1
|
Goriounova AS, Flori Sassano M, Wrennall JA, Tarran R. ELD607 specifically traffics Orai1 to the lysosome leading to inhibition of store operated calcium entry. Cell Calcium 2024; 123:102945. [PMID: 39191091 DOI: 10.1016/j.ceca.2024.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Orai1 is a plasma membrane Ca2+ channel involved in store operated calcium entry (SOCE). SOCE can regulate cell growth, exocytosis, gene expression and inflammation. We previously found that short palate lung and nasal epithelial clone 1's (SPLUNC1) sixth α-helix (α6) bound Orai1 to inhibit SOCE. SPLUNC1 was not proteolytically stable, so we developed ELD607, an 11 amino acid peptide based on SPLUNC1's α6 region which was more stable and more potent than SPLUNC1/α6. Here, we studied ELD607's mechanism of action. We overexpressed either Orai1-HA or Orai1-YFP in HEK293T cells to probe ELD607-Orai1 interactions by confocal microscopy. We also measured changes in Fluo-4 fluorescence in a multiplate reader as a marker of cytoplasmic Ca2+ levels. ELD607 internalized Orai1 independently of STIM1. Both 15 min and 3 h exposure to ELD607 similarly depleted Orai1 in the plasma membrane. However, 3 h exposure to ELD607 yielded greater inhibition of SOCE. ELD607 continued to colocalize with Orai1 after internalization and this process was dependent on the presence of the ubiquitin ligase NEDD4.2. Similarly, ELD607 increased the colocalization between Orai1 and ubiquitin. ELD607 also increased the colocalization between Orai1 and Rab5 and 7, but not Rab11, suggesting that Orai1 trafficked through early and late but not recycling endosomes. Finally, ELD607 caused Orai1, but not Orai2, Orai3, or STIM1 to traffic to lysosomes. We conclude that ELD607 rapidly binds to Orai1 and works in an identical fashion as full length SPLUNC1 by internalizing Orai1 and sending it to lysosomes, leading to a decrease in SOCE.
Collapse
Affiliation(s)
- Alexandra S Goriounova
- Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - M Flori Sassano
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| |
Collapse
|
2
|
Bentley S, Cheong J, Gudka N, Makhecha S, Hadjisymeou-Andreou S, Standing JF. Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: recent advances and future outlooks. Expert Rev Clin Pharmacol 2023; 16:715-726. [PMID: 37470695 DOI: 10.1080/17512433.2023.2238597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Medicine use in children with cystic fibrosis (CF) is complicated by inconsistent pharmacokinetics at variance with the general population, a lack of research into this and its effects on clinical outcomes. In the absence of established dose regimens, therapeutic drug monitoring (TDM) is a clinically relevant tool to optimize drug exposure and maximize therapeutic effect by the bedside. In clinical practice though, use of this is variable and limited by a lack of expert recommendations. AREAS COVERED We aimed to review the use of TDM in children with CF to summarize recent developments, current recommendations, and opportunities for future directions. We searched PubMed for relevant publications using the broad search terms "cystic fibrosis" in combination with the specific terms "therapeutic drug monitoring (TDM)" and "children." Further searches were undertaken using the name of identified drugs combined with the term "TDM." EXPERT OPINION Further research into the use of Bayesian forecasting and the relationship between exposure and response is required to personalize dosing, with the opportunity for the development of expert recommendations in children with CF. Use of noninvasive methods of TDM has the potential to improve accessibility to TDM in this cohort.
