiments using animals, and six were human studies. Included studies were published between 1941 and 2016. Raspberry leaf has been shown to have biophysical effects on animal and human smooth muscle including the uterus. Toxity was demonstrated when high doses were administered intravenously or intaperitoneally in animal studies. Human studies have not shown any harm or benefit though one study demonstrated a clinically meaningful (though non-statistically significant) reduction in length of second stage and augmentation of labour in women taking raspberry leaf. Conclusions Many women use raspberry leaf in pregnancy to facilitate labour and birth. The evidence base supporting the use of raspeberry leaf in pregnancy is weak and further research is needed to address the question of raspberry leaf’s effectiveness.
Collapse
Affiliation(s)
- Rebekah Bowman
- University of Canberra, 11 Kirinari St, Bruce ACT, 2617, Australia
| | - Jan Taylor
- University of Canberra, 11 Kirinari St, Bruce ACT, 2617, Australia
| | - Sally Muggleton
- University of Canberra, 11 Kirinari St, Bruce ACT, 2617, Australia
| | - Deborah Davis
- University of Canberra, 11 Kirinari St, Bruce ACT, 2617, Australia. .,ACT Government, Health Directorate, 4 Bowes St, Phillip ACT, 2606, Australia.
| |
Collapse
|
28
|
Verna G, Sila A, Liso M, Mastronardi M, Chieppa M, Cena H, Campiglia P. Iron-Enriched Nutritional Supplements for the 2030 Pharmacy Shelves. Nutrients 2021; 13:378. [PMID: 33530485 PMCID: PMC7912282 DOI: 10.3390/nu13020378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Iron deficiency (ID) affects people of all ages in many countries. Due to intestinal blood loss and reduced iron absorption, ID is a threat to IBD patients, women, and children the most. Current therapies can efficiently recover normal serum transferrin saturation and hemoglobin concentration but may cause several side effects, including intestinal inflammation. ID patients may benefit from innovative nutritional supplements that may satisfy iron needs without side effects. There is a growing interest in new iron-rich superfoods, like algae and mushrooms, which combine antioxidant and anti-inflammatory properties with iron richness.
Collapse
Affiliation(s)
- Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Annamaria Sila
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Marina Liso
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Mauro Mastronardi
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Institute of Research, 70013 Castellana Grotte, Italy; (A.S.); (M.L.); (M.M.); (M.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S, 27100 Pavia, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
29
|
Čobanová K, Váradyová Z, Grešáková Ľ, Kucková K, Mravčáková D, Várady M. Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection? Antioxidants (Basel) 2020; 9:E1172. [PMID: 33255492 PMCID: PMC7761366 DOI: 10.3390/antiox9121172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to evaluate the effect of feed supplementation with a medicinal herbs mixture (Hmix) and organic zinc (Zn), alone or in combination, on the antioxidant responses and mineral status of lambs infected with the gastrointestinal nematode parasite Haemonchus contortus. A total of 24 experimentally infected lambs were randomly allocated to 1 of 4 dietary treatments (n = 6). The diets included an unsupplemented control diet (CON) and the CON further supplemented with Hmix, Zn, or both Hmix + Zn. Antioxidant enzymes activities, lipid peroxidation, total antioxidant capacity (TAC) and microelement (Zn, Cu, Fe, Mn) concentrations were analyzed in serum, liver, kidney, and intestinal mucosa. Zinc treatment elevated the superoxide dismutase activities in the duodenal mucosa and ileal TAC. Intake of Hmix resulted in higher kidney and ileal catalase activity and also influenced the TAC of the liver and intestinal mucosa. The inclusion of Hmix or Zn alone into the diet increased glutathione peroxidase activity in the blood, liver and duodenal mucosa. Tissue mineral uptake was not affected by herbal supplementation. Organic Zn intake increased the serum and liver Zn levels and influenced the Cu concentration in duodenal mucosa. Dietary supplementation with Hmix and/or Zn might promote the antioxidant status of lambs infected with Haemonchus spp.
Collapse
Affiliation(s)
- Klaudia Čobanová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Zora Váradyová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Ľubomíra Grešáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Katarína Kucková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Dominika Mravčáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, 040 01 Košice, Slovakia; (Z.V.); (Ľ.G.); (K.K.); (D.M.)
| | - Marián Várady
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
30
|
Zhou Q, Chen S, Li H, Yang B, Chen T, Hu T, Yin D, He H, He M. Tetramethylpyrazine alleviates iron overload damage in vascular endothelium via upregulating DDAHII expression. Toxicol In Vitro 2020; 65:104817. [PMID: 32135237 DOI: 10.1016/j.tiv.2020.104817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Iron overload causes vascular endothelium damage. It has been thought to relate excessive reactive oxygen species (ROS) generation. Tetramethylpyrazine (TMP), an active ingredient of Ligusticum chuanxiong Hort, protects various cells by inhibiting oxidative stress and cascade reaction of apoptosis. However, whether TMP can increase DDAHII activity and expression against endothelial cell damage induced by iron overload, and the protective mechanism has not been elucidated. In this study, 50 μM iron dextran and 25 μM TMP were used to co-treat HUVECs for 48 h. TMP could increase cell viability and decrease LDH activity, enhance DDAHII expression and activity, p-eNOS/eNOS ratio, NO content, and reduce ADMA level. TMP also showed a strong antioxidant activity with inhibited ROS generation and oxidative stress. Moreover, TMP attenuated mitochondrial membrane potential loss, inhibited mitochondrial permeability transition pore openness, and decreased apoptosis induced by iron overload. While mentioned above, the protective effects of TMP were abolished with the addition of pAD/DDAHII-shRNA. The effects of TMP against iron overload were similar to the positive control groups, L-arginine, a competitive substrate of ADMA, or edaravone, free radical scavenger. These results signify that TMP alleviated iron overload damage in vascular endothelium via ROS/ADMA/ DDAHII/eNOS/NO pathway.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianpeng Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianhong Hu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
31
|
Iron as Therapeutic Target in Human Diseases. Pharmaceuticals (Basel) 2019; 12:ph12040178. [PMID: 31817314 PMCID: PMC6958491 DOI: 10.3390/ph12040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for almost all organisms, being involved in oxygen transport, DNA synthesis, and respiration; however, it is also potentially toxic via the formation of free radicals [...].
Collapse
|