1
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
2
|
Mitra S, Chen MT, Stedman F, Hernandez J, Kumble G, Kang X, Zhang C, Tang G, Daugherty I, Liu W, Ocloo J, Klucznik KR, Li AA, Heinrich F, Deslouches B, Tristram-Nagle S. How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes. J Phys Chem B 2024; 128:9772-9784. [PMID: 39328031 PMCID: PMC11472314 DOI: 10.1021/acs.jpcb.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(-) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(-), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides' interfacial location in G(-) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mei-Tung Chen
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francisca Stedman
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jedidiah Hernandez
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Kumble
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Kang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Churan Zhang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Tang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ian Daugherty
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wanqing Liu
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeremy Ocloo
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin Raphael Klucznik
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Anzhi Li
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Berthony Deslouches
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Song D, Kim B, Kim M, Lee JK, Choi J, Lee H, Shin S, Shin D, Nam HY, Lee Y, Lee S, Kim Y, Seo J. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. J Med Chem 2024; 67:15148-15167. [PMID: 39207209 DOI: 10.1021/acs.jmedchem.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.
Collapse
Affiliation(s)
- Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsang Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dongmin Shin
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
5
|
Walkowiak-Nowicka K, Chowański S, Pacholska-Bogalska J, Adamski Z, Kuczer M, Rosiński G. Effects of alloferon and its analogues on reproduction and development of the Tenebrio molitor beetle. Sci Rep 2024; 14:17016. [PMID: 39043811 PMCID: PMC11266558 DOI: 10.1038/s41598-024-68118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
As the most numerous group of animals on Earth, insects are found in almost every ecosystem. Their useful role in the environment is priceless; however, for humans, their presence may be considered negative or even harmful. For years, people have been trying to control the number of pests by using synthetic insecticides, which eventually causes an increased level of resistance to applied compounds. The effects of synthetic insecticides have encouraged researchers to search for alternatives and thus develop safe compounds with high specificity. Using knowledge about the physiology of insects and the functionality of compounds of insect origin, a new class of bioinsecticides called peptidomimetics, which are appropriately modified insect analogues, was created. One promising compound that might be successfully modified is the thirteen amino acid peptide alloferon (HGVSGHGQHGVHG), which is obtained from the hemolymph of the blue blowfly Calliphora vicinia. Our research aimed to understand the physiological properties of alloferon and the activity of its peptidomimetics, which will provide the possibility of using alloferon or its analogues in the pharmaceutical industry, as a drug or adjuvant, or in agriculture as a bioinsecticide. We used alloferon and its three peptidomimetics, which are conjugates of the native peptide with three unsaturated fatty acids with various chain lengths: caprylic, myristic, and palmitic. We tested their effects on the morphology and activity of the reproductive system and the embryogenesis of the Tenebrio molitor beetle. We found that the tested compounds influenced the growth and maturation of ovaries and the expression level of the vitellogenin gene. The tested compounds also influenced the process of egg laying, embryogenesis, and offspring hatching, showing that alloferon might be a good peptide for the synthesis of effective bioinsecticides or biopharmaceuticals.
Collapse
Affiliation(s)
- Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
6
|
Ran S, Xue L, Wei X, Huang J, Yan X, He TC, Tang Z, Zhang H, Gu M. Recent advances in injectable hydrogel therapies for periodontitis. J Mater Chem B 2024; 12:6005-6032. [PMID: 38869470 DOI: 10.1039/d3tb03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.
Collapse
Affiliation(s)
- Shidian Ran
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Linyu Xue
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xiaorui Wei
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Jindie Huang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xingrui Yan
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhurong Tang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Mengqin Gu
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
7
|
Iglesias V, Bárcenas O, Pintado-Grima C, Burdukiewicz M, Ventura S. Structural information in therapeutic peptides: Emerging applications in biomedicine. FEBS Open Bio 2024. [PMID: 38877295 DOI: 10.1002/2211-5463.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Peptides are attracting a growing interest as therapeutic agents. This trend stems from their cost-effectiveness and reduced immunogenicity, compared to antibodies or recombinant proteins, but also from their ability to dock and interfere with large protein-protein interaction surfaces, and their higher specificity and better biocompatibility relative to organic molecules. Many tools have been developed to understand, predict, and engineer peptide function. However, most state-of-the-art approaches treat peptides only as linear entities and disregard their structural arrangement. Yet, structural details are critical for peptide properties such as solubility, stability, or binding affinities. Recent advances in peptide structure prediction have successfully addressed the scarcity of confidently determined peptide structures. This review will explore different therapeutic and biotechnological applications of peptides and their assemblies, emphasizing the importance of integrating structural information to advance these endeavors effectively.