Collapse
Affiliation(s)
- Siân Bentley
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Jamie Cheong
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Nikesh Gudka
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Joseph F Standing
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation,great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
3
|
Rehman T, Welsh MJ. Inflammation as a Regulator of the Airway Surface Liquid pH in Cystic Fibrosis. Cells 2023; 12:1104. [PMID: 37190013 PMCID: PMC10137218 DOI: 10.3390/cells12081104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J. Welsh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Party P, Klement ML, Szabó-Révész P, Ambrus R. Preparation and Characterization of Ibuprofen Containing Nano-Embedded-Microparticles for Pulmonary Delivery. Pharmaceutics 2023; 15:pharmaceutics15020545. [PMID: 36839867 PMCID: PMC9966045 DOI: 10.3390/pharmaceutics15020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
A fatal hereditary condition, cystic fibrosis (CF) causes severe lung problems. Ibuprofen (IBU), a non-steroidal anti-inflammatory drug, slows the progression of disease without causing significant side effects. Considering the poor water-solubility of the drug, IBU nanoparticles are beneficial for local pulmonary administration. We aimed to formulate a carrier-free dry powder inhaler containing nanosized IBU. We combined high-performance ultra-sonication and nano spray-drying. IBU was dissolved in ethyl acetate; after that, it was sonicated into a polyvinyl alcohol solution, where it precipitated as nanoparticles. Mannitol and leucine were added when producing dry particles using nano-spray drying. The following investigations were implemented: dynamic light scattering, laser diffraction, surface tension measurement, scanning electron microscopy, X-ray powder diffraction, differential scanning calorimetry, Fourier-transform infrared spectroscopy, in vitro dissolution test, and in vitro aerodynamic assessment (Andersen Cascade Impactor). The particle diameter of the IBU was in the nano range. The spray-dried particles showed a spherical morphology. The drug release was rapid in artificial lung media. The products represented large fine particle fractions and proper aerodynamic diameters. We successfully created an inhalable powder, containing nano-sized IBU. Along with the exceptional aerodynamic performance, the ideal particle size, shape, and drug-release profile might offer a ground-breaking local therapy for CF.
Collapse
|
5
|
Chen X, Han D, Wang X, Huang X, Huang Z, Liu Y, Zhong J, Walther FJ, Yang C, Wagenaar GTM. Vascular and pulmonary effects of ibuprofen on neonatal lung development. Respir Res 2023; 24:39. [PMID: 36732726 PMCID: PMC9893598 DOI: 10.1186/s12931-023-02342-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Ibuprofen is a nonsteroidal anti-inflammatory drug that is commonly used to stimulate closure of a patent ductus arteriosus (PDA) in very premature infants and may lead to aberrant neonatal lung development and bronchopulmonary dysplasia (BPD). METHODS We investigated the effect of ibuprofen on angiogenesis in human umbilical cord vein endothelial cells (HUVECs) and the therapeutic potential of daily treatment with 50 mg/kg of ibuprofen injected subcutaneously in neonatal Wistar rat pups with severe hyperoxia-induced experimental BPD. Parameters investigated included growth, survival, lung histopathology and mRNA expression. RESULTS Ibuprofen inhibited angiogenesis in HUVECs, as shown by reduced tube formation, migration and cell proliferation via inhibition of the cell cycle S-phase and promotion of apoptosis. Treatment of newborn rat pups with ibuprofen reduced pulmonary vessel density in the developing lung, but also attenuated experimental BPD by reducing lung inflammation, alveolar enlargement, alveolar septum thickness and small arteriolar wall thickening. CONCLUSIONS In conclusion, ibuprofen has dual effects on lung development: adverse effects on angiogenesis and beneficial effects on alveolarization and inflammation. Therefore, extrapolation of the beneficial effects of ibuprofen to premature infants with BPD should be done with extreme caution.
