1
|
Liu R, Sun Z, Wang S, Liu X, Man Y, Chen M, Liu Q, Wang C. Wenshenqianlie capsule improves benign prostatic hyperplasia via its anti-inflammatory and antioxidant effects. Aging (Albany NY) 2024; 16:12574-12592. [PMID: 39237304 PMCID: PMC11466478 DOI: 10.18632/aging.206103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Anti-inflammatory and antioxidant effects play crucial roles in the recovery of benign prostatic hyperplasia (BPH). Wenshenqianlie (WSQL) capsule, a typical traditional Chinese medicine formulation combining 14 Chinese herbs, has been reported to exert tonic effects on the kidneys and improve clinical symptoms of BPH. However, its potential antioxidative and anti-inflammatory properties and effects on the improvement of hormone levels have not been reported in depth. In this study, mice were subcutaneously injected with TP (5 mg/kg·d-1) to induce BPH. Forty-eight adult BALB/c male mice were randomly allocated to six groups based on the type of drug administered by gavage: control, BPH, BPH+WSQL (40 and 80 mg/kg·d-1), BPH+finasteride (1 mg/kg·d-1), and WSQL-only treated (80 mg/kg·d-1). We investigated the anti-inflammatory and antioxidant effect and mechanism of WSQL on BPH via histopathological examination, immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting combined with in vivo serum metabolomics, gut microbiomics analysis. WSQL alleviated prostate hyperplasia and reduced prostate-specific antigen, dihydrotestosterone, testosterone, and inflammation levels. Gut microbiomics and serum non-targeted metabolomics determined that the protective effect of WSQL against BPH may be related to the improvement of inflammation and testosterone-related gut microbiota and serum metabolites. Further studies showed that WSQL ameliorated nuclear factor-kappa B, its downstream inflammatory factors, and nuclear factor E2-related factor 2 pathway.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuhong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Li T, Zhang Y, Zhou Z, Zhang Y, Song X, Zhou X, Wan Z, Ruan Y. Causal associations of immune cells with benign prostatic hyperplasia: insights from a Mendelian randomization study. World J Urol 2024; 42:216. [PMID: 38581575 DOI: 10.1007/s00345-024-04913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/29/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Previous research has focused on the association between immune cells and the development of benign prostatic hyperplasia (BPH). Nevertheless, the causal relationships in this context remain uncertain. METHODS This study employed a comprehensive and systematic two-sample Mendelian randomization (MR) analysis to determine the causal relationships between immunophenotypes and BPH. We examined the causal associations between 731 immunophenotypes and the risk of BPH by utilizing publicly available genetic data. Integrated sensitivity analyses were performed to validate the robustness, assess heterogeneity, and examine horizontal pleiotropy in the results. RESULTS We discovered that 38 immunophenotypes have a causal effect on BPH. Subsequently, four of these immunophenotypes underwent verification using weighted median, weighted mode, and inverse variance weighted (IVW) algorithms, which included CD19 on CD24+ CD27+, CD19 on naive-mature B cell, HLA DR on CD14- CD16+ and HLA DR+ T cell%lymphocyte. Furthermore, BPH exhibited a significant association with three immunophenotypes: CD19 on IgD+ CD38dim (β = -0.152, 95% CI = 0.746-0.989, P = 0.034), CD19 on IgD+ (β = -0.167, 95% CI = 0.737-0.973, P = 0.019), and CD19 on naive-mature B cell (β = -0.166, 95% CI = 0.737-0.972, P = 0.018). CONCLUSIONS Our study provides valuable insights for future clinical investigations by establishing a significant association between immune cells and BPH.
Collapse
Affiliation(s)
- Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zeng Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xiaodong Song
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Xuehao Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China
| | - Zhong Wan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.