Collapse
Affiliation(s)
- Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Mitra S, Chandersekhar B, Li Y, Coopershlyak M, Mahoney ME, Evans B, Koenig R, Hall SCL, Klösgen B, Heinrich F, Deslouches B, Tristram-Nagle S. Novel non-helical antimicrobial peptides insert into and fuse lipid model membranes. SOFT MATTER 2024; 20:4088-4101. [PMID: 38712559 PMCID: PMC11109824 DOI: 10.1039/d4sm00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt β-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Bhairavi Chandersekhar
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Yunshu Li
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Mark Coopershlyak
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Margot E Mahoney
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Brandt Evans
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rachel Koenig
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Stephen C L Hall
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Beate Klösgen
- University of Southern Denmark, Dept. Physics, Chemistry & Pharmacy, PhyLife, Campusvej 55, Odense M5230, Denmark
| | - Frank Heinrich
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Baindara P, Mandal SM. Gut-Antimicrobial Peptides: Synergistic Co-Evolution with Antibiotics to Combat Multi-Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1732. [PMID: 38136766 PMCID: PMC10740742 DOI: 10.3390/antibiotics12121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Due to huge diversity and dynamic competition, the human gut microbiome produces a diverse array of antimicrobial peptides (AMPs) that play an important role in human health. The gut microbiome has an important role in maintaining gut homeostasis by the AMPs and by interacting with other human organs via established connections such as the gut-lung, and gut-brain axis. Additionally, gut AMPs play a synergistic role with other gut microbiota and antimicrobials to maintain gut homeostasis by fighting against multi-antibiotic resistance (MAR) bacteria. Further, conventional antibiotics intake creates a synergistic evolutionary pressure for gut AMPs, where antibiotics and gut AMPs fight synergistically against MAR. Overall, gut AMPs are evolving under a complex and highly synergistic co-evolutionary pressure created by the various interactions between gut microbiota, gut AMPs, and antibiotics; however, the complete mechanism is not well understood. The current review explores the synergistic action of gut AMPs and antibiotics along with possibilities to fight against MAR bacteria.
Collapse
Affiliation(s)
- Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
10
|
Bonvin E, Personne H, Paschoud T, Reusser J, Gan BH, Luscher A, Köhler T, van Delden C, Reymond JL. Antimicrobial Peptide-Peptoid Hybrids with and without Membrane Disruption. ACS Infect Dis 2023; 9:2593-2606. [PMID: 38062792 PMCID: PMC10714400 DOI: 10.1021/acsinfecdis.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Among synthetic analogues of antimicrobial peptides (AMPs) under investigation to address antimicrobial resistance, peptoids (N-alkylated oligoglycines) have been reported to act both by membrane disruption and on intracellular targets. Here we gradually introduced peptoid units into the membrane-disruptive undecapeptide KKLLKLLKLLL to test a possible transition toward intracellular targeting. We found that selected hybrids containing up to five peptoid units retained the parent AMP's α-helical folding, membrane disruption, and antimicrobial effects against Gram-negative bacteria including multidrug-resistant (MDR) strains of Pseudomonas aeruginosa and Klebsiella pneumoniae while showing reduced hemolysis and cell toxicities. Furthermore, some hybrids containing as few as three peptoid units as well as the full peptoid lost folding, membrane disruption, hemolysis, and cytotoxicity but displayed strong antibacterial activity under dilute medium conditions typical for proline-rich antimicrobial peptides (PrAMPs), pointing to intracellular targeting. These findings parallel previous reports that partially helical amphiphilic peptoids are privileged oligomers for antibiotic development.