Collapse
Affiliation(s)
- Xueyu Chen
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Xuemei Huang
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Zilu Huang
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yijun Liu
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Junyan Zhong
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Frans J. Walther
- grid.19006.3e0000 0000 9632 6718Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA ,grid.513199.6Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Chuanzhong Yang
- grid.284723.80000 0000 8877 7471Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Gerry T. M. Wagenaar
- grid.12380.380000 0004 1754 9227Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Development of excipients free inhalable co-spray-dried tobramycin and diclofenac formulations for cystic fibrosis using two and three fluid nozzles. Int J Pharm 2022; 624:121989. [PMID: 35809834 DOI: 10.1016/j.ijpharm.2022.121989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
This study aims to investigate the effect of physicochemical properties and aerosol performance of two (2FN) and three-fluid nozzles (3FN) on the inhalable co-formulation of tobramycin and diclofenac dry powders. Combination formulations of tobramycin and diclofenac at 2:1 and 4:1 w/w ratios were prepared at a laboratory scale using a spray dryer in conjunction with a 2FN or 3FN. Powder size, morphology, solid-state characteristics, and aerodynamic and dissolution properties were characterised. The nozzle types and the formulation composition influenced the yield, particle size, solid-state properties, aerosolization behaviour and dissolution of the co-spray dried formulations. In particular, using the 2FN the co-spray dried formulation of tobramycin and diclofenac at 2:1 w/w showed smaller particle size (D50, 3.01 ± 0.06 μm), high fine particle fractions (FPF) (61.1 ± 3.6% for tobramycin and 65.92 ± 3 for diclofenac) and faster dissolution with approx. 70% diclofenac released within 3 h and approx. 90% tobramycin was released within 45 min. However, the 3FN for the co-spray dried formulation of tobramycin and diclofenac at a 2:1 w/w ratio showed a larger particle size (D50, 3.42 ± 0.02 μm), lower FPF (40.6 ± 3.4% for tobramycin and 36.9 ± 0.84 for diclofenac) and comparative slower dissolution with approx. 60% diclofenac was released within 3 h and 80% tobramycin was released within 45 min. A similar trend was observed when the tobramycin to diclofenac ratio was increased to 4:1 w/w. Overall results suggest that spray drying with 2FN showed a superior and viable approach to producing excipients-free inhalable co-spray dried formulations of tobramycin and diclofenac. However, the formulation produced using the 3FN showed higher enrichment of hydrophobic diclofenac and an ability to control the tobramycin drug release in vitro.
Collapse
|
7
|
Zappaterra F, Tupini C, Summa D, Cristofori V, Costa S, Trapella C, Lampronti I, Tamburini E. Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug. Int J Mol Sci 2022; 23:ijms23042026. [PMID: 35216142 PMCID: PMC8880498 DOI: 10.3390/ijms23042026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Biocatalyzed synthesis can be exploited to produce high-value products, such as prodrugs. The replacement of chemical approaches with biocatalytic processes is advantageous in terms of environmental prevention, embracing the principles of green chemistry. In this work, we propose the covalent attachment of xylitol to ibuprofen to produce an IBU-xylitol ester prodrug. Xylitol was chosen as a hydrophilizer for the final prodrug, enhancing the water solubility of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) extensively used as an analgesic, anti-inflammatory, and antipyretic. Despite being the third-most-prescribed medicine in the world, the aqueous solubility of ibuprofen is just 21 mg/L. This poor water solubility greatly limits the bioavailability of ibuprofen. We aimed to functionalize ibuprofen with xylitol using the reusable immobilized N435 biocatalyst. Instead of a biphasic media, we proposed a monophasic reaction environment. The characterization of the IBU-xylitol ester was performed by 1H, 13C-NMR, DEPT, COSY, HMQC, HMBC, FTIR, and MS spectroscopy. Preliminary in vitro tests showed that this enzymatically synthesized prodrug of ibuprofen reduced the expression of the interleukin 8 genes in human bronchial epithelial cells (IB3-1) from cystic fibrosis (CF) patients.
Collapse
Affiliation(s)
- Federico Zappaterra
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este, 32-44121 Ferrara, FE, Italy; (F.Z.); (D.S.); (E.T.)
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, FE, Italy; (C.T.); (I.L.)
| | - Daniela Summa
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este, 32-44121 Ferrara, FE, Italy; (F.Z.); (D.S.); (E.T.)
| | - Virginia Cristofori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, FE, Italy; (V.C.); (C.T.)
| | - Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, FE, Italy; (V.C.); (C.T.)
