1
|
Wang Z, Yan Q, Wang Z, Hu Z, Wang C, Zhang X, Gao X, Bai X, Chen X, Zhang L, Lv D, Liu H, Chen Y. Ferroptosis and its implications in bone-related diseases. PeerJ 2024; 12:e18626. [PMID: 39619200 PMCID: PMC11606331 DOI: 10.7717/peerj.18626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Ferroptosis, a recently recognized form of regulated cell death (RCD) characterized by iron-dependent lipid peroxide accumulation, has emerged as a noteworthy regulator in various bone-related diseases, including osteoporosis (OP), osteoarthritis (OA), and osteosarcoma (OS). OS primarily afflicts the elderly, rendering them susceptible to fractures due to increased bone fragility. OA represents the most prevalent arthritis in the world, often observed in the aging population. OS predominantly manifests during adolescence, exhibiting an aggressive nature and bearing a significantly unfavorable prognosis. In this review article, we present an overview of the characteristics and mechanism of ferroptosis and its involvement in bone-related diseases, with a particular focus on OP, OA, and OS. Furthermore, we summarize chemical compounds or biological factors that impact bone-related diseases by regulating ferroptosis. Through an in-depth exploration of ferroptosis based on current research findings, this review provides promising insights for potential therapeutic approaches to effectively manage and mitigate the impact of these bone-related pathological conditions.
Collapse
Affiliation(s)
- Zihao Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Qiupeng Yan
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Teaching and Research Section of Introduction to Basic Medicine, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Zhen Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Zunguo Hu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Chenchen Wang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xueshuai Gao
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Bai
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xiaosu Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Lingyun Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Danyue Lv
- Shandong Second Medical University, Clinical Medicine, School of Clinical Medicine, Weifang, Shandong, China
| | - Huancai Liu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Yanchun Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| |
Collapse
|
2
|
Li C, Xue P, Duan G, Song A, Zhai R, Ma J, Li M. ED-71 promotes osseointegration of titanium implants in a rat model of GIOP by alleviating the effects of dexamethasone on bone remodeling in a SIRT1-dependent manner. J Oral Biosci 2024:S1349-0079(24)00205-6. [PMID: 39395651 DOI: 10.1016/j.job.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Glucocorticoid-induced osteoporosis (GIOP), a common complication of glucocorticoid usage, plays a critical role in the success of dental implant restoration by affecting osseointegration. Eldecalcitol (ED-71) prevents GIOP; however, its role in the osseointegration of implants under GIOP conditions remains elusive. METHODS Dexamethasone was used to establish a rat model of GIOP. Subsequently, mini-implant surgery was performed on the femur. GIOP rats were administered ED-71 via gavage to assess its role in the osseointegration of titanium implants under GIOP conditions. MC3T3-E1 and RAW264.7 cells were utilized to explore the molecular mechanism of ED-71 in ameliorating disorder of bone remodeling caused by dexamethasone. RESULTS The administration of ED-71 promoted the formation of newly formed woven bone and the resolution of inflammation around titanium implants. In vitro experiments indicated that ED-71 ameliorated dexamethasone-induced dysfunction of osteoblasts and osteoclasts by increasing the expression level of sirtuin 1 (SIRT1). Inhibition of SIRT1 by selisistat counteracts the regulatory effects of ED-71 on dexamethasone-induced disorder of bone remodeling. Molecular docking and Western blotting revealed that the neurogenic locus notch homolog protein and nuclear factor kappa B signaling pathways are essential for the effects of ED-71 on dexamethasone-induced disorder of bone remodeling. CONCLUSION ED-71 promoted implant osseointegration in a rat model of GIOP by alleviating the effects of dexamethasone on bone remodeling in a SIRT1-dependent manner.