Collapse
Affiliation(s)
- Etienne Bonvin
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Thierry Paschoud
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jérémie Reusser
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Bee-Ha Gan
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alexandre Luscher
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
11
|
R PA, Anbarasu A. Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: a Critical Review. Probiotics Antimicrob Proteins 2023; 15:1539-1566. [PMID: 36576687 DOI: 10.1007/s12602-022-10018-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) is a devastating disease foisting a significantly high morbidity, prepotent in low- and middle-income developing countries. Evolution of drug resistance among Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has made the TB treatment more complicated. The protracted nature of present TB treatment, persistent and tolerant Mtb populations, interaction with antiretroviral therapy and existing toxicity concerned with conventional anti-TB drugs are the four major challenges inflicted with emergence of drug-resistant mycobacterial strains, and the standard medications are unable to combat these strains. These factors emphasize an exigency to develop new drugs to overcome these barriers in current TB therapy. With this regard, antimycobacterial peptides derived from various sources such as human cells, bacterial sources, mycobacteriophages, fungal, plant and animal sources could be considered as antituberculosis leads as most of these peptides are associated with dual advantages of having both bactericidal activity towards Mtb as well as immuno-regulatory property. Some of the peptides possess the additional advantage of interacting synergistically with antituberculosis medications too, thereby increasing their efficiency, underscoring the vigour of antimicrobial peptides (AMPs) as best possible alternative therapeutic candidates or adjuvants in TB treatment. Albeit the beneficiary features of these peptides, few obstacles allied with them like cytotoxicity and proteolytic degradation are matter of concerns too. In this review, we have focused on structural hallmarks, targeting mechanisms and specific structural aspects contributing to antimycobacterial activity and discovered natural and synthetic antimycobacterial peptides along with their sources, anti-TB, immuno-regulatory properties, merits and demerits and possible delivery methods of AMPs.
Collapse
Affiliation(s)
- Preethi A R
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore-632014, India.
- Department of Biotechnology, SBST, VIT, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Skłodowski K, Suprewicz Ł, Chmielewska-Deptuła SJ, Kaliniak S, Okła S, Zakrzewska M, Minarowski Ł, Mróz R, Daniluk T, Savage PB, Fiedoruk K, Bucki R. Ceragenins exhibit bactericidal properties that are independent of the ionic strength in the environment mimicking cystic fibrosis sputum. Front Microbiol 2023; 14:1290952. [PMID: 38045035 PMCID: PMC10693459 DOI: 10.3389/fmicb.2023.1290952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
The purpose of the work was to investigate the impact of sodium chloride (NaCl) on the antimicrobial efficacy of ceragenins (CSAs) and antimicrobial peptides (AMPs) against bacterial and fungal pathogens associated with cystic fibrosis (CF) lung infections. CF-associated bacterial (Pseudomonas aeruginosa, Ochrobactrum spp., and Staphylococcus aureus), and fungal pathogens (Candida albicans, and Candida tropicalis) were used as target organisms for ceragenins (CSA-13 and CSA-131) and AMPs (LL-37 and omiganan). Susceptibility to the tested compounds was assessed using minimal inhibitory concentrations (MICs) and bactericidal concentrations (MBCs), as well as by colony counting assays in CF sputum samples supplemented with various concentrations of NaCl. Our results demonstrated that ceragenins exhibit potent antimicrobial activity in CF sputum regardless of the NaCl concentration when compared to LL-37 and omiganan. Given the broad-spectrum antimicrobial activity of ceragenins in the microenvironments mimicking the airways of CF patients, ceragenins might be promising agents in managing CF disease.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | | | | | - Sławomir Okła
- Holy Cross Cancer Center, Kielce, Poland
- Institute of Health Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Minarowski
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Robert Mróz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
13
|