- Correspondence:
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, FE, Italy; (V.C.); (C.T.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Via Fossato di Mortara, 70-44121 Ferrara, FE, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, FE, Italy; (C.T.); (I.L.)
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este, 32-44121 Ferrara, FE, Italy; (F.Z.); (D.S.); (E.T.)
| |
Collapse
|
8
|
Dughbaj MA, Jayne JG, Park AYJ, Bensman TJ, Algorri M, Ouellette AJ, Selsted ME, Beringer PM. Anti-Inflammatory Effects of RTD-1 in a Murine Model of Chronic Pseudomonas aeruginosa Lung Infection: Inhibition of NF-κB, Inflammasome Gene Expression, and Pro-IL-1β Biosynthesis. Antibiotics (Basel) 2021; 10:1043. [PMID: 34572625 PMCID: PMC8466744 DOI: 10.3390/antibiotics10091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
Vicious cycles of chronic airway obstruction, lung infections with Pseudomonas aeruginosa, and neutrophil-dominated inflammation contribute to morbidity and mortality in cystic fibrosis (CF) patients. Rhesus theta defensin-1 (RTD-1) is an antimicrobial macrocyclic peptide with immunomodulatory properties. Our objective was to investigate the anti-inflammatory effect of RTD-1 in a murine model of chronic P. aeruginosa lung infection. Mice received nebulized RTD-1 daily for 6 days. Bacterial burden, leukocyte counts, and cytokine concentrations were evaluated. Microarray analysis was performed on bronchoalveolar lavage fluid (BALF) cells and lung tissue homogenates. In vitro effects of RTD-1 in THP-1 cells were assessed using quantitative reverse transcription PCR, enzyme-linked immunosorbent assays, immunoblots, confocal microscopy, enzymatic activity assays, and NF-κB-reporter assays. RTD-1 significantly reduced lung white blood cell counts on days 3 (-54.95%; p = 0.0003) and 7 (-31.71%; p = 0.0097). Microarray analysis of lung tissue homogenates and BALF cells revealed that RTD-1 significantly reduced proinflammatory gene expression, particularly inflammasome-related genes (nod-like receptor protein 3, Mediterranean fever gene, interleukin (IL)-1α, and IL-1β) relative to the control. In vitro studies demonstrated NF-κB activation was reduced two-fold (p ≤ 0.0001) by RTD-1 treatment. Immunoblots revealed that RTD-1 treatment inhibited proIL-1β biosynthesis. Additionally, RTD-1 treatment was associated with a reduction in caspase-1 activation (FC = -1.79; p = 0.0052). RTD-1 exhibited potent anti-inflammatory activity in chronically infected mice. Importantly, RTD-1 inhibits inflammasome activity, which is possibly a downstream effect of NF-κB modulation. These findings support that this immunomodulatory peptide may be a promising therapeutic for CF-associated lung disease.
