1
|
Hyeong Lee S, Jin Park S, Young Lee M, Young Choi J, Dae Jang W, Jang J, Hyun Lee J, Jo Lim C, Oh KS. Design, synthesis and evaluation of 3-(2-(substituted benzyloxy)benzylidene) pyrrolidine-2,5-dione derivatives for novel ATX inhibitor. Bioorg Med Chem Lett 2024; 114:130006. [PMID: 39477127 DOI: 10.1016/j.bmcl.2024.130006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
Autotaxin (ATX) has emerged as a promising therapeutic target for liver diseases. In this study, we identified potential drug candidates through in silico high-throughput screening. Subsequently, we synthesized a series of small molecules, specifically KR-40795 (2c), a pyrrolidine-2,5-dione-based analogue that binds to the allosteric tunnel and hydrophobic pocket of ATX. This compound was designed to inhibit the enzymatic activity of ATX for the treatment of liver diseases. The inhibitory potency of KR-40795 was evaluated using a biochemical assay that measured the hydrolysis of a specific substrate (FS-3). Notably, KR-40795 demonstrated significant inhibition of both collagen formation and lipid accumulation in liver cells, suggesting its potential as a therapeutic agent for liver diseases, particularly fibrosis and steatosis.
Collapse
Affiliation(s)
- Seung Hyeong Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su Jin Park
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mi Young Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jun Young Choi
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Woo Dae Jang
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jidon Jang
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong Hyun Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chae Jo Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kwang-Seok Oh
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
3
|
Volkmann ER, Denton CP, Kolb M, Wijsenbeek-Lourens MS, Emson C, Hudson K, Amatucci AJ, Distler O, Allanore Y, Khanna D. Lysophosphatidic acid receptor 1 inhibition: a potential treatment target for pulmonary fibrosis. Eur Respir Rev 2024; 33:240015. [PMID: 39009409 PMCID: PMC11262619 DOI: 10.1183/16000617.0015-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/01/2024] [Indexed: 07/17/2024] Open
Abstract
Lysophosphatidic acid (LPA)-mediated activation of LPA receptor 1 (LPAR1) contributes to the pathophysiology of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). These diseases are associated with high morbidity and mortality despite current treatment options. The LPA-producing enzyme autotaxin (ATX) and LPAR1 activation contribute to inflammation and mechanisms underlying fibrosis in preclinical fibrotic models. Additionally, elevated levels of LPA have been detected in bronchoalveolar lavage fluid from patients with IPF and in serum from patients with SSc. Thus, ATX and LPAR1 have gained considerable interest as pharmaceutical targets to combat fibrotic disease and inhibitors of these targets have been investigated in clinical trials for IPF and SSc. The goals of this review are to summarise the current literature on ATX and LPAR1 signalling in pulmonary fibrosis and to help differentiate the novel inhibitors in development. The mechanisms of action of ATX and LPAR1 inhibitors are described and preclinical studies and clinical trials of these agents are outlined. Because of their contribution to numerous physiologic events underlying fibrotic disease, ATX and LPAR1 inhibition presents a promising therapeutic strategy for IPF, SSc and other fibrotic diseases that may fulfil unmet needs of the current standard of care.
