1
|
Ha MS, Han CW, Jeong MS, Cheon S, Ha KT, Kim HY, Jang SB. Structural basis of lactate dehydrogenase A-gossypol complex. Biochem Biophys Res Commun 2024; 733:150721. [PMID: 39307113 DOI: 10.1016/j.bbrc.2024.150721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Lactate dehydrogenase A (LDHA) is a key enzyme in Warburg's effect, a characteristic of cancer cells. LDHA is a target of anticancer agents that inhibit the metabolism of cancer cells. Gossypol is a known cancer therapeutic agent that inhibits LDHA by competitive inhibition. However, the mechanisms of inhibition of LDHA by gossypol is unknown. Here, we elucidate the binding of gossypol and LDHA using biochemical and biophysical methods. The crystal structure of the complex between LDHA and gossypol is presented. The binding of gossypol affects LDHA activity by a conformational change in the active-site loop. Our research contributes to the structural insight into LDHA with gossypol and approaches gossypol as a novel therapeutic candidate targeting the metabolic pathways for cancer cells.
Collapse
Affiliation(s)
- Min Seon Ha
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Chang Woo Han
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mi Suk Jeong
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seyun Cheon
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hong Yeoul Kim
- Elysiumbio inc #2007, Samsung Cheil B/D, 309 Teheran-ro, Gangnam-gu, Seoul, 06151, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Andersen GT, Ianevski A, Resell M, Pojskic N, Rabben HL, Geithus S, Kodama Y, Hiroyuki T, Kainov D, Grønbech JE, Hayakawa Y, Wang TC, Zhao CM, Chen D. Multi-bioinformatics revealed potential biomarkers and repurposed drugs for gastric adenocarcinoma-related gastric intestinal metaplasia. NPJ Syst Biol Appl 2024; 10:127. [PMID: 39496635 DOI: 10.1038/s41540-024-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/13/2024] [Indexed: 11/06/2024] Open
Abstract
Biomarkers associated with the progression from gastric intestinal metaplasia (GIM) to gastric adenocarcinoma (GA), i.e., GA-related GIM, could provide valuable insights into identifying patients with increased risk for GA. The aim of this study was to utilize multi-bioinformatics to reveal potential biomarkers for the GA-related GIM and predict potential drug repurposing for GA prevention in patients. The multi-bioinformatics included gene expression matrix (GEM) by microarray gene expression (MGE), ScType (a fully automated and ultra-fast cell-type identification based solely on a given scRNA-seq data), Ingenuity Pathway Analysis, PageRank centrality, GO and MSigDB enrichments, Cytoscape, Human Protein Atlas and molecular docking analysis in combination with immunohistochemistry. To identify GA-related GIM, paired surgical biopsies were collected from 16 GIM-GA patients who underwent gastrectomy, yielding 64 samples (4 biopsies per stomach x 16 patients) for MGE. Co-analysis was performed by including scRNAseq and immunohistochemistry datasets of endoscopic biopsies of 37 patients. The results of the present study showed potential biomarkers for GA-related GIM, including GEM of individual patients, individual genes (such as RBP2 and CD44), signaling pathways, network of molecules, and network of signaling pathways with key topological nodes. Accordingly, potential treatment targets with repurposed drugs were identified including epidermal growth factor receptor, proto-oncogene tyrosine-protein kinase Src, paxillin, transcription factor Jun, breast cancer type 1 susceptibility protein, cellular tumor antigen p53, mouse double minute 2, and CD44.
Collapse
Affiliation(s)
- Gøran Troseth Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Surgery, St. Olav's Hospital, Trondheim, Norway
- Department of Surgery, Namsos Hospital, Namsos, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mathilde Resell
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Naris Pojskic
- Laboratory for Bioinformatics and Biostatistics, University of Sarajevo - Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Hanne-Line Rabben
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Synne Geithus
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Yosuke Kodama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tomita Hiroyuki
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jon Erik Grønbech
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Surgery, St. Olav's Hospital, Trondheim, Norway
| | - Yoku Hayakawa
- Department of Gastroenterology, Tokyo University Hospital, Tokyo, Japan
| | - Timothy C Wang
- Department of Digestive and Liver Diseases and Herbert Iring Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
3
|
Lopez-Charcas O, Benouna O, Lemoine R, Rosendo-Pineda MJ, Anguheven-Ledezma TG, Sandoval-Vazquez L, Gallegos-Gomez ML, Robles-Martinez L, Herrera-Carrillo Z, Ramírez-Aragón M, Alfaro A, Chadet S, Ferro F, Besson P, Jiang LH, Velu SE, Guerrero-Hernandez A, Roger S, Gomora JC. Blockade of Ca V3 calcium channels and induction of G 0/G 1 cell cycle arrest in colon cancer cells by gossypol. Br J Pharmacol 2024; 181:4546-4570. [PMID: 39081110 DOI: 10.1111/bph.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.