| |
Collapse
|
3
|
Wang Z, Mao Q, Yuan Y, Wang C, Wei H. Shuangshi Tonglin Capsule treats benign prostatic hyperplasia through the ROS/NLRP3 signaling pathway. Int Urol Nephrol 2024; 56:1259-1271. [PMID: 38036804 PMCID: PMC10923981 DOI: 10.1007/s11255-023-03874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To explore the effects of the SSTL on BPH and clarify the therapeutic mechanisms. METHODS Animal model of BPH was established by castration and subcutaneous injection of TP into SD rats; rats were orally administered SSTL for 28 days while modeling. Detection of PI, LI and RI in rats, to observe histopathological changes and collagen deposition in the prostate tissue. Detects levels of sex hormones and inflammatory factors in serum and tissues of rats, the test kit detects levels of lipid peroxides and antioxidants in serum and tissues. Fluorescent staining analysis of tissue ROS; the expression of NLRP3 inflammatory vesicles was observed by immunohistochemistry; Western blotting detected the expression of NOX4, NOX2, NLRP3 inflammatory vesicles, ASC, Cleaved Caspase-1, Caspase-1, IL-1β. RESULTS After SSTL capsule treatment, the PI and RI of the rats decrease. HE and Masson staining showed that SSTL ameliorated the pathological damage and reduced collagen deposition in the prostate tissue of BPH rats; ELISA results showed that SSTL was able to reduce T, DHT, TNF-α, IL-1β levels in BPH rats. The test kit showed that SSTL made the levels of MDA, CAT and GSH-Px in the serum and prostate tissue of rats and increased the activity of SOD. The results of ROS fluorescence showed that the ROS level was reduced in SSTL group; Western blotting showed that SSTL could cause down-regulation of NOX4, NOX2, NLRP3, ASC, Cleaved Caspase-1, IL-1β protein expression. CONCLUSION SSTL can reduce the PI and RI in BPH rats, it can also inhibit the level of sex hormones and inflammatory factors in BPH rats, which thereby reducing the histopathological damage of prostate gland in BPH rats, and can treat BPH in rats through ROS/NLRP3 pathway.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qian Mao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Yong Yuan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chuan Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Hao Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
4
|
Zhou P, Huang S, Shao C, Huang D, Hu Y, Su X, Yang R, Jiang J, Wu J. The Antiproliferative and Proapoptotic Effects of Cucurbitacin B on BPH-1 Cells via the p53/MDM2 Axis. Int J Mol Sci 2023; 25:442. [PMID: 38203613 PMCID: PMC10779356 DOI: 10.3390/ijms25010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cucurbitacin B (Cu B), a triterpenoid compound, has anti-inflammatory and antioxidant activities. Most studies only focus on the hepatoprotective activity of Cu B, and little effort has been geared toward exploring the effect of Cu B on the prostate. Our study identified that Cu B inhibited the proliferation of the benign prostatic hyperplasia epithelial cell line (BPH-1). At the molecular level, Cu B upregulated MDM2 and thrombospondin 1 (THBS1) mRNA levels. Immunocytochemistry results revealed that the protein expressions of p53 and MDM2 were upregulated in BPH-1 cells. Furthermore, Cu B upregulated THBS1 expression and downregulated COX-2 expression in the BPH-1 cell supernatant. Altogether, Cu B may inhibit prostate cell proliferation by activating the p53/MDM2 signaling cascade and downregulating the COX-2 expression.
Collapse
Affiliation(s)
- Ping Zhou
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Sisi Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Yingyi Hu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Juan Jiang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| |
Collapse
|
5
|
Hussain Y, Singh J, Meena A, Sinha RA, Luqman S. Escin enhanced the efficacy of sorafenib by autophagy-mediated apoptosis in lung cancer cells. Phytother Res 2023; 37:4819-4837. [PMID: 37468281 DOI: 10.1002/ptr.7948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Combining anti-cancer drugs has been exploited as promising treatment strategy to target lung cancer. Synergistic chemotherapies increase anti-cancer effect and reduce effective drug doses and side effects. In this study, therapeutic potential of escin in combination with sorafenib has been explored. 3-(4,5-Dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assay was used to calculate IC50 values. The synergy was evaluated using Chou-Talaly algorithm. Cellular reactive oxygen species, mitochondrial membrane potential, annexin V, and cell-cycle studies were done by flow-cytometer, and autophagy biomarkers expression were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role, diethylnitrosamine-induced lung cancer model was used to check the synergy of sorafenib/escin. Escin significantly reduced the IC50 of sorafenib in A549 and NCIH460 cells. The combination of sorafenib/escin produced a 2.95 and 5.45 dose reduction index for sorafenib in A549 and NCI-H460 cells. The combination of over-expressed p62 and LC3-II reflects autophagy block-mediated late apoptosis. This phenomenon was reconfirmed by ATG5 knockdown. This combination also selectively targeted G0/G1 phase of cancer cells. In in vivo study, the combination reduced tumour load and lower elevated serum biochemical parameters. The combination of sorafenib/escin synergistically inhibits autophagy to induce late apoptosis in lung cancer cells' G0/G1 phase.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Gamal El-Tahawy NF, Ahmed Rifaai R. Intermittent Fasting Protects Against Age-Induced Rat Benign Prostatic Hyperplasia via Preservation of Prostatic Histomorphology, Modification of Oxidative Stress, and Beclin-1/P62 Pathway. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1267-1276. [PMID: 37749675 DOI: 10.1093/micmic/ozad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 09/27/2023]
Abstract
Intermittent fasting (IF) has several beneficial effects on most age-related degenerative changes in the body. Here we aimed to investigate the impact of IF on the biochemical and morphological abnormalities associated with normal aging in rat prostate. Thirty male albino rats were used and divided into three equal groups: adult group, rats aged 3 months; aged group, rats aged 15 months; and IF-aged group, rats aged 15 months maintained on intermittent fasting. After 3 months, prostates were excised and processed for biochemical, histological, and immunohistochemical study. Aging resulted in prostatic histological changes that resemble those of benign prostatic hyperplasia (BPH) with increased malondialdehyde (MDA) level, decreased glutathione (GSH) level, reduction of autophagy, and increased proliferation. Intermittent fasting ameliorated these described age-related prostatic changes. It could be concluded that IF could prevent age-induced BPH. This occurs via its anti-inflammatory and anti-proliferative effects, suppression of oxidative stress, and by improving autophagy via Beclin-1/P62 modulation. These mechanisms underlie the IF-mediated protection against age-related BPH. Because of IF safety and easy availability over BPH medications, it might be promising for managing BPH after further clinical studies.