Collapse
Affiliation(s)
- Mansour A Dughbaj
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Jordanna G Jayne
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - A Young J Park
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Timothy J Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marquerita Algorri
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Andre J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul M Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Sheikh Z, Bradbury P, Reekie TA, Pozzoli M, Robinson PD, Kassiou M, Young PM, Ong HX, Traini D. Tobramycin and Colistin display anti-inflammatory properties in CuFi-1 cystic fibrosis cell line. Eur J Pharmacol 2021; 902:174098. [PMID: 33848541 DOI: 10.1016/j.ejphar.2021.174098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Current cystic fibrosis (CF) treatment strategies are primarily focused on oral/inhaled anti-inflammatories and antibiotics, resulting in a considerable treatment burden for CF patients. Therefore, combination treatments consisting of anti-inflammatories with antibiotics could reduce the CF treatment burden. However, there is an imperative need to understand the potential drug-drug interactions of these combination treatments to determine their efficacy. Thus, this study aimed to determine the interactions of the anti-inflammatory agent Ibuprofen with each of the CF-approved inhaled antibiotics (Tobramycin, Colistin and its prodrug colistimethate sodium/Tadim) and anti-bacterial and anti-inflammatory efficacy. Chemical interactions of the Ibuprofen:antibiotic combinations were elucidated using High-Resolution Mass-Spectrometry (HRMS) and 1H NMR. HRMS showed pairing of Ibuprofen and Tobramycin, further confirmed by 1H NMR whilst no pairing was observed for either Ibuprofen:Colistin or Ibuprofen:Tadim combinations. The anti-bacterial activity of the combinations against Pseudomonas aeruginosa showed that neither paired nor non-paired Ibuprofen:antibiotic therapies altered the anti-bacterial activity. The anti-inflammatory efficacy of the combination therapies was next determined at two different concentrations (Low and High) using in vitro models of NuLi-1 (healthy) and CuFi-1 (CF) cell lines. Differential response in the anti-inflammatory efficacy of Ibuprofen:Tobramycin combination was observed between the two concentrations due to changes in the structural conformation of the paired Ibuprofen:Tobramycin complex at High concentration, confirmed by 1H NMR. In contrast, the non-pairing of the Ibuprofen:Colistin and Ibuprofen:Tadim combinations showed a significant decrease in IL-8 secretion at both the concentrations. Importantly, all antibiotics alone showed anti-inflammatory properties, highlighting the inherent anti-inflammatory properties of these antibiotics.
Collapse
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Peta Bradbury
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tristan A Reekie
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Upadhyay A, Amanullah A, Joshi V, Dhiman R, Prajapati VK, Poluri KM, Mishra A. Ibuprofen-based advanced therapeutics: breaking the inflammatory link in cancer, neurodegeneration, and diseases. Drug Metab Rev 2021; 53:100-121. [PMID: 33820460 DOI: 10.1080/03602532.2021.1903488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
11
|
Consalvi S, Poce G, Ghelardini C, Di Cesare Mannelli L, Patrignani P, Bruno A, Anzini M, Calderone V, Martelli A, Testai L, Giordani A, Biava M. Therapeutic potential for coxibs-nitric oxide releasing hybrids in cystic fibrosis. Eur J Med Chem 2020; 210:112983. [PMID: 33168231 DOI: 10.1016/j.ejmech.2020.112983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
This review discusses the rational for further studies of COX-2 inhibitors-NO releaser hybrids (NO-Coxibs) in the pharmacological treatment of the airway inflammation in Cystic Fibrosis (CF). Our research group developed several classes of NO-Coxibs for the pharmacological treatment of arthritis, and among them several compounds showed an outstanding in vivo efficacy and good pharmacokinetic properties. The good antiinflammatory properties displayed by these compounds during the previous screening could, by itself, suggest appropriate candidates for further testing in CF.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, And Center for Advanced Studies and Technology (CAST), School of Medicine, G. D'Annunzio University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, And Center for Advanced Studies and Technology (CAST), School of Medicine, G. D'Annunzio University, Chieti, Italy
| | - Maurizio Anzini
- Department of Biotechnology, Chemistry, And Pharmacy, DoE 2018-2022, University of Siena, 53100, Siena, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
12
|