Collapse
Grants
- SPF201909009198 Fondation pour la Recherche Médicale (FRM), France
- BB/C517317/1 Biotechnology and Biological Sciences Research Council, UK
- G2022026006L National High-End Foreign Expert Recruitment Plan of China, China
- pre-R01grant O'Neal Comprehensive Cancer Center, USA
- CVU1148606 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- PrixRubanRoseAvenir Le Cancer du sein, parlons-en, France
- 16IRTSTHN020 Department of Education of the Henan Province, China
- Ministère de la Recherche et des Technologies, France
- A1-S-19171 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- Université de Tours, France
- IN209820 PAPIIT-DGAPA-UNAM, Mexico
- NavMetarget Conseil Régional du Centre-Val de Loire, France
- 1R21CA226491 National Institutes of Health (NIH), USA
- 099758/Z/12/Z Wellcome Trust, UK
- CanalEx Conseil Régional du Centre-Val de Loire, France
- I1200/320/2022 CVU 369878 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- Ligue Nationale Contre le Cancer, Interrégion Grand-Ouest: comités 29, 36, 86 and 37, France
- 2016PN-KFKT-06 Disciplinary Group of Psychology and Neuroscience, Xinxiang Medical University, China
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oumnia Benouna
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Roxane Lemoine
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tonantzin Guadalupe Anguheven-Ledezma
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Leticia Robles-Martinez
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zazil Herrera-Carrillo
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac, Mexico City, Mexico
| | - Miguel Ramírez-Aragón
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Alfaro
- Servicio de Anatomía Patológica, Hospital General de México 'Dr. Eduardo Liceaga', Mexico City, Mexico
| | - Stéphanie Chadet
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Fabio Ferro
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Pierre Besson
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Sébastien Roger
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Stepanov AV, Yarovenko VN, Nasyrova DI, Dezhenkova LG, Akchurin IO, Krayushkin MM, Ilyushenkova VV, Shchekotikhin AE, Tretyakov EV. A Spin-Labeled Derivative of Gossypol. Molecules 2024; 29:4966. [PMID: 39459334 PMCID: PMC11510377 DOI: 10.3390/molecules29204966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation of a Schiff base. By this approach, synthesis of a gossypol nitroxide conjugate was performed by condensation of gossypol with a 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl) free radical, which afforded the target product in high yield. Its structure was proven by a combination of NMR and EPR spectroscopy, infrared spectroscopy, mass spectrometry, and high-resolution mass spectrometry. In addition, the structure of the gossypol nitroxide was determined by single-crystal X-ray diffraction measurements. In crystals, the paramagnetic Schiff base exists in an enamine-enamine tautomeric form. The tautomer is strongly stabilized by the intra- and intermolecular hydrogen bonds promoted by the resonance of π-electrons in the aromatic system. NMR analyses of the gossypol derivative proved that in solutions, the enamine-enamine tautomeric form prevailed. The gossypol nitroxide at micromolar concentrations suppressed the growth of tumor cells; however, compared to gossypol, the cytotoxicity of the obtained conjugate was substantially lower.
Collapse
Affiliation(s)
- Andrey V. Stepanov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Vladimir N. Yarovenko
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Darina I. Nasyrova
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya St. 11, Moscow 119021, Russia; (L.G.D.); (I.O.A.); (A.E.S.)
| | - Igor O. Akchurin
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya St. 11, Moscow 119021, Russia; (L.G.D.); (I.O.A.); (A.E.S.)
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Mickhail M. Krayushkin
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Valentina V. Ilyushenkova
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya St. 11, Moscow 119021, Russia; (L.G.D.); (I.O.A.); (A.E.S.)
| | - Evgeny V. Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| |
Collapse
|
5
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
6
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
7
|
Liu J, Zhao F, Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024; 14:1175. [PMID: 39334941 PMCID: PMC11430557 DOI: 10.3390/biom14091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Yu Y, Jiang Y, Glandorff C, Sun M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cell Signal 2024; 120:111239. [PMID: 38815642 DOI: 10.1016/j.cellsig.2024.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Collapse
Affiliation(s)
- Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
10
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
11
|
Paunovic D, Rajkovic J, Novakovic R, Grujic-Milanovic J, Mekky RH, Popa D, Calina D, Sharifi-Rad J. The potential roles of gossypol as anticancer agent: advances and future directions. Chin Med 2023; 18:163. [PMID: 38098026 PMCID: PMC10722855 DOI: 10.1186/s13020-023-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Gossypol, a polyphenolic aldehyde derived from cottonseed plants, has seen a transformation in its pharmaceutical application from a male contraceptive to a candidate for cancer therapy. This shift is supported by its recognized antitumor properties, which have prompted its investigation in the treatment of various cancers and related inflammatory conditions. This review synthesizes the current understanding of gossypol as an anticancer agent, focusing on its pharmacological mechanisms, strategies to enhance its clinical efficacy, and the status of ongoing clinical evaluations.The methodological approach to this review involved a systematic search across several scientific databases including the National Center for Biotechnology Information (NCBI), PubMed/MedLine, Google Scholar, Scopus, and TRIP. Studies were meticulously chosen to cover various aspects of gossypol, from its chemical structure and natural sources to its pharmacokinetics and confirmed anticancer efficacy. Specific MeSH terms and keywords related to gossypol's antineoplastic applications guided the search strategy.Results from selected pharmacological studies indicate that gossypol inhibits the Bcl-2 family of anti-apoptotic proteins, promoting apoptosis in tumor cells. Clinical trials, particularly phase I and II, reveal gossypol's promise as an anticancer agent, demonstrating efficacy and manageable toxicity profiles. The review identifies the development of gossypol derivatives and novel carriers as avenues to enhance therapeutic outcomes and mitigate adverse effects.Conclusively, gossypol represents a promising anticancer agent with considerable therapeutic potential. However, further research is needed to refine gossypol-based therapies, explore combination treatments, and verify their effectiveness across cancer types. The ongoing clinical trials continue to support its potential, suggesting a future where gossypol could play a significant role in cancer treatment protocols.
Collapse
Affiliation(s)
- Danijela Paunovic
- Institute for Biological Research Sinisa Stankovic, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Rajkovic
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Radmila Novakovic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Jelica Grujic-Milanovic
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, University of Belgrade, Belgrade, Serbia
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Dragos Popa
- Department of Plastic Surgery, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
12
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
WAHI ABHISHEK, BISHNOI MAMTA, RAINA NEHA, SINGH MEGHNAAMRITA, VERMA PIYUSH, GUPTA PIYUSHKUMAR, KAUR GINPREET, TULI HARDEEPSINGH, GUPTA MADHU. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment. Oncol Res 2023; 32:19-47. [PMID: 38188681 PMCID: PMC10767243 DOI: 10.32604/or.2023.042228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer is a leading cause of death globally, with limited treatment options and several limitations. Chemotherapeutic agents often result in toxicity which long-term conventional treatment. Phytochemicals are natural constituents that are more effective in treating various diseases with less toxicity than the chemotherapeutic agents providing alternative therapeutic approaches to minimize the resistance. These phytoconstituents act in several ways and deliver optimum effectiveness against cancer. Nevertheless, the effectiveness of phyto-formulations in the management of cancers may be constrained due to challenges related to inadequate solubility, bioavailability, and stability. Nanotechnology presents a promising avenue for transforming current cancer treatment methods through the incorporation of phytochemicals into nanosystems, which possess a range of advantageous characteristics such as biocompatibility, targeted and sustained release capabilities, and enhanced protective effects. This holds significant potential for future advancements in cancer management. Herein, this review aims to provide intensive literature on diverse nanocarriers, highlighting their applications as cargos for phytocompounds in cancer. Moreover, it offers an overview of the current advancements in the respective field, emphasizing the characteristics that contribute to favourable outcomes in both in vitro and in vivo settings. Lastly, clinical development and regulatory concerns are also discussed to check on the transformation of the concept as a promising strategy for combination therapy of phytochemicals and chemotherapeutics that could lead to cancer management in the future.
Collapse
Affiliation(s)
- ABHISHEK WAHI
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - MAMTA BISHNOI
- Department of Pharmaceutical Sciences, Gurugram University, Haryana, 122003, India
| | - NEHA RAINA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - MEGHNA AMRITA SINGH
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - PIYUSH VERMA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - PIYUSH KUMAR GUPTA
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - GINPREET KAUR
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle (West), Mumbai, 400056, India
| | - HARDEEP SINGH TULI
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - MADHU GUPTA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
14
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
15
|
Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, Troschel FM. The Musashi RNA-binding proteins in female cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res 2023; 11:76. [PMID: 37620963 PMCID: PMC10463710 DOI: 10.1186/s40364-023-00516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins have increasingly been identified as important regulators of gene expression given their ability to bind distinct RNA sequences and regulate their fate. Mounting evidence suggests that RNA-binding proteins are involved in the onset and progression of multiple malignancies, prompting increasing interest in their potential for therapeutic intervention.The Musashi RNA binding proteins Musashi-1 and Musashi-2 were initially identified as developmental factors of the nervous system but have more recently been found to be ubiquitously expressed in physiological tissues and may be involved in pathological cell behavior. Both proteins are increasingly investigated in cancers given dysregulation in multiple tumor entities, including in female malignancies. Recent data suggest that the Musashi proteins serve as cancer stem cell markers as they contribute to cancer cell proliferation and therapy resistance, prompting efforts to identify mechanisms to target them. However, as the picture remains incomplete, continuous efforts to elucidate their role in different signaling pathways remain ongoing.In this review, we focus on the roles of Musashi proteins in tumors of the female - breast, endometrial, ovarian and cervical cancer - as we aim to summarize current knowledge and discuss future perspectives.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Isabel Falke
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maria T Löblein
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Th Eich
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
16
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Chetta P, Sriram R, Zadra G. Lactate as Key Metabolite in Prostate Cancer Progression: What Are the Clinical Implications? Cancers (Basel) 2023; 15:3473. [PMID: 37444583 PMCID: PMC10340474 DOI: 10.3390/cancers15133473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.
Collapse
Affiliation(s)
- Paolo Chetta
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
18
|
DoubleSG-DTA: Deep Learning for Drug Discovery: Case Study on the Non-Small Cell Lung Cancer with EGFRT790M Mutation. Pharmaceutics 2023; 15:pharmaceutics15020675. [PMID: 36839996 PMCID: PMC9965659 DOI: 10.3390/pharmaceutics15020675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Drug-targeted therapies are promising approaches to treating tumors, and research on receptor-ligand interactions for discovering high-affinity targeted drugs has been accelerating drug development. This study presents a mechanism-driven deep learning-based computational model to learn double drug sequences, protein sequences, and drug graphs to project drug-target affinities (DTAs), which was termed the DoubleSG-DTA. We deployed lightweight graph isomorphism networks to aggregate drug graph representations and discriminate between molecular structures, and stacked multilayer squeeze-and-excitation networks to selectively enhance spatial features of drug and protein sequences. What is more, cross-multi-head attentions were constructed to further model the non-covalent molecular docking behavior. The multiple cross-validation experimental evaluations on various datasets indicated that DoubleSG-DTA consistently outperformed all previously reported works. To showcase the value of DoubleSG-DTA, we applied it to generate promising hit compounds of Non-Small Cell Lung Cancer harboring EGFRT790M mutation from natural products, which were consistent with reported laboratory studies. Afterward, we further investigated the interpretability of the graph-based "black box" model and highlighted the active structures that contributed the most. DoubleSG-DTA thus provides a powerful and interpretable framework that extrapolates for potential chemicals to modulate the systemic response to disease.
Collapse
|
19
|
Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res 2023; 46:90-110. [PMID: 36729274 DOI: 10.1007/s12272-023-01431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Collapse
|
20
|
Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1554-1578. [PMID: 36639602 DOI: 10.1007/s12094-022-03070-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Due to their key role in the pathogenesis of cancer through the regulation of apoptosis, the B-cell leukemia/lymphoma-2 (BCL-2) family proteins have been an attractive target for cancer therapy for the past decades. Throughout the years, many Bcl-2 family inhibitors have been developed, with Venetoclax being now successfully used in treating hematological malignancies. Although their effectiveness in the treatment of solid tumors is yet to be established, some preclinical evidence indicates their possible clinical application. This review aims to summarize current data from completed clinical trials that used Bcl-2 protein family inhibitors as monotherapy or in combination with other agents for the treatment of solid malignancies. We managed to include clinical trials of various phases which analyze the pharmacokinetics and pharmacodynamics of the drugs, as well as the effectiveness and adverse effects. Active and recruiting clinical trials are also briefly presented and future prospects and challenges are discussed.
Collapse
|
21
|
Gossypol and Its Natural Derivatives: Multitargeted Phytochemicals as Potential Drug Candidates for Oncologic Diseases. Pharmaceutics 2022; 14:pharmaceutics14122624. [PMID: 36559116 PMCID: PMC9787675 DOI: 10.3390/pharmaceutics14122624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the vast amounts of research and remarkable discoveries that have been made in recent decades, cancer remains a leading cause of death and a major public health concern worldwide. Gossypol, a natural polyphenolic compound derived from the seeds, roots, and stems of cotton (Gossypium hirsutum L.), was first used as a male contraceptive agent. Due to its diverse biological properties, including antifertility, antiviral, antioxidant, antibacterial, antimalarial, and most notably antitumor activities, gossypol has been the subject of numerous studies. Nevertheless, no systematic review has been performed that analyzes the antineoplastic potential of gossypol and related natural compounds in an organ-specific manner while delineating the molecular mechanisms of action. Hence, we have performed an extensive literature search for anticancer properties of gossypol and their natural derivatives against various types of cancer cells utilizing PubMed, ScienceDirect, Google Scholar, and Scopus. The sources, distribution, chemical structure, and toxicity of gossypol and its constituents are briefly reviewed. Based on emerging evidence, gossypol and related compounds exhibit significant antineoplastic effects against various cancer types through the modulation of different cancer hallmarks and signaling pathways. Additionally, the synergistic activity of gossypol and its derivatives with chemotherapeutic agents has been observed. Our evaluation of the current literature suggests the potential of gossypol and its derivatives as multitargeting drug candidates to combat multiple human malignancies.
Collapse
|
22
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
23
|
Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol 2022; 149:2259-2270. [PMID: 36151426 PMCID: PMC10097763 DOI: 10.1007/s00432-022-04371-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Metabolic reprogramming has been recognised as a hallmark in solid tumours. Malignant modification of the tumour's bioenergetics provides energy for tumour growth and progression. Otto Warburg first reported these metabolic and biochemical changes in 1927. In prostate cancer (PCa) epithelial cells, the tumour metabolism also changes during development and progress. These alterations are partly driven by the androgen receptor, the key regulator in PCa development, progress, and survival. In contrast to other epithelial cells of different entities, glycolytic metabolism in prostate cells sustains physiological citrate secretion in the normal prostatic epithelium. In the early stages of PCa, citrate is utilised to power oxidative phosphorylation and fuel lipogenesis, enabling tumour growth and progression. In advanced and incurable castration-resistant PCa, a metabolic shift towards choline, amino acid, and glycolytic metabolism fueling tumour growth and progression has been described. Therefore, even if the metabolic changes are not fully understood, the altered metabolism during tumour progression may provide opportunities for novel therapeutic strategies, especially in advanced PCa stages. This review focuses on the main differences in PCa's metabolism during tumourigenesis and progression highlighting glutamine's role in PCa.
Collapse
|
24
|
Jiang W, Wang W, Sun L, Xiao Y, Ma T, Li B, Yan X, Wu Y, Li H, Lian J, He F. (-)-Gossypol enhances the anticancer activity of epirubicin via downregulating survivin in hepatocellular carcinoma. Chem Biol Interact 2022; 364:110060. [PMID: 35872041 DOI: 10.1016/j.cbi.2022.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Epirubicin (EPI)-based transarterial chemoembolization is an effective therapy for advanced hepatocellular carcinoma (HCC). However, EPI-induced survivin expression limits its tumor-killing potential in HCC. Interestingly, (-)-gossypol ((-)-Gsp), a male contraceptive, suppresses various malignancies. More importantly, (-)-Gsp also holds promise for enhancing the antitumor effects of chemotherapy in numerous cancer types. In the present study, we demonstrated for the first time that (-)-Gsp-sensitized EPI inhibited cell growth and induced apoptosis of HCC cells in vitro. Furthermore, (-)-Gsp sensitized EPI by attenuating the EPI-elevated survivin protein levels. Mechanistic studies showed that EPI stimulated survivin protein synthesis by promoting translation initiation, which was alleviated by (-)-Gsp mainly through suppressing the AKT-4EBP1/p70S6K-survivin and ERK-4EBP1-survivin pathways. HCC xenograft experiments in nude mice also showed that (-)-Gsp treatment acted synergistically with EPI to repress xenograft tumor growth. Overall, our proof-of-concept results may pave the way for novel strategies for the treatment of HCC based on the combination of EPI and (-)-Gsp.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wan Wang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yunhua Xiao
- Department of Nuclear Medicine, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Teng Ma
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Bosheng Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yaran Wu
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
25
|
Historical perspective of tumor glycolysis: A century with Otto Warburg. Semin Cancer Biol 2022; 86:325-333. [PMID: 35809880 DOI: 10.1016/j.semcancer.2022.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022]
Abstract
Tumors have long been known to rewire their metabolism to endorse their proliferation, growth, survival, and invasiveness. One of the common characteristics of these alterations is the enhanced glucose uptake and its subsequent transformation into lactic acid by means of glycolysis, regardless the availability of oxygen or the mitochondria effectiveness. This phenomenon is called the "Warburg effect", which has turned into a century of age now, since its first disclosure by German physiologist Otto Heinrich Warburg. Since then, this peculiar metabolic switch in tumors has been addressed by extensive studies covering several areas of research. In this historical perspective, we aim at illustrating the evolution of these studies over time and their implication in various fields of science.
Collapse
|
26
|
Mayer M, Berger A, Leischner C, Renner O, Burkard M, Böcker A, Noor S, Weiland T, Weiss TS, Busch C, Lauer UM, Bischoff SC, Venturelli S. Preclinical Efficacy and Toxicity Analysis of the Pan-Histone Deacetylase Inhibitor Gossypol for the Therapy of Colorectal Cancer or Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2022; 15:ph15040438. [PMID: 35455435 PMCID: PMC9028974 DOI: 10.3390/ph15040438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Gossypol, a sesquiterpenoid found in cotton seeds, exerts anticancer effects on several tumor entities due to inhibition of DNA synthesis and other mechanisms. In clinical oncology, histone deacetylase inhibitors (HDACi) are applied as anticancer compounds. In this study, we examined whether gossypol harbors HDAC inhibiting activity. In vitro analyses showed that gossypol inhibited class I, II, and IV HDAC, displaying the capability to laterally interact with the respective catalytic center and is, therefore, classified as a pan-HDAC inhibitor. Next, we studied the effects of gossypol on human-derived hepatoma (HepG2) and colon carcinoma (HCT-116) cell lines and found that gossypol induced hyperacetylation of histone protein H3 and/or tubulin within 6 h. Furthermore, incubation with different concentrations of gossypol (5–50 µM) over a time period of 96 h led to a prominent reduction in cellular viability and proliferation of hepatoma (HepG2, Hep3B) and colon carcinoma (HCT-116, HT-29) cells. In-depth analysis of underlying mechanisms showed that gossypol induced apoptosis via caspase activation. For pre-clinical evaluation, toxicity analyses showed toxic effects of gossypol in vitro toward non-malignant primary hepatocytes (PHH), the colon-derived fibroblast cell line CCD-18Co, and the intestinal epithelial cell line CCD 841 CoN at concentrations of ≥5 µM, and embryotoxicity in chicken embryos at ≥2.5 µM. In conclusion, the pronounced inhibitory capacity of gossypol on cancer cells was characterized, and pan-HDACi activity was detected in silico, in vitro, by inhibiting individual HDAC isoenzymes, and on protein level by determining histone acetylation. However, for clinical application, further chemical optimization is required to decrease cellular toxicity.
Collapse
Affiliation(s)
- Mascha Mayer
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Alexander Berger
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.B.); (T.W.); (U.M.L.)
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
| | | | - Seema Noor
- Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany;
| | - Timo Weiland
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.B.); (T.W.); (U.M.L.)
| | - Thomas S. Weiss
- Center for Liver Cell Research, Children’s University Hospital (KUNO), University Hospital Regensburg, 93042 Regensburg, Germany;
| | | | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany; (A.B.); (T.W.); (U.M.L.)
- German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany;
- Correspondence: (S.C.B.); (S.V.); Tel.: +49-711-459-24100 (S.C.B.); +49-711-459-24195 (S.V.)
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany; (C.L.); (O.R.); (M.B.)
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, 72074 Tuebingen, Germany
- Correspondence: (S.C.B.); (S.V.); Tel.: +49-711-459-24100 (S.C.B.); +49-711-459-24195 (S.V.)
| |
Collapse
|