Collapse
Affiliation(s)
- Nashwa Fathy Gamal El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo-Aswan Agricultural Road, North District, 61519 Minia, Egypt
| | - Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo-Aswan Agricultural Road, North District, 61519 Minia, Egypt
| |
Collapse
|
7
|
Kim HJ, Jin BR, An HJ. Hesperidin ameliorates benign prostatic hyperplasia by attenuating cell proliferation, inflammatory response, and epithelial-mesenchymal transition via the TGF-β1/Smad signaling pathway. Biomed Pharmacother 2023; 160:114389. [PMID: 36791565 DOI: 10.1016/j.biopha.2023.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Excessively activated transforming growth factor-beta 1 (TGF-β1) exacerbates benign prostatic hyperplasia (BPH) by triggering epithelial-mesenchymal transition (EMT) as well as epithelial and stromal cell differentiation. Hesperidin (HSP), a flavanone rich in citrus peels, exhibits a safe anti-cancer activity with few side effects. Although HSP reportedly inhibits cell growth in prostate cancer, studies on BPH have not yet been reported. Thus, this study aimed to figure out the therapeutic effect of HSP and its underlying mechanisms in BPH models in vivo and in vitro. To evaluate the anti-BPH effect of HSP in vivo, rats were injected with testosterone propionate (TP; 10 mg/kg, s.c.), finasteride (5 mg/kg, p.o.), and HSP (50 and 100 mg/kg, i.p.) for four weeks. The in vitro efficacy of HSP was evaluated using two prostate cell models, BPH-1 and dihydrotestosterone-stimulated WPMY-1 cells, for studying the interaction between epithelial and stromal cells. Both in vivo and in vitro, HSP inhibited prostate cell proliferation by suppressing the expression of androgen receptor-related markers. In addition, HSP reduced the expression levels of inflammatory and mesenchymal markers by blocking TGF-β1 activation. Collectively, HSP alleviated BPH by attenuating prostate cell proliferation, the inflammatory response, and EMT by regulating the TGF-β1/Smad signaling pathway. Thus, these results provide evidence for a new therapeutic approach against BPH.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
8
|
Ahmed ASF, Sharkawi SS, AbdelHameed SS, Bayoumi AM, Moussa RS, Alhakamy NA, Al Sadoun H, Mansouri RA, El-Moselhy MA, El-Daly M, Anter AF, Truhan TE. Ketogenic diet restores hormonal, apoptotic/proliferative balance and enhances the effect of metformin on a letrozole-induced polycystic ovary model in rats. Life Sci 2023; 313:121285. [PMID: 36526050 DOI: 10.1016/j.lfs.2022.121285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Polycystic ovaries (PCO) is a hormonal disorder that is a leading cause of infertility. The formation of multiple persistent cysts and hormonal imbalance are hallmarks of PCO. Recent clinical studies reported a beneficial effect of the ketogenic diet (KD; high-fat, low-carbohydrate) on PCO. The aim of this study was to investigate the effect of the KD alone and in combination with metformin on letrozole-induced PCO in female rats. METHODS Female rats were grouped into control and PCO (letrozole; 1 mg/kg for 21 days). The PCO group was subdivided into PCO (non-treated), PCO-metformin (300 mg/kg), PCO rats fed with KD only, and PCO rats treated with metformin and fed with KD. All groups continued to receive letrozole during the 21-day treatment period. At the end of the experiment, serum and ovaries were collected for further analysis. RESULTS The untreated-PCO rats showed increased testosterone, LH/FSH ratio, and ovary weights. Disturbed apoptosis and proliferation balance were evident as a low caspase-3 activation and proliferating cell nuclear antigen expression and increased TGF-β expression. The KD improved the letrozole-induced effects, which was comparable to the effect of metformin. Combining the KD with metformin treatment additively enhanced the metformin effect. CONCLUSION Our results indicate that the KD has a protective role against PCO in rats, especially when combined with metformin. This study reveals a potential therapeutic role of the KD in PCO, which could prompt valuable future clinical applications.