Collapse
Affiliation(s)
- Chunying Li
- Department of stomatology, Zibo Municipal Hospital, Zibo, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| | - Pengfei Xue
- Department of stomatology, Zibo Municipal Hospital, Zibo, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Guanglin Duan
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Ailing Song
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Runbing Zhai
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Jie Ma
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| |
Collapse
|
3
|
Xu N, Xie Q, Chen Y, Li J, Zhang X, Zheng H, Cheng Y, Wu M, Shen A, Wei L, Yao M, Yang Y, Sferra TJ, Jafri A, Fang Y, Peng J. Gastrodin Alleviates Angiotensin II-Induced Hypertension and Myocardial Apoptosis via Inhibition of the PRDX2/p53 Pathway In Vivo and In Vitro. Pharmaceuticals (Basel) 2024; 17:1200. [PMID: 39338362 PMCID: PMC11434704 DOI: 10.3390/ph17091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrodin, a highly potent compound found in the traditional Chinese medicine Gastrodia elata Blume, exhibits significant antihypertensive properties. However, its role and the mechanism behind its protective effects on hypertensive cardiac conditions are not well understood. This study aims to investigate the cardiac protective effects and underlying mechanisms of gastrodin in angiotensin II (Ang II)-induced hypertensive models, both in vivo and in vitro. Treatment with gastrodin significantly decreased blood pressure and the heart weight/tibial length (HW/TL) ratio and attenuated cardiac dysfunction and pathological damage in Ang II-infused C57BL/6 mice. RNA sequencing analysis (RNA-seq) revealed 697 up-regulated and 714 down-regulated transcripts, along with 1105 signaling pathways, in Ang II-infused C57BL/6 mice following gastrodin treatment, compared to Ang II-induced hypertensive mice. Furthermore, the analyses of the top 30 Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway indicated significant enrichment in apoptosis and the peroxiredoxin 2 (PRDX2)/p53 pathway. Consistently, gastrodin treatment significantly reduced myocardial apoptosis in both the cardiac tissues of Ang II-induced hypertensive mice and Ang II-stimulated H9c2 cells. Additionally, gastrodin treatment significantly decreased the protein levels of PRDX2, p53, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 ratio in the cardiac tissues of Ang II-infused mice and H9c2 cells stimulated with Ang II. In conclusion, gastrodin treatment can mitigate hypertension-induced myocardial apoptosis in hypertensive mice by inhibiting the PRDX2/p53 pathway.
Collapse
Affiliation(s)
- Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Huifang Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Yanyan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Anjum Jafri
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
4
|
Maheshwari S, Singh A, Verma A. Ferroptosis: A Frontier in Osteoporosis. Horm Metab Res 2024; 56:625-632. [PMID: 38307092 DOI: 10.1055/a-2230-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Reduced bone mass and degeneration of the microarchitecture of bone tissue are the hallmarks of osteoporosis, a bone metabolic disease that increases skeletal fragility and fracture susceptibility. Osteoporosis is primarily caused by unbalanced bone remodeling, in which bone synthesis is outpaced by bone resorption caused by osteoclasts. Along with the bone-building vitamins calcium and vitamin D, typical medications for treating osteoporosis include bisphosphonates and calcitonin. The present therapies effectively stop osteoclast activation that is too high, however they come with varying degrees of negative effects. Numerous factors can contribute to osteoporosis, which is characterized by a loss of bone mass and density due to the deterioration of the bone's microstructure, which makes the bone more fragile. As a result, it is a systemic bone condition that makes patients more likely to fracture. Interest in the function of ferroptosis in the pathophysiology of osteoporosis is developing. In this review, we go through the shape of the cell, the fundamental mechanisms of ferroptosis, the relationship between osteoclasts and osteoblasts, the association between ferroptosis and diabetic osteoporosis, steroid-induced osteoporosis, and the relationship between ferroptosis and postmenopausal osteoporosis. The functions of ferroptosis and osteoporosis in cellular function, signaling cascades, pharmacological inhibition, and gene silencing have been better understood thanks to recent advances in biomedical research.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