Collapse
Affiliation(s)
- Elizabeth R Volkmann
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Claire Emson
- Translational Medicine, Horizon Therapeutics (now Amgen, Inc.), Rockville, MD, USA
| | - Krischan Hudson
- Clinical Development, Horizon Therapeutics (now Amgen, Inc.), Deerfield, IL, USA
| | - Anthony J Amatucci
- Global Medical Affairs, Horizon Therapeutics (now Amgen, Inc), Deerfield, IL, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yannick Allanore
- Rheumatology Department, Cochin Hospital APHP, INSERM U1016, Université Paris Cité, Paris, France
| | - Dinesh Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Lescop C, Birker M, Brotschi C, Bürki C, Morrison K, Froidevaux S, Delahaye S, Nayler O, Bolli MH. Discovery of the Novel, Orally Active, and Selective LPA1 Receptor Antagonist ACT-1016-0707 as a Preclinical Candidate for the Treatment of Fibrotic Diseases. J Med Chem 2024; 67:2397-2424. [PMID: 38349250 DOI: 10.1021/acs.jmedchem.3c01827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Piperidine 3 is a potent and selective lysophosphatidic acid receptor subtype 1 receptor (LPAR1) antagonist that has shown efficacy in a skin vascular leakage target engagement model in mice. However, compound 3 has very high human plasma protein binding and high clearance in rats, which could significantly hamper its clinical development. Continued lead optimization led to the potent, less protein bound, metabolically stable, and orally active azetidine 17. Rat pharmacokinetics (PK) studies revealed that 17 accumulated in the liver. In vitro studies indicated that 17 is an organic anion co-transporting polypeptide 1B1 (OATP1B1) substrate. Although analogue 24 was no longer a substrate of OATP1B1, PK studies suggested that the compound undergoes enterohepatic recirculation. Replacing the carboxylic acidic side chain by a non-acidic sulfamide moiety and further fine-tuning of the scaffold yielded the potent, orally active LPAR1 antagonist 49, which was selected for preclinical development for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Cyrille Lescop
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Magdalena Birker
- DD Biology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Christine Brotschi
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Cédric Bürki
- Chemistry Process R&D, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Keith Morrison
- DD Pharmacology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Sylvie Froidevaux
- DD Pharmacology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Stéphane Delahaye
- Preclinical DMPK, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Oliver Nayler
- DD Biology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Martin H Bolli
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
5
|
Benesch MG, Tang X, Brindley DN, Takabe K. Autotaxin and Lysophosphatidate Signaling: Prime Targets for Mitigating Therapy Resistance in Breast Cancer. World J Oncol 2024; 15:1-13. [PMID: 38274724 PMCID: PMC10807915 DOI: 10.14740/wjon1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Overcoming and preventing cancer therapy resistance is the most pressing challenge in modern breast cancer management. Consequently, most modern breast cancer research is aimed at understanding and blocking these therapy resistance mechanisms. One increasingly promising therapeutic target is the autotaxin (ATX)-lysophosphatidate (LPA)-lipid phosphate phosphatase (LPP) axis. Extracellular LPA, produced from albumin-bound lysophosphatidylcholine by ATX and degraded by the ecto-activity of the LPPs, is a potent cell-signaling mediator of tumor growth, invasion, angiogenesis, immune evasion, and resistance to cancer treatment modalities. LPA signaling in the post-natal organism has central roles in physiological wound healing, but these mechanisms are subverted to fuel pathogenesis in diseases that arise from chronic inflammatory processes, including cancer. Over the last 10 years, our understanding of the role of LPA signaling in the breast tumor microenvironment has begun to mature. Tumor-promoting inflammation in breast cancer leads to increased ATX production within the tumor microenvironment. This results in increased local concentrations of LPA that are maintained in part by decreased overall cancer cell LPP expression that would otherwise more rapidly break it down. LPA signaling through six G-protein-coupled LPA receptors expressed by cancer cells can then activate virtually every known tumorigenic pathway. Consequently, to target therapy resistance and tumor growth mediated by LPA signaling, multiple inhibitors against the LPA signaling axis are entering clinical trials. In this review, we summarize recent developments in LPA breast cancer biology, and illustrate how these novel therapeutics against the LPA signaling pathway may be excellent adjuncts to extend the efficacy of evolving breast cancer treatments.