Yang Q, Soltis AR, Sukumar G, Zhang X, Caohuy H, Freedy J, Dalgard CL, Wilkerson MD, Pollard HB, Pollard BS. Gene therapy-emulating small molecule treatments in cystic fibrosis airway epithelial cells and patients. Respir Res 2019; 20:290. [PMID: 31864360 PMCID: PMC6925517 DOI: 10.1186/s12931-019-1214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Several small molecule corrector and potentiator drugs have recently been licensed for Cystic Fibrosis (CF) therapy. However, other aspects of the disease, especially inflammation, are less effectively treated by these drugs. We hypothesized that small molecule drugs could function either alone or as an adjuvant to licensed therapies to treat these aspects of the disease, perhaps emulating the effects of gene therapy in CF cells. The cardiac glycoside digitoxin, which has been shown to inhibit TNFα/NFκB signaling in CF lung epithelial cells, may serve as such a therapy. Methods IB3–1 CF lung epithelial cells were treated with different Vertex (VX) drugs, digitoxin, and various drug mixtures, and ELISA assays were used to assess suppression of baseline and TNFα-activated secretion of cytokines and chemokines. Transcriptional responses to these drugs were assessed by RNA-seq and compared with gene expression in AAV-[wildtype]CFTR-treated IB3–1 (S9) cells. We also compared in vitro gene expression signatures with in vivo data from biopsied nasal epithelial cells from digitoxin-treated CF patients. Results CF cells exposed to digitoxin exhibited significant suppression of both TNFα/NFκB signaling and downstream secretion of IL-8, IL-6 and GM-CSF, with or without co-treatment with VX drugs. No evidence of drug-drug interference was observed. RNA-seq analysis showed that gene therapy-treated CF lung cells induced changes in 3134 genes. Among these, 32.6% were altered by digitoxin treatment in the same direction. Shared functional gene ontology themes for genes suppressed by both digitoxin and gene therapy included inflammation (84 gene signature), and cell-cell interactions and fibrosis (49 gene signature), while genes elevated by both were enriched for epithelial differentiation (82 gene signature). A new analysis of mRNA data from digitoxin-treated CF patients showed consistent trends in expression for genes in these signatures. Conclusions Adjuvant gene therapy-emulating activities of digitoxin may contribute to enhancing the efficacy of currently licensed correctors and potentiators in CF patients.
Collapse
Affiliation(s)
- Q Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - A R Soltis
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - G Sukumar
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - X Zhang
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - J Freedy
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - C L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - M D Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA. .,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.
| | - B S Pollard
- Silver Pharmaceuticals, Rockville, MD, 20854, USA.
| |
Collapse
|
13
|
Elborn JS, Ahuja S, Springman E, Mershon J, Grosswald R, Rowe SM. EMPIRE-CF: A phase II randomized placebo-controlled trial of once-daily, oral acebilustat in adult patients with cystic fibrosis - Study design and patient demographics. Contemp Clin Trials 2018; 72:86-94. [PMID: 30056216 DOI: 10.1016/j.cct.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Inflammation causes irreparable damage in the cystic fibrosis (CF) lung. Despite high standards of care and the advent of new therapies, inflammation continues to cause significant loss of lung function and morbidity. Acebilustat is a once-daily, oral molecule with anti-inflammatory activity through the inhibition of LTA4 hydrolase and modulation of LTB4. It has potential to reduce lung function decline and pulmonary exacerbations in patients with CF and is currently being tested in a Phase II multicenter, randomized, double-blind, placebo-controlled, parallel-group study (EMPIRE-CF). Strict inclusion criteria based on modeling of the Cystic Fibrosis Foundation Patient Registry data were selected to enrich the trial with patients most likely to benefit from chronic anti-inflammatory therapy that reduces lung function decline. 200 patients between 18 and 30 years of age, with an FEV1 percent predicted (pp) ≥50%, and ≥1 exacerbation in the past year have been enrolled. Patients are randomized 1:1:1 to placebo, acebilustat 50 mg or 100 mg for 48 weeks, taken concomitantly with their current standard of care, and stratified based on concomitant CFTR modulator use, baseline FEV1pp (50% to 75% and >75%), and number of exacerbations in the past year (1 or >1). The primary endpoints are absolute change from baseline in FEV1pp and safety outcomes. Secondary endpoints include rate of pulmonary exacerbations and time to first pulmonary exacerbation. Biomarkers of inflammation will also be assessed. EMPIRE-CF is expected to identify the optimal patient population, dose, duration and endpoints for future acebilustat trials, and widen understanding of the drug's efficacy in patients with CF.
Collapse
Affiliation(s)
- J Stuart Elborn
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, UK.
| | - Sanjeev Ahuja
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - John Mershon
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - Steven M Rowe
- Departments of Medicine, Pediatrics, Cell Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Lozoya-Agullo I, Araújo F, González-Álvarez I, Merino-Sanjuán M, González-Álvarez M, Bermejo M, Sarmento B. PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. Eur J Pharm Sci 2018; 115:119-125. [DOI: 10.1016/j.ejps.2017.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 01/16/2023]
|
15
|
Shrimp JH, Garlick JM, Tezil T, Sorum AW, Worth AJ, Blair IA, Verdin E, Snyder NW, Meier JL. Defining Metabolic and Nonmetabolic Regulation of Histone Acetylation by NSAID Chemotypes. Mol Pharm 2017; 15:729-736. [PMID: 29240439 DOI: 10.1021/acs.molpharmaceut.7b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are well-known for their effects on inflammatory gene expression. Although NSAIDs are known to impact multiple cellular signaling mechanisms, a recent finding is that the NSAID salicylate can disrupt histone acetylation, in part through direct inhibition of the lysine acetyltransferase (KAT) p300/CBP. While salicylate is a relatively weak KAT inhibitor, its CoA-linked metabolite is more potent; however, the ability of NSAID metabolites to inhibit KAT enzymes biochemically and in cells remains relatively unexplored. Here we define the role of metabolic and nonmetabolic mechanisms in inhibition of KAT activity by NSAID chemotypes. First, we screen a small panel of NSAIDs for biochemical inhibition of the prototypical KAT p300, leading to the finding that many carboxylate-containing NSAIDs, including ibuprofen, are able to function as weak inhibitors. Assessing the inhibition of p300 by ibuprofen-CoA, a known NSAID metabolite, reveals that linkage of ibuprofen to CoA increases its biochemical potency toward p300 and other KAT enzymes. In cellular studies, we find that carboxylate-containing NSAIDs inhibit histone acetylation. Finally, we exploit the stereoselective metabolism of ibuprofen to assess the role of its acyl-CoA metabolite in regulation of histone acetylation. This unique strategy reveals that formation of ibuprofen-CoA and histone acetylation are poorly correlated, suggesting metabolism may not be required for ibuprofen to inhibit histone acetylation. Overall, these studies provide new insights into the ability of NSAIDs to alter histone acetylation, and illustrate how selective metabolism may be leveraged as a tool to explore the influence of metabolic acyl-CoAs on cellular enzyme activity.
Collapse
Affiliation(s)
- Jonathan H Shrimp
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Julie M Garlick
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Tugsan Tezil
- Buck Institute for Research on Aging, Novato , California 94945 , United States
| | - Alexander W Sorum
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| | - Andrew J Worth
- Penn SRP Center, Center of Excellence in Environmental Toxicology , University of Pennsylvania , Philadelphia Pennsylvania 19104 , United States
| | - Ian A Blair
- Penn SRP Center, Center of Excellence in Environmental Toxicology , University of Pennsylvania , Philadelphia Pennsylvania 19104 , United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato , California 94945 , United States
| | - Nathaniel W Snyder
- Drexel University, A.J. Drexel Autism Institute , 3020 Market Street , Philadelphia Pennsylvania 19104 , United States
| | - Jordan L Meier
- Chemical Biology Laboratory , National Cancer Institute , Frederick , Maryland 21702 , United States
| |
Collapse
|
16
|
Sheikh Z, Ong HX, Pozzoli M, Young PM, Traini D. Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment? Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
|
18
|
Craparo EF, Porsio B, Sardo C, Giammona G, Cavallaro G. Pegylated Polyaspartamide-Polylactide-Based Nanoparticles Penetrating Cystic Fibrosis Artificial Mucus. Biomacromolecules 2016; 17:767-77. [PMID: 26866983 DOI: 10.1021/acs.biomac.5b01480] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, the preparation of mucus-penetrating nanoparticles for pulmonary administration of ibuprofen in patients with cystic fibrosis is described. A fluorescent derivative of α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide is synthesized by derivatization with rhodamine, polylactide, and poly(ethylene glycol), to obtain polyaspartamide-polylactide derivatives with different degrees of pegylation. Starting from these copolymers, fluorescent nanoparticles with different poly(ethylene glycol) content, empty and loaded with ibuprofen, showed spherical shape, colloidal size, slightly negative ζ potential, and biocompatibility toward human bronchial epithelial cells. The high surface poly(ethylene glycol) density of fluorescent nanoparticles and poly(ethylene glycol) brush-like conformation assumed on their surface, conferred to pegylated nanoparticles the mucus-penetrating properties, properly demonstrated by assessing their ability to avoid interactions with mucus components and to penetrate cystic fibrosis artificial mucus. Finally, ibuprofen release profile and uptake capacity within human bronchial epithelial cells in the presence of cystic fibrosis artificial mucus showed how these mucus-penetrating nanoparticles could rapidly diffuse through the mucus barrier reaching the mucosal surface, where they could offer a sustained delivery of ibuprofen at the site of disease.