5
|
Joshi DC, Joshi N, Kumar A, Maheshwari S. Recent Advances in Molecular Pathways and Therapeutic Implications for Peptic Ulcer Management: A Comprehensive Review. Horm Metab Res 2024; 56:615-624. [PMID: 38467155 DOI: 10.1055/a-2256-6592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Peptic ulcers, recognized for their erosive impact on the gastrointestinal mucosa, present a considerable challenge in gastroenterology. Epidemiological insights underscore the global prevalence of peptic ulcers, affecting 5-10+% of individuals, with a yearly incidence of 0.3 to 1.9 cases per thousand. Recent decades have witnessed a decline in complications, attributed to improved diagnostics and therapeutic advancements. The review deepens into H. pylori-associated and NSAID-induced ulcers, emphasizing their distinct prevalence in developing and industrialized nations, respectively. Despite advancements, managing peptic ulcers remains challenging, notably in H. pylori-infected individuals facing recurrence and the rise of antibiotic resistance. The pathophysiology unravels the delicate balance between protective and destructive factors, including the intricate molecular mechanisms involving inflammatory mediators such as TNF-α, ILs, and prostaglandins. Genetic and ethnic factors, rare contributors, and recent molecular insights further enhance our understanding of peptic ulcer development. Diagnostic approaches are pivotal, with upper gastrointestinal endoscopy standing as the gold standard. Current treatment strategies focus on H. pylori eradication, NSAID discontinuation, and proton pump inhibitors. Surgical options become imperative for refractory cases, emphasizing a comprehensive approach. Advances include tailored H. pylori regimens, the emergence of vonoprazan, and ongoing vaccine development. Challenges persist, primarily in antibiotic resistance, side effects of acid suppressants, and translating natural compounds into standardized therapies. Promising avenues include the potential H. pylori vaccine and the exploration of natural compounds, with monoterpenes showing therapeutic promise. This review serves as a compass, guiding healthcare professionals, researchers, and policymakers through the intricate landscape of peptic ulcer management.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Nirmal Joshi
- Department of Pharmacology, Amrapali Institute of Pharmacy and Sciences, Haldwani, India
| | - Ajeet Kumar
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | | |
Collapse
|
6
|
Li Y, Zhang J, Li F. Gastrodin improves osteoblast function and adhesion to titanium surface in a high glucose environment. Biochem Biophys Rep 2024; 37:101623. [PMID: 38225991 PMCID: PMC10788200 DOI: 10.1016/j.bbrep.2023.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Objective To investigate the effects of gastrodin on the biological behavior of osteoblasts and osseointegration on the surface of the titanium plate in a high glucose environment, and to explore the possible regulatory mechanisms involved. Methods A high glucose-induced oxidative damage model of MC3T3-E1 cells was established in vitro to observe the effects of gastrodin on cellular oxidative stress, cell viability, osteogenic differentiation, mineralization, migration, and adhesion ability on the titanium surface. Results High glucose environment can cause oxidative stress damage to MC3T3-E1 cells, leading to a decrease in cell viability, osteogenesis, migration, adhesion and other functions. Gastrodin can upregulate the expression of antioxidant enzymes (Nrf2 and HO-1) and osteogenic differentiation related proteins (RUNX2 and BMP2) in MC3T3-E1 cells in high glucose environment, thereby inhibiting the excessive production of intracellular reactive oxygen species (ROS), reversing the decrease in cell viability, and improving the osteogenic differentiation and mineralization ability of osteoblasts. And gastrodin alleviated the decline in cell migration ability, improved the morphology of the cytoskeleton and increased the adhesion ability of osteoblasts on the surface of titanium plates in high glucose environment. However, gastrodin itself did not affect the cell viability, osteogenic differentiation and mineralization ability of osteoblasts in normal environment. Conclusions Gastrodin may protect MC3T3-E1 cells osteogenesis and osseointegration on the surface of the titanium plate in vitro by upregulating antioxidant enzymes expression, and attenuating high glucose-induced oxidative stress. Therefore, gastrodin may be a potential drug to address the problem of poor implant osseointegration in patients with diabetes.