Collapse
Affiliation(s)
- Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Pietrobono S, Sabbadini F, Bertolini M, Mangiameli D, De Vita V, Fazzini F, Lunardi G, Casalino S, Scarlato E, Merz V, Zecchetto C, Quinzii A, Di Conza G, Lahn M, Melisi D. Autotaxin Secretion Is a Stromal Mechanism of Adaptive Resistance to TGFβ Inhibition in Pancreatic Ductal Adenocarcinoma. Cancer Res 2024; 84:118-132. [PMID: 37738399 PMCID: PMC10758691 DOI: 10.1158/0008-5472.can-23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The TGFβ receptor inhibitor galunisertib demonstrated efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the randomized phase II H9H-MC-JBAJ study, which compared galunisertib plus the chemotherapeutic agent gemcitabine with gemcitabine alone. However, additional stromal paracrine signals might confer adaptive resistance that limits the efficacy of this therapeutic strategy. Here, we found that autotaxin, a secreted enzyme that promotes inflammation and fibrosis by generating lysophosphatidic acid (LPA), mediates adaptive resistance to TGFβ receptor inhibition. Blocking TGFβ signaling prompted the skewing of cancer-associated fibroblasts (CAF) toward an inflammatory (iCAF) phenotype. iCAFs were responsible for a significant secretion of autotaxin. Paracrine autotaxin increased LPA-NFκB signaling in tumor cells that triggered treatment resistance. The autotaxin inhibitor IOA-289 suppressed NFκB activation in PDAC cells and overcame resistance to galunisertib and gemcitabine. In immunocompetent orthotopic murine models, IOA-289 synergized with galunisertib in restoring sensitivity to gemcitabine. Most importantly, treatment with galunisertib significantly increased plasma levels of autotaxin in patients enrolled in the H9H-MC-JBAJ study, and median progression-free survival was significantly longer in patients without an increase of autotaxin upon treatment with galunisertib compared with those with increased autotaxin. These results establish that autotaxin secretion by CAFs is increased by TGFβ inhibition and that circulating autotaxin levels predict response to the combination treatment approach of gemcitabine plus galunisertib. SIGNIFICANCE TGFβ inhibition skews cancer-associated fibroblasts toward an inflammatory phenotype that secretes autotaxin to drive adaptive resistance in PDAC, revealing autotaxin as a therapeutic target and biomarker of galunisertib response.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Veronica De Vita
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Federica Fazzini
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giulia Lunardi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Enza Scarlato
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Alberto Quinzii
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | | | | | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
7
|
Toyohara T, Yoshida M, Miyabe K, Hayashi K, Naitoh I, Kondo H, Hori Y, Kato A, Kachi K, Asano G, Sahashi H, Adachi A, Kuno K, Kito Y, Matsuo Y, Kataoka H. Dual role of autotaxin as novel biomarker and therapeutic target in pancreatic neuroendocrine neoplasms. Cancer Sci 2023; 114:4571-4582. [PMID: 37770812 PMCID: PMC10728022 DOI: 10.1111/cas.15980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are rare pancreatic neoplasms, and descriptions of treatment remain limited. Autotaxin (ATX) is a secreted autocrine motility factor involved in the production of lysophosphatidic acid (LPA), a lipid mediator that promotes the progression of various cancers. The aim of this study was to clarify the importance of the ATX-LPA axis in panNENs and to confirm its contribution to panNEN progression using clinical data, cell lines, and a mouse model. Serum ATX level was higher in patients with panNEN than in patients with other pancreatic diseases (chronic pancreatitis, pancreatic ductal adenocarcinoma [PDAC], intraductal papillary mucinous neoplasm, autoimmune pancreatitis) and healthy controls, and 61% of clinical specimens stained strongly for ATX. In a case we encountered, serum ATX level fluctuated with disease progression. An in vitro study showed higher ATX mRNA expression in panNEN cell lines than in PDAC cell lines. Cell proliferation and migration in panNEN cell lines were stimulated via the ATX-LPA axis and suppressed by RNA interference or inhibitors. An in vivo study showed that intraperitoneal injection of GLPG1690, an ATX inhibitor, suppressed tumor progression in a xenograft model. These findings revealed that ATX expression is significantly elevated in panNEN and is related to the progression of panNEN. We showed the potential of ATX as a novel biomarker and therapeutic target.