Collapse
Affiliation(s)
- Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Sara S Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sara S AbdelHameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Asmaa M Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rabab S Moussa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A El-Moselhy
- Clinical Pharmacy and Pharmacology Department, Ibn Sina National College for Medical Studies, Jeddah 21589, Saudi Arabia
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
9
|
Onoja RI, Ihedioha JI, Shoyinka SVO, Ezema AS, Emejuo NT, Mgbeahuruike AC, Emesiani BI, Obidah W, Clinton I. Inhibitory effects of Calocybe indica macrofungi on experimental benign prostatic hyperplasia in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:121-127. [PMID: 36594056 PMCID: PMC9790059 DOI: 10.22038/ijbms.2022.64972.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 01/04/2023]
Abstract
Objectives This study was designed to investigate the protective effects of Calocybe indica extract on testosterone-induced benign prostatic hyperplasia in rats. Materials and Methods In this study, 60 adult Sprague Dawley rats were randomly divided into six equal groups, one group served as the normal control, five of the groups were administered subcutaneous testosterone propionate for 28 days to induce benign prostatic hyperplasia, three of the five groups were simultaneously administered three graded doses of C. indica extract while one group was administered finasteride as the standard drug and the other left as untreated BPH model group given testosterone propionate only. BPH in the prostate gland was detected through gross appearance, prostate weight, and biochemical and histopathological analyses. Results Increased prostate weight, serum prostate-specific antigen (PSA), and epithelial thickness were observed in the untreated testosterone-induced BPH model. Administration of finasteride and C. indica extract led to a reduction in prostate weight, prostatic index, serum PSA, serum levels of testosterone, and prostatic epithelial thickness, and increased luminal diameter. Conclusion Administration of C. indica extract suppressed the pathophysiological effects of benign prostatic hyperplasia in rats. Thus, C. indica mushroom is a potential pharmacological candidate for the management of BPH in man or dogs.
Collapse
Affiliation(s)
- Remigius I. Onoja
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria,Corresponding author: Remigius I. Onoja. Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka. Tel: +2347037434406;
| | - John I. Ihedioha
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria
| | - Shodeinde VO. Shoyinka
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria
| | - Arinze S. Ezema
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria
| | - Nnenna T. Emejuo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria
| | - Anthony C. Mgbeahuruike
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria
| | - Benjamin I. Emesiani
- Institute for Drug Herbal Medicine Excipients Research and Development, Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Wilson Obidah
- Department of Biochemistry, School of Life Sciences, Modibbo Adama University of Technology Yola, Yola, Nigeria
| | - Iyi Clinton
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, 410001, Nsukka, Nigeria
| |
Collapse
|
10
|
Rashed SA, Hammad SF, Eldakak MM, Khalil IA, Osman A. Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) - Delivered Phycocyanobilin. J Pharm Sci 2023; 112:213-224. [PMID: 36087776 DOI: 10.1016/j.xphs.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Phycocyanin (C-PC) is a constitutive chromoprotein of Arthrospira platensis, which exhibits promising efficacy against different types of cancer. In this study, we cleaved C-PC's chromophore phycocyanobilin (PCB) and demonstrated its ability as an anti-cancer drug for Colorectal cancer (CRC). PCB displayed an anti-cancer effect for CRC (HT-29) cells with IC50 of 108 µg/ml. Assessing the transcripts levels of some biomarkers revealed that the PCB caused an upregulation in the anti-metastatic gene NME1 level and downregulation of the COX-2 level. The flow cytometric results showed the effect of PCB on the arrest of the cell cycle's G1 phase. In addition, we successfully synthesized the UiO-66 (Zr-MOF). We incorporated the PCB into UiO-66 nanoparticles with a loading percentage of 46 %. Assessment of the cytotoxic effects of UiO-66@PCB showed a 2-fold improvement in the IC50 compared to the free PCB. In conclusion, we have shown that PCB displayed a promising potential as an anti-cancer agent. Yet, it is considered a safe and natural substance that can help to mitigate cancer spread and symptoms. In the meantime, UiO-66 can be used as a safe nano-delivery tool for PCB.