Fodor A, Hess C, Ganas P, Boros Z, Kiss J, Makrai L, Dublecz K, Pál L, Fodor L, Sebestyén A, Klein MG, Tarasco E, Kulkarni MM, McGwire BS, Vellai T, Hess M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel) 2023; 12:1462. [PMID: 37760758 PMCID: PMC10525888 DOI: 10.3390/antibiotics12091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic-nematode species, release a series of non-ribosomal templated anti-microbial peptides. Some may be potential drug candidates. The ability of an entomopathogenic-nematode/entomopathogenic bacterium symbiotic complex to survive in a given polyxenic milieu is a coevolutionary product. This explains that those gene complexes that are responsible for the biosynthesis of different non-ribosomal templated anti-microbial protective peptides (including those that are potently capable of inactivating the protist mammalian pathogen Leishmania donovanii and the gallinaceous bird pathogen Histomonas meleagridis) are co-regulated. Our approach is based on comparative anti-microbial bioassays of the culture media of the wild-type and regulatory mutant strains. We concluded that Xenorhabdus budapestensis and X. szentirmaii are excellent sources of non-ribosomal templated anti-microbial peptides that are efficient antagonists of the mentioned pathogens. Data on selective cytotoxicity of different cell-free culture media encourage us to forecast that the recently discovered "easy-PACId" research strategy is suitable for constructing entomopathogenic-bacterium (EPB) strains producing and releasing single, harmless, non-ribosomal templated anti-microbial peptides with considerable drug, (probiotic)-candidate potential.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Petra Ganas
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Zsófia Boros
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | - János Kiss
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | | | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Pál
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1143 Budapest, Hungary;
| | - Anna Sebestyén
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| | - Manjusha M. Kulkarni
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Bradford S. McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| |
Collapse
|
14
|
Macyszyn J, Burmistrz M, Mieczkowski A, Wojciechowska M, Trylska J. Conjugates of Aminoglycosides with Stapled Peptides as a Way to Target Antibiotic-Resistant Bacteria. ACS OMEGA 2023; 8:19047-19056. [PMID: 37273645 PMCID: PMC10233823 DOI: 10.1021/acsomega.3c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
The misuse and overuse of antibiotics led to the development of bacterial resistance to existing aminoglycoside (AMG) antibiotics and limited their use. Consequently, there is a growing need to develop effective antimicrobials against multidrug-resistant bacteria. To target resistant strains, we propose to combine 2-deoxystreptamine AMGs, neomycin (NEO) and amikacin (AMK), with a membrane-active antimicrobial peptide anoplin and its hydrocarbon stapled derivative. The AMG-peptide hybrids were conjugated using the click chemistry reaction in solution to obtain a non-cleavable triazole linker and by disulfide bridge formation on the resin to obtain a linker cleavable in the bacterial cytoplasm. Homo-dimers connected via disulfide bridges between the N-terminus thiol analogues of anoplin and hydrocarbon stapled anoplin were also synthesized. These hybrid compounds show a notable increase in antibacterial and bactericidal activity, as compared to the unconjugated ones or their combinations, against Gram-positive and Gram-negative bacteria, especially for the strains resistant to AMK or NEO. The conjugates and disulfide peptide dimers exhibit low hemolytic activity on sheep red blood erythrocytes.
Collapse
Affiliation(s)
- Julia Macyszyn
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Adam Mieczkowski
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Wojciechowska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Nyembe PL, Ntombela T, Makatini MM. Review: Structure-Activity Relationship of Antimicrobial Peptoids. Pharmaceutics 2023; 15:pharmaceutics15051506. [PMID: 37242748 DOI: 10.3390/pharmaceutics15051506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their broad-spectrum activity against Gram-negative and Gram-positive bacteria, natural antimicrobial peptides (AMPs) and their synthetic analogs have emerged as prospective therapies for treating illnesses brought on by multi-drug resistant pathogens. To overcome the limitations of AMPs, such as protease degradation, oligo-N-substituted glycines (peptoids) are a promising alternative. Despite having the same backbone atom sequence as natural peptides, peptoid structures are more stable because, unlike AMP, their functional side chains are attached to the backbone nitrogen (N)-atom rather than the alpha carbon atom. As a result, peptoid structures are less susceptible to proteolysis and enzymatic degradation. The advantages of AMPs, such as hydrophobicity, cationic character, and amphipathicity, are mimicked by peptoids. Furthermore, structure-activity relationship studies (SAR) have shown that tuning the structure of peptoids is a crucial step in developing effective antimicrobials.