Collapse
Affiliation(s)
- Emanuela Fabiola Craparo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Porsio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Carla Sardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
19
|
Whey protein hydrolysates decrease IL-8 secretion in lipopolysaccharide (LPS)-stimulated respiratory epithelial cells by affecting LPS binding to Toll-like receptor 4. Br J Nutr 2013; 110:58-68. [PMID: 23286514 DOI: 10.1017/s0007114512004655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Whey proteins (WP) exert anti-inflammatory and antioxidant effects. Hyperbaric pressurisation of whey increases its digestibility and changes the spectrum of peptides released during digestion. We have shown that dietary supplementation with pressurised whey improves nutritional status and systemic inflammation in patients with cystic fibrosis (CF). Both clinical indices are largely affected by airway processes, to which respiratory epithelial cells actively contribute. Here, we tested whether peptides released from the digestion of pressurised whey can attenuate the inflammatory responses of CF respiratory epithelial cells. Hydrolysates of pressurised WP (pWP) and native WP (nWP, control) were generated in vitro and tested for anti-inflammatory properties judged by the suppression of IL-8 production in CF and non-CF respiratory epithelial cell lines (CFTE29o- and 1HAEo-, respectively). We observed that, in both cell lines, pWP hydrolysate suppressed IL-8 production stimulated by lipopolysaccharide (LPS) to a greater magnitude compared with nWP hydrolysate. Neither hydrolysate suppressed IL-8 production induced by TNF-α or IL-1β, suggesting an effect on the Toll-like receptor (TLR) 4 pathway, the cellular sensor for LPS. Further, neither hydrolysate affected TLR4 expression or neutralised LPS. Both pWP and nWP hydrolysates similarly reduced LPS binding to surface TLR4, while pWP tended to more potently increase extracellular antioxidant capacity. IN CONCLUSION (1) anti-inflammatory properties of whey are enhanced by pressurisation; (2) suppression of IL-8 production may contribute to the clinical effects of pressurised whey supplementation on CF; (3) this effect may be partly explained by a combination of reduced LPS binding to TLR4 and enhanced extracellular antioxidant capacity.
Collapse
|
20
|
Paroni M, Moalli F, Nebuloni M, Pasqualini F, Bonfield T, Nonis A, Mantovani A, Garlanda C, Bragonzi A. Response of CFTR-deficient mice to long-term chronic Pseudomonas aeruginosa infection and PTX3 therapy. J Infect Dis 2012; 208:130-8. [PMID: 23087427 DOI: 10.1093/infdis/jis636] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model. METHODS Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence. RESULTS Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule. CONCLUSIONS These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.
Collapse
Affiliation(s)
- Moira Paroni
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dauletbaev N, Eklove D, Mawji N, Iskandar M, Di Marco S, Gallouzi IE, Lands LC. Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. J Biol Chem 2011; 286:15998-6007. [PMID: 21454676 DOI: 10.1074/jbc.m110.205724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|