Collapse
Affiliation(s)
- Tadashi Toyohara
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Michihiro Yoshida
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Katsuyuki Miyabe
- Department of GastroenterologyJapanese Red Cross Aichi Medical Center Nagoya Daini HospitalNagoyaJapan
| | - Kazuki Hayashi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Itaru Naitoh
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiromu Kondo
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yasuki Hori
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akihisa Kato
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kenta Kachi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Go Asano
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hidenori Sahashi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Akihisa Adachi
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kayoko Kuno
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yusuke Kito
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoichi Matsuo
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiromi Kataoka
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
8
|
Benesch MGK, Wu R, Tang X, Brindley DN, Ishikawa T, Takabe K. Autotaxin production in the human breast cancer tumor microenvironment mitigates tumor progression in early breast cancers. Am J Cancer Res 2023; 13:2790-2813. [PMID: 37559999 PMCID: PMC10408472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces extracellular lysophosphatidate in physiological wound healing. ATX is overexpressed in many cancers to promote growth, metastasis, and treatment resistance. However, ATX expression is very low in breast cancer cells, and is instead secreted by the tumor microenvironment (TME). Paracrine ATX expression, and its effects on tumor progression, has not been robustly studied in human breast tumors. In this study, ATX expression was analyzed in over 5000 non-metastatic breast cancers from databases TCGA, METABRIC and GSE96058, dichotomized by the median. Gene set enrichment analysis (GSEA) and the xCell algorithm investigated biological functions of ATX and correlation to TME cell populations. TME ATX production was verified by single cell RNA sequencing. The highest ATX expression occurred in endothelial cells and cancer-associated fibroblasts (P<0.0001). High tumor ATX expression correlated to increased adipocyte, fibroblast, and endothelial cell fractions (P<0.01), and GSEA demonstrated enriched immune system, tumor suppressor, pro-survival, stemness, and pro-inflammatory signaling in multiple gene sets. Tumor mutational burden was decreased, Ki67 scores were decreased, tumor infiltrating immune cell populations increased, and immune cytolytic activity scores increased (all P<0.01) for ATX-high tumors. Overall survival trends favored ATX-high tumors (hazard ratios 0.75-0.80). In summary, in human breast cancers, ATX is produced by the TME, and in non-metastatic tumors, high levels correlate with an anti-tumor phenotype. Because pre-clinical models use aggressive pro-metastatic cell lines where ATX-mediated signaling promotes tumorigenesis, further research is required to verify an anti-to-pro-tumor phenotype switch with breast cancer progression and/or treatment resistance.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of AlbertaEdmonton, Alberta T6G 2H7, Canada
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of AlbertaEdmonton, Alberta T6G 2H7, Canada
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
9
|
Chen X, Zhang H, Zhou X, Wang Y, Shi W. Autotaxin promotes the degradation of the mucus layer by inhibiting autophagy in mouse colitis. Mol Immunol 2023; 160:44-54. [PMID: 37356325 DOI: 10.1016/j.molimm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Autotaxin (ATX or ENPP2) is an autocrine enzyme associated with the metabolism of various phospholipids. ATX has recently been identified as a regulatory factor in immune-related and inflammation-associated diseases, such as inflammatory bowel disease, but the exact mechanism is unclear. Here, we treated mice with recombinant ATX protein or an ATX inhibitor to investigate the effect of ATX on colitis in mice and the underlying mechanism. In a mouse model of colitis, ATX expression was increased, autophagy was impaired, and the mucus barrier was disrupted. Recombinant ATX protein promoted intestinal inflammation, inhibited autophagy, and disrupted the mucus barrier, while an ATX inhibitor had the opposite effect. Next, we treated mice that received ATX with an autophagy activator and an adenosine 5'-monophosphate-activated protein kinase (AMPK) agonist. We observed that autophagy activator and AMPK agonist could repair the mucus barrier and alleviate intestinal inflammation in ATX-treated mice. In vitro, we obtained consistent results. Thus, we concluded that ATX could inhibit autophagy through the AMPK pathway, which consequently disordered the mucus barrier and aggravated intestinal inflammation.