Collapse
Affiliation(s)
- Yi Li
- Shanxi Medical University School of Stomatology, Taiyuan 030000, China
| | - Jingyi Zhang
- Shanxi Medical University School of Stomatology, Taiyuan 030000, China
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
7
|
Yang Y, Jiang Y, Qian D, Wang Z, Xiao L. Prevention and treatment of osteoporosis with natural products: Regulatory mechanism based on cell ferroptosis. J Orthop Surg Res 2023; 18:951. [PMID: 38082321 PMCID: PMC10712195 DOI: 10.1186/s13018-023-04448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
CONTEXT With the development of society, the number of patients with osteoporosis is increasing. The prevention and control of osteoporosis has become a serious and urgent issue. With the continuous progress of biomedical research, ferroptosis has attracted increased attention. However, the pathophysiology and mechanisms of ferroptosis and osteoporosis still need further study. Natural products are widely used in East Asian countries for osteoporosis prevention and treatment. OBJECTIVE In this paper, we will discuss the basic mechanisms of ferroptosis, the relationship between ferroptosis and osteoclasts and osteoblasts, and in vitro and in vivo studies of natural products to prevent osteoporosis by interfering with ferroptosis. METHODS This article takes ferroptosis, natural products, osteoporosis, osteoblasts and osteoclast as key words. Retrieve literature from 2012 to 2023 indexed in databases such as PubMed Central, PubMed, Web of Science, Scopus and ISI. RESULTS Ferroptosis has many regulatory mechanisms, including the system XC -/GSH/GPX4, p62/Keap1/Nrf2, FSP1/NAD (P) H/CoQ10, P53/SAT1/ALOX15 axes etc. Interestingly, we found that natural products, such as Artemisinin, Biochanin A and Quercetin, can play a role in treating osteoporosis by promoting ferroptosis of osteoclast and inhibiting ferroptosis of osteoblasts. CONCLUSIONS Natural products have great potential to regulate OBs and OCs by mediating ferroptosis to prevent and treat osteoporosis, and it is worthwhile to explore and discover more natural products that can prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Yunshang Yang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
| | - Yifan Jiang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
| | - Daoyi Qian
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
| | - Long Xiao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
| |
Collapse
|
8
|
Li Y, Ji Y, Li F. A review: Mechanism and prospect of gastrodin in prevention and treatment of T2DM and COVID-19. Heliyon 2023; 9:e21218. [PMID: 37954278 PMCID: PMC10637887 DOI: 10.1016/j.heliyon.2023.e21218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrodin is an extract from the dried tuber of the Chinese herb Gastrodia elata (Tian ma), with anti-inflammatory, antioxidant, and antiviral properties. Recent studies have shown that, compared to commonly used diabetes drugs, gastrodin has antidiabetic effects in multiple ways, with characteristics of low cost, high safety, less side effects, protection of β-cell function, relieving insulin resistance and alleviating multiple complications. In addition, it is confirmed that gastrodin can protect the function of lung and other organs, enhance antiviral activity via upregulating the type I interferon (IFN-I), and inhibit angiotensin II (AngII), a key factor in "cytokine storm" caused by COVID-19. Therefore, we reviewed the effect and mechanism of gastrodin on type 2 diabetes mellitus (T2DM), and speculated other potential mechanisms of gastrodin in alleviating insulin resistance from insulin signal pathway, inflammation, mitochondrial and endoplasmic reticulum and its potential in the prevention and treatment of COVID-19. We hope to provide new direction and treatment strategy for basic research and clinical work: gastrodin is considered as a drug for the prevention and treatment of diabetes and COVID-19.
Collapse
Affiliation(s)
- Yi Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Fenglan Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|