Collapse
Affiliation(s)
- Suzan A Rashed
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherif F Hammad
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Moustafa M Eldakak
- Genetics Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Islam A Khalil
- Pharmaceutics Department, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6 October, Egypt
| | - Ahmed Osman
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Department of Biochemistry, Faculty of Science, Ain shams University, Cairo, Egypt
| |
Collapse
|
11
|
β-Escin reduces cancer progression in aggressive MDA-MB-231 cells by inhibiting glutamine metabolism through downregulation of c-myc oncogene. Mol Biol Rep 2022; 49:7409-7415. [PMID: 35655054 DOI: 10.1007/s11033-022-07536-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The c-myc oncogene, which causes glutamine dependence in triple negative breast cancers (TNBC), is also the target of one of the signaling pathways affected by β-Escin. METHODS AND RESULTS We sought to determine how c-myc protein affects glutamine metabolism and the proteins, glutamine transporter alanine-serine-cysteine 2 (ASCT2) and glutaminase (GLS1), in β-Escin-treated MDA-MB-231 cells using glutamine uptake and western blot analysis. Cell viability, colony formation, migration and apoptosis were also evaluated in MDA-MB-231 cells in response to β-Escin treatment using MTS, colony forming, wound healing, and Annexin-V assay. We determined that β-Escin decreased glutamine uptake and reduced c-myc and GLS1 protein expressions and increased the expression of ASCT2. In addition, this inhibition of glutamine metabolism decreased cell proliferation, colony formation and migration, and induced apoptosis. CONCLUSIONS In this study, it was suggested that β-Escin inhibits glutamine metabolism via c-myc in MDA-MB-231 cells, and it is thought that as a result of interrupting the energy supply in these cells via c-myc, it results in a decrease in the carcinogenic properties of the cells. Consequently, β-Escin may be promising as a therapeutic agent for glutamine-dependent cancers.
Collapse
|
12
|
Phycocyanin Ameliorates Colitis-Associated Colorectal Cancer by Regulating the Gut Microbiota and the IL-17 Signaling Pathway. Mar Drugs 2022; 20:md20040260. [PMID: 35447933 PMCID: PMC9030732 DOI: 10.3390/md20040260] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Phycocyanin (PC) is a pigment-protein complex. It has been reported that PC exerts anti-colorectal cancer activities, although the underlying mechanism has not been fully elucidated. In the present study, azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice were orally administrated with PC, followed by microbiota and transcriptomic analyses to investigate the effects of PC on colitis-associated cancer (CAC). Our results indicated that PC ameliorated AOM/DSS induced inflammation. PC treatment significantly reduced the number of colorectal tumors and inhibited proliferation of epithelial cell in CAC mice. Moreover, PC reduced the relative abundance of Firmicutes, Deferribacteres, Proteobacteria and Epsilonbacteraeota at phylum level. Transcriptomic analysis showed that the expression of genes involved in the intestinal barrier were altered upon PC administration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the IL-17 signaling pathway was affected by PC treatment. The study demonstrated the protective therapeutic action of PC on CAC.
Collapse
|
13
|
He Y, Han Y, Liao X, Zou M, Wang Y. Biology of cyclooxygenase-2: An application in depression therapeutics. Front Psychiatry 2022; 13:1037588. [PMID: 36440427 PMCID: PMC9684729 DOI: 10.3389/fpsyt.2022.1037588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Depressive Disorder is a common mood disorder or affective disorder that is dominated by depressed mood. It is characterized by a high incidence and recurrence. The onset of depression is related to genetic, biological and psychosocial factors. However, the pathogenesis is still unclear. In recent years, there has been an increasing amount of research on the inflammatory hypothesis of depression, in which cyclo-oxygen-ase 2 (COX-2), a pro-inflammatory cytokine, is closely associated with depression. A variety of chemical drugs and natural products have been found to exert therapeutic effects by modulating COX-2 levels. This paper summarizes the relationship between COX-2 and depression in terms of neuroinflammation, intestinal flora, neurotransmitters, HPA axis, mitochondrial dysfunction and hippocampal neuronal damage, which can provide a reference for further preventive control, clinical treatment and scientific research on depression.
Collapse
Affiliation(s)
- Ying He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory for the Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha, China.,Hunan Key Laboratory of Power and Innovative Drugs State Key Laboratory of Ministry Training Bases, Changsha, China
| |
Collapse
|