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China; The State Key Laboratory of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Zhang C, Liu Y, Zhou Q, Fan H, Liu X, Hu J. Recent research advances in ATX inhibitors: An overview of primary literature. Bioorg Med Chem 2023; 90:117374. [PMID: 37354726 DOI: 10.1016/j.bmc.2023.117374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Yue Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Qinjiang Zhou
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Hongze Fan
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China
| | - Xiaoxiao Liu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
11
|
Salgado-Polo F, Borza R, Matsoukas MT, Marsais F, Jagerschmidt C, Waeckel L, Moolenaar WH, Ford P, Heckmann B, Perrakis A. Autotaxin facilitates selective LPA receptor signaling. Cell Chem Biol 2023; 30:69-84.e14. [PMID: 36640760 DOI: 10.1016/j.chembiol.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Autotaxin (ATX; ENPP2) produces the lipid mediator lysophosphatidic acid (LPA) that signals through disparate EDG (LPA1-3) and P2Y (LPA4-6) G protein-coupled receptors. ATX/LPA promotes several (patho)physiological processes, including in pulmonary fibrosis, thus serving as an attractive drug target. However, it remains unclear if clinical outcome depends on how different types of ATX inhibitors modulate the ATX/LPA signaling axis. Here, we show that the ATX "tunnel" is crucial for conferring key aspects of ATX/LPA signaling and dictates cellular responses independent of ATX catalytic activity, with a preference for activation of P2Y LPA receptors. The efficacy of the ATX/LPA signaling responses are abrogated more efficiently by tunnel-binding inhibitors, such as ziritaxestat (GLPG1690), compared with inhibitors that exclusively target the active site, as shown in primary lung fibroblasts and a murine model of radiation-induced pulmonary fibrosis. Our results uncover a receptor-selective signaling mechanism for ATX, implying clinical benefit for tunnel-targeting ATX inhibitors.
Collapse
Affiliation(s)
- Fernando Salgado-Polo
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Razvan Borza
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | | | - Florence Marsais
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Ludovic Waeckel
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paul Ford
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
12
|
Wang W, Song L. Landscape of lipidomics in cardiovascular medicine from 2012 to 2021: A systematic bibliometric analysis and literature review. Medicine (Baltimore) 2022; 101:e32599. [PMID: 36596038 PMCID: PMC9803420 DOI: 10.1097/md.0000000000032599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipidomics has shaped our knowledge of how lipids play a central role in cardiovascular diseases (CVD), whereas there is a lack of a summary of existing research findings. This study performed a bibliometric analysis of lipidomics research in cardiovascular medicine to reveal the core countries, institutions, key researchers, important references, major journals, research hotspots and frontiers in this field. From 2012 to 2021, a total of 761 articles were obtained from the Web of Science Core Collection database. There is a steady increase of publications yearly. The United States and China are on the top of the list regarding article output. The institutions with the most publications were the Baker Heart and Diabetes Institute, the Chinese Academy of Sciences and Harvard Medical School. Peter J Meikle was both the most published and most co-cited author. The major journal in this field is Journal of lipid research. Keyword co-occurrence analysis indicated that coronary heart disease, mass spectrometry, risk, fatty acid, and insulin resistance have become hot topics in this field and keyword burst detection suggests that metabolomics, activation, liver, low density lipoprotein are the frontiers of research in recent years. Collectively, lipidomics in CVD is still in its infancy with a steady increase yearly. More in-depth studies in this area are warranted in the future.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Cardiovascular Disease, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * Correspondence: Wenting Wang, Department of Cardiology, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng East Road, Hangzhou 310003, China (e-mail: )
| | - Lei Song
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
14
|
Billig H, Goody P, Nickenig G. Therapie der Aortenklappenstenose jenseits des Klappenersatzes – Was bringt die Zukunft? AKTUELLE KARDIOLOGIE 2022. [DOI: 10.1055/a-1842-3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ZusammenfassungDie kalzifizierende Aortenklappenstenose stellt die häufigste interventionell oder operativ behandlungsbedürftige Herzklappenerkrankung im Erwachsenenalter dar und betrifft insbesondere
Menschen höheren Lebensalters. Obwohl der Fortschritt interventioneller Therapieoptionen die Behandlung der Aortenklappenstenose in den letzten Jahren verbessern konnte, ist die
symptomatische Aortenklappenstenose weiterhin mit hoher Morbidität und Letalität assoziiert. Ihre Pathophysiologie ist gekennzeichnet durch eine Fibrosierung und Kalzifizierung der
Klappentaschen, welche zu deren progredienter Verdickung und Versteifung und letztendlich zur Obstruktion der Klappe mit erschwertem Blutfluss in die Aorta führen. Da sich die Betroffenen
meist im fortgeschrittenen Alter befinden und weitere Begleiterkrankungen aufweisen, ist ein operativer oder interventioneller Ersatz der Aortenklappe mit einem höheren Eingriffsrisiko und
verlängerter Rekonvaleszenzzeit der Patienten verbunden. Die häufig begleitend auftretende periphere vaskuläre Verschlusskrankheit kann die Nutzung der peripheren Zugangswege im Rahmen des
transluminalen Vorgehens unmöglich machen und die transapikale Punktion mit konsekutiv erhöhtem Eingriffsrisiko erfordern.Eine limitierte Lebenserwartung, z. B. im Rahmen von neoplastischen Erkrankungen, kann darüber hinaus eine Kontraindikation zur operativen und interventionellen Versorgung darstellen.Aktuell gibt es keine spezifische medikamentöse Therapie, die Initiation und Progression dieser bedeutenden Erkrankung beeinflussen kann und eine Alternative zum Klappenersatz für diese
vulnerablen Patientenkollektive darstellt. Ein besseres Verständnis der zugrunde liegenden komplexen Pathophysiologie hat zur Entwicklung und Erprobung innovativer medikamentöser
Therapieansätze geführt. Diese neuartigen Therapien befinden sich im Moment allesamt noch in Prüfung durch präklinische und klinische Studien und sollen in diesem Übersichtsartikel
adressiert werden.
Collapse
Affiliation(s)
- Hannah Billig
- Medizinische Klinik II – Kardiologie, Pneumologie, Angiologie und internistische Intensivmedizin, Herzzentrum Bonn, Bonn, Deutschland
| | - Philip Goody
- Medizinische Klinik II – Kardiologie, Pneumologie, Angiologie und internistische Intensivmedizin, Herzzentrum Bonn, Bonn, Deutschland
| | - Georg Nickenig
- Medizinische Klinik II – Kardiologie, Pneumologie, Angiologie und internistische Intensivmedizin, Herzzentrum Bonn, Bonn, Deutschland
| |
Collapse
|
15
|
Banerjee S, Lee S, Norman DD, Tigyi GJ. Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules 2022; 27:5487. [PMID: 36080255 PMCID: PMC9458164 DOI: 10.3390/molecules27175487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
- Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Gabor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Qiu H, Song E, Hu Y, Li T, Ku KC, Wang C, Cheung BMY, Cheong LY, Wang Q, Wu X, Hoo RLC, Wang Y, Xu A. Hepatocyte-Secreted Autotaxin Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol 2022; 14:1003-1023. [PMID: 35931383 PMCID: PMC9490100 DOI: 10.1016/j.jcmgh.2022.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS The prevalence of nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions globally as a result of the rapid increase in obesity. However, there is no Food and Drug Administration-approved pharmacotherapy available for NAFLD. This study investigated the role of autotaxin, a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), in the pathogenesis of NAFLD and to explore whether genetic or pharmacologic interventions targeting autotaxin ameliorate NAFLD. METHODS The clinical association of autotaxin with the severity of NAFLD was analyzed in 125 liver biopsy-proven NAFLD patients. C57BL/6N mice or fibroblast growth factor 21 (FGF21)-null mice were fed a high-fat diet or a choline-deficient diet to investigate the role of the autotaxin-FGF21 axis in NAFLD development by hepatic knockdown and antibody neutralization. Huh7 cells were used to investigate the autocrine effects of autotaxin. RESULTS Serum autotaxin levels were associated positively with histologic scores and NAFLD severity. Hepatocytes, but not adipocytes, were the major contributor to increased circulating autotaxin in both patients and mouse models with NAFLD. In mice, knocking-down hepatic autotaxin or treatment with a neutralizing antibody against autotaxin significantly reduced high-fat diet-induced NAFLD and high fat- and choline-deficient diet-induced nonalcoholic steatohepatitis and fibrosis, accompanied by a marked increase of serum FGF21. Mechanistically, autotaxin inhibited the transcriptional activity of peroxisome proliferator-activated receptor α through LPA-induced activation of extracellular signal-regulated kinas, thereby leading to suppression of hepatic FGF21 production. The therapeutic benefit of anti-autotaxin neutralizing antibody against NAFLD was abrogated in FGF21-null mice. CONCLUSIONS Liver-secreted autotaxin acts in an autocrine manner to exacerbate NAFLD through LPA-induced suppression of the peroxisome proliferator-activated receptor α-FGF21 axis and is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Han Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tengfei Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Ching Ku
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernard M Y Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Bitar L, Uphaus T, Thalman C, Muthuraman M, Gyr L, Ji H, Domingues M, Endle H, Groppa S, Steffen F, Koirala N, Fan W, Ibanez L, Heitsch L, Cruchaga C, Lee JM, Kloss F, Bittner S, Nitsch R, Zipp F, Vogt J. Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Sci Transl Med 2022; 14:eabk0135. [PMID: 35442704 DOI: 10.1126/scitranslmed.abk0135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke penumbra injury caused by excess glutamate is an important factor in determining stroke outcome; however, several therapeutic approaches aiming to rescue the penumbra have failed, likely due to unspecific targeting and persistent excitotoxicity, which continued far beyond the primary stroke event. Synaptic lipid signaling can modulate glutamatergic transmission via presynaptic lysophosphatidic acid (LPA) 2 receptors modulated by the LPA-synthesizing molecule autotaxin (ATX) present in astrocytic perisynaptic processes. Here, we detected long-lasting increases in brain ATX concentrations after experimental stroke. In humans, cerebrospinal fluid ATX concentration was increased up to 14 days after stroke. Using astrocyte-specific deletion and pharmacological inhibition of ATX at different time points after experimental stroke, we showed that inhibition of LPA-related cortical excitability improved stroke outcome. In transgenic mice and in individuals expressing a single-nucleotide polymorphism that increased LPA-related glutamatergic transmission, we found dysregulated synaptic LPA signaling and subsequent negative stroke outcome. Moreover, ATX inhibition in the animal model ameliorated stroke outcome, suggesting that this approach might have translational potential for improving the outcome after stroke.
Collapse
Affiliation(s)
- Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Luzia Gyr
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Haichao Ji
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heiko Endle
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nabin Koirala
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Wei Fan
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Laura Ibanez
- Department of Psychiatry, Department of Neurology, NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Heitsch
- Department of Emergency Medicine, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Department of Neurology, NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Robert Nitsch
- Institute of Translational Neuroscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|