Collapse
Affiliation(s)
- Priscilla L Nyembe
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Thandokuhle Ntombela
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Maya M Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
16
|
Mitra S, Coopershlyak M, Li Y, Chandersekhar B, Koenig R, Chen MT, Evans B, Heinrich F, Deslouches B, Tristram-Nagle S. Novel Helical Trp- and Arg-Rich Antimicrobial Peptides Locate Near Membrane Surfaces and Rigidify Lipid Model Membranes. ADVANCED NANOBIOMED RESEARCH 2023; 3:2300013. [PMID: 37476397 PMCID: PMC10358585 DOI: 10.1002/anbr.202300013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Antibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (H ), and hydrophobic moments (μH ), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies. Their secondary structures are determined using circular dichroism (CD), which finds that the % α -helicity of AMPs depends on composition of the lipid model membranes (LMMs): gram-negative (G ( - ) ) inner membrane (IM) >gram-positive (G ( + ) ) > Euk33 (eukaryotic with 33 mol% cholesterol). The two most effective peptides, E2-35 (16 amino acid [AA] residues) and E2-05 (22 AAs), are predominantly helical in G ( - ) IM and G ( + ) LMMs. AMP/membrane interactions such as membrane elasticity, chain order parameter, and location of the peptides in the membrane are investigated by low-angle and wide-angle X-ray diffuse scattering (XDS). It is found that headgroup location correlates with efficacy and toxicity. The membrane bending modulus K C displays nonmonotonic changes due to increasing concentrations of E2-35 and E2-05 in G ( - ) and G ( + ) LMMs, suggesting a bacterial killing mechanism where domain formation causes ion and water leakage.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Mark Coopershlyak
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Yunshu Li
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Bhairavi Chandersekhar
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Rachel Koenig
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Mei-Tung Chen
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Brandt Evans
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| | - Frank Heinrich
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg, MD 20878, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health University of Pittsburgh Pittsburgh, PA 15261, USA
| | - Stephanie Tristram-Nagle
- Biological Physics Group Physics Department Carnegie Mellon University Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Freitas GGD, Barbosa JM, Santana CJCD, Magalhães ACM, Macedo KWR, Souza JOD, Castro JSD, Vasconcelos IAD, Souza AA, Freitas SMD, Báo SN, Costa SR, Brand GD, Chaves IDM, Costa VV, Fontes W, Pires Júnior OR, Castro MS. Purification and Biological Properties of Raniseptins-3 and -6, Two Antimicrobial Peptides from Boana raniceps (Cope, 1862) Skin Secretion. Biomolecules 2023; 13:biom13030576. [PMID: 36979510 PMCID: PMC10046390 DOI: 10.3390/biom13030576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.
Collapse
Affiliation(s)
- Gabriel Gonçalves de Freitas
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - João Martins Barbosa
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Ana Carolina Martins Magalhães
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Keven Wender Rodrigues Macedo
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Jéssica Oliveira de Souza
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Jessica Schneider de Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Isadora Alves de Vasconcelos
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Amanda Araújo Souza
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Sônia Nair Báo
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Samuel Ribeiro Costa
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Guilherme Dotto Brand
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Ian de Meira Chaves
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Mariana S Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| |
Collapse
|
18
|
XENOFOOD—An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides—Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells. Pathogens 2023; 12:pathogens12030458. [PMID: 36986380 PMCID: PMC10059668 DOI: 10.3390/pathogens12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Entomopathogenic bacteria are obligate symbionts of entomopathogenic nematode (EPN) species. These bacteria biosynthesize and release non-ribosomal-templated hybrid peptides (NR-AMPs), with strong, and large-spectral antimicrobial potential, capable of inactivating pathogens belonging to different prokaryote, and eukaryote taxa. The cell-free conditioned culture media (CFCM) of Xenorhabdus budapestensis and X. szentirmaii efficiently inactivate poultry pathogens like Clostridium, Histomonas, and Eimeria. To learn whether a bio-preparation containing antimicrobial peptides of Xenorhabdus origin with accompanying (in vitro detectable) cytotoxic effects could be considered a safely applicable preventive feed supplