1
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
2
|
Dvorácskó S, Dimmito MP, Sebastiani J, La Regina G, Silvestri R, Pieretti S, Stefanucci A, Tömböly C, Mollica A. Rimonabant-Based Compounds Bearing Hydrophobic Amino Acid Derivatives as Cannabinoid Receptor Subtype 1 Ligands. ACS Med Chem Lett 2023; 14:479-486. [PMID: 37077391 PMCID: PMC10108392 DOI: 10.1021/acsmedchemlett.3c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
In this study, 1H-pyrazole-3-carboxylic acids related to the cannabinoid type 1 (CB1) receptor antagonist rimonabant were amidated with valine or tert-leucine, and the resulting acids were further diversified as methyl esters, amides, and N-methyl amides. In vitro receptor binding and functional assays demonstrated a wide series of activities related to the CB1 receptors (CB1Rs). Compound 34 showed a high CB1R binding affinity (K i = 6.9 nM) and agonist activity (EC50 = 46 nM; E max = 135%). Radioligand binding and [35S]GTPγS binding assays also demonstrated its selectivity and specificity to CB1Rs. Moreover, in vivo experiments revealed that 34 was slightly more effective than the CB1 agonist WIN55,212-2 in the early phase of the formalin test, indicating a short duration of the analgesic effect. Interestingly, in a mouse model of zymosan-induced hindlimb edema, 34 was able to maintain the percentage of paw volume below 75% for 24 h following subcutaneous injection. After intraperitoneal administration, 34 increased the food intake of mice, suggesting potential activity on CB1Rs.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Medicinal Chemistry, University of Szeged, 6720 Szeged, Hungary
| | - Marilisa Pia Dimmito
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Jessica Sebastiani
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
3
|
Iranzo-Tatay C, Hervas-Marin D, Rojo-Bofill LM, Garcia D, Vaz-Leal FJ, Calabria I, Beato-Fernandez L, Oltra S, Sandoval J, Rojo-Moreno L. Genome-wide DNA methylation profiling in anorexia nervosa discordant identical twins. Transl Psychiatry 2022; 12:15. [PMID: 35013117 PMCID: PMC8748827 DOI: 10.1038/s41398-021-01776-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Up until now, no study has looked specifically at epigenomic landscapes throughout twin samples, discordant for Anorexia nervosa (AN). Our goal was to find evidence to confirm the hypothesis that epigenetic variations play a key role in the aetiology of AN. In this study, we quantified genome-wide patterns of DNA methylation using the Infinium Human DNA Methylation EPIC BeadChip array ("850 K") in DNA samples isolated from whole blood collected from a group of 7 monozygotic twin pairs discordant for AN. Results were then validated performing a genome-wide DNA methylation profiling using DNA extracted from whole blood of a group of non-family-related AN patients and a group of healthy controls. Our first analysis using the twin sample revealed 9 CpGs associated to a gene. The validation analysis showed two statistically significant CpGs with the rank regression method related to two genes associated to metabolic traits, PPP2R2C and CHST1. When doing beta regression, 6 of them showed statistically significant differences, including 3 CpGs associated to genes JAM3, UBAP2L and SYNJ2. Finally, the overall pattern of results shows genetic links to phenotypes which the literature has constantly related to AN, including metabolic and psychological traits. The genes PPP2R2C and CHST1 have both been linked to the metabolic traits type 2 diabetes through GWAS studies. The genes UBAP2L and SYNJ2 have been related to other psychiatric comorbidity.
Collapse
Affiliation(s)
- C Iranzo-Tatay
- Psychiatry Service, Hospital la Fe, Valencia, Spain
- Department of Psychiatry, Medicine School, University of Valencia, Valencia, Spain
| | - D Hervas-Marin
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | | | - D Garcia
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - F J Vaz-Leal
- Department of Psychiatry, Medicine School, University of Extremadura, Badajoz, Spain
| | - I Calabria
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - L Beato-Fernandez
- Eating Disorders and Children's Psychiatry Department, Hospital General, Ciudad Real, Spain
| | - S Oltra
- Genetics and Prenatal Diagnosis Unit, Hospital La fe, Valencia, Spain
| | - J Sandoval
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
- Biomarkers and Precision Medicine Unit (UByMP), Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - L Rojo-Moreno
- Psychiatry Service, Hospital la Fe, Valencia, Spain
- Department of Psychiatry, Medicine School, University of Valencia, Valencia, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Ali AM, Hendawy AO, Almarwani AM, Alzahrani N, Ibrahim N, Alkhamees AA, Kunugi H. The Six-Item Version of the Internet Addiction Test: Its Development, Psychometric Properties, and Measurement Invariance among Women with Eating Disorders and Healthy School and University Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12341. [PMID: 34886068 PMCID: PMC8657305 DOI: 10.3390/ijerph182312341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/25/2022]
Abstract
Internet addiction (IA) is widespread, comorbid with other conditions, and commonly undetected, which may impede recovery. The Internet Addiction Test (IAT) is widely used to evaluate IA among healthy respondents, with less agreement on its dimensional structure. This study investigated the factor structure, invariance, predictive validity, criterion validity, and reliability of the IAT among Spanish women with eating disorders (EDs, N = 123), Chinese school children (N = 1072), and Malay/Chinese university students (N = 1119). In school children, four factors with eigen values > 1 explained 50.2% of the variance, with several items cross-loading on more than two factors and three items failing to load on any factor. Among 19 tested models, CFA revealed excellent fit of a unidimensional six-item IAT among ED women and university students (χ2(7) = 8.695, 35.038; p = 0.275, 0.001; CFI = 0.998, 981; TLI = 0.996, 0.960; RMSEA = 0.045, 0.060; SRMR = 0.0096, 0.0241). It was perfectly invariant across genders, academic grades, majors, internet use activities, nationalities (Malay vs. Chinese), and Malay/Chinese female university students vs. Spanish women with anorexia nervosa, albeit it was variant at the scalar level in tests involving other EDs, signifying increased tendency for IA in pathological overeating. The six-item IAT correlated with the effects of internet use on academic performance at a greater level than the original IAT (r = -0.106, p < 0.01 vs. r = -0.78, p < 0.05), indicating superior criterion validity. The six-item IAT is a robust and brief measure of IA in healthy and diseased individuals from different cultures.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Smouha, Alexandria 21527, Egypt
| | - Amin Omar Hendawy
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Abdulaziz Mofdy Almarwani
- Department of Psychiatric Nursing, College of Nursing, Taibah University, Janadah Bin Umayyah Road, Tayba, Medina 42353, Saudi Arabia;
| | - Naif Alzahrani
- Department of Medical Surgical Nursing, College of Nursing, Taibah University, Janadah Bin Umayyah Road, Tayba, Medina 42353, Saudi Arabia;
| | - Nashwa Ibrahim
- Department of Psychiatric and Mental Health Nursing, Faculty of Nursing, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulmajeed A. Alkhamees
- Department of Medicine, College of Medicine and Medical Sciences, Qassim University, Al Qassim, Buraydah 52571, Saudi Arabia;
| | - Hiroshi Kunugi
- Department of Psychiatry, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
5
|
Medapati JR, Rapaka D, Bitra VR, Ranajit SK, Guntuku GS, Akula A. Role of endocannabinoid CB1 receptors in Streptozotocin-induced uninephrectomised Wistar rats in diabetic nephropathy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
The endocannabinoid CB1 receptor is known to have protective effects in kidney disease. The aim of the present study is to evaluate the potential agonistic and antagonistic actions and to determine the renoprotective potential of CB1 receptors in diabetic nephropathy. The present work investigates the possible role of CB1 receptors in the pathogenesis of diabetes-induced nephropathy. Streptozotocin (STZ) (55 mg/kg, i.p., once) is administered to uninephrectomised rats for induction of experimental diabetes mellitus. The CB1 agonist (oleamide) and CB1 antagonist (AM6545) treatment were initiated in diabetic rats after 1 week of STZ administration and were given for 24 weeks.
Results
The progress in diabetic nephropathy is estimated biochemically by measuring serum creatinine (1.28±0.03) (p < 0.005), blood urea nitrogen (67.6± 2.10) (p < 0.001), urinary microprotein (74.62± 3.47) (p < 0.005) and urinary albuminuria (28.31±1.17) (p < 0.0001). Renal inflammation was assessed by estimating serum levels of tumor necrosis factor alpha (75.69±1.51) (p < 0.001) and transforming growth factor beta (8.73±0.31) (p < 0.001). Renal morphological changes were assessed by estimating renal hypertrophy (7.38± 0.26) (p < 0.005) and renal collagen content (10.42± 0.48) (p < 0.001).
Conclusions
From the above findings, it can be said that diabetes-induced nephropathy may be associated with overexpression of CB1 receptors and blockade of CB1 receptors might be beneficial in ameliorating the diabetes-induced nephropathy.
Graphical abstract
Collapse
|
6
|
Krolick KN, Zhu Q, Shi H. Effects of Estrogens on Central Nervous System Neurotransmission: Implications for Sex Differences in Mental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:105-171. [PMID: 30470289 PMCID: PMC6737530 DOI: 10.1016/bs.pmbts.2018.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nearly one of every five US individuals aged 12 years old or older lives with certain types of mental disorders. Men are more likely to use various types of substances, while women tend to be more susceptible to mood disorders, addiction, and eating disorders, all of which are risks associated with suicidal attempts. Fundamental sex differences exist in multiple aspects of the functions and activities of neurotransmitter-mediated neural circuits in the central nervous system (CNS). Dysregulation of these neural circuits leads to various types of mental disorders. The potential mechanisms of sex differences in the CNS neural circuitry regulating mood, reward, and motivation are only beginning to be understood, although they have been largely attributed to the effects of sex hormones on CNS neurotransmission pathways. Understanding this topic is important for developing prevention and treatment of mental disorders that should be tailored differently for men and women. Studies using animal models have provided important insights into pathogenesis, mechanisms, and new therapeutic approaches of human diseases, but some concerns remain to be addressed. The purpose of this chapter is to integrate human and animal studies involving the effects of the sex hormones, estrogens, on CNS neurotransmission, reward processing, and associated mental disorders. We provide an overview of existing evidence for the physiological, behavioral, cellular, and molecular actions of estrogens in the context of controlling neurotransmission in the CNS circuits regulating mood, reward, and motivation and discuss related pathology that leads to mental disorders.
Collapse
Affiliation(s)
- Kristen N Krolick
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States
| | - Qi Zhu
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States
| | - Haifei Shi
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States; Cellular, Molecular and Structural Biology, Miami University, Oxford, OH, United States.
| |
Collapse
|
7
|
Ceccarini J, Weltens N, Ly HG, Tack J, Van Oudenhove L, Van Laere K. Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [(18)F]MK-9470 PET study. Transl Psychiatry 2016; 6:e853. [PMID: 27404285 PMCID: PMC5545708 DOI: 10.1038/tp.2016.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Although of great public health relevance, the mechanisms underlying disordered eating behavior and body weight regulation remain insufficiently understood. Compelling preclinical evidence corroborates a critical role of the endocannabinoid system (ECS) in the central regulation of appetite and food intake. However, in vivo human evidence on ECS functioning in brain circuits involved in food intake regulation as well as its relationship with body weight is lacking, both in health and disease. Here, we measured cannabinoid 1 receptor (CB1R) availability using positron emission tomography (PET) with [(18)F]MK-9470 in 54 patients with food intake disorders (FID) covering a wide body mass index (BMI) range (anorexia nervosa, bulimia nervosa, functional dyspepsia with weight loss and obesity; BMI range=12.5-40.6 kg/m(2)) and 26 age-, gender- and average BMI-matched healthy subjects (BMI range=18.5-26.6 kg/m(2)). The association between regional CB1R availability and BMI was assessed within predefined homeostatic and reward-related regions of interest using voxel-based linear regression analyses. CB1R availability was inversely associated with BMI in homeostatic brain regions such as the hypothalamus and brainstem areas in both patients with FID and healthy subjects. However, in FID patients, CB1R availability was also negatively correlated with BMI throughout the mesolimbic reward system (midbrain, striatum, insula, amygdala and orbitofrontal cortex), which constitutes the key circuit implicated in processing appetitive motivation and hedonic value of perceived food rewards. Our results indicate that the cerebral homeostatic CB1R system is inextricably linked to BMI, with additional involvement of reward areas under conditions of disordered body weight.
Collapse
Affiliation(s)
- J Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - N Weltens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - H G Ly
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - J Tack
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
- Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - L Van Oudenhove
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
- Liaison Psychiatry, University Psychiatric Center Campus Gasthuisberg, University Hospitals Leuven, Leuven, Belgium
| | - K Van Laere
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Leuven Institute for Neurobiology and Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wagner EJ. Sex differences in cannabinoid-regulated biology: A focus on energy homeostasis. Front Neuroendocrinol 2016; 40:101-9. [PMID: 26800649 PMCID: PMC4783283 DOI: 10.1016/j.yfrne.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022]
Abstract
Considerable strides have been made over the past 20 years in our understanding of the ligands, receptor subtypes, signal transduction mechanisms and biological actions comprising the endocannabinoid system. From the ever-expanding number of studies that have been conducted during this time, it has become increasingly clear that sex differences are the cornerstone of cannabinoid-regulated biology. Available evidence has demonstrated that these sex differences endure in the absence of gonadal steroids, and are modulated by the acute, activational effects of these hormones. This review focuses on select aspects of sexually differentiated, cannabinoid-regulated biology, with a particular emphasis on the control of energy balance. It is anticipated that it will lend impactful insight into the pervasive and diverse disparities in how males and females respond to cannabinoids--from the organismal level down to the molecular level. Additionally, it will furnish a newfound appreciation for the need to recalibrate our thinking in terms of how cannabinoids are used as therapeutic adjuvants for a broad range of clinical disorders and associated comorbidities, including body wasting and obesity.
Collapse
Affiliation(s)
- Edward J Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States.
| |
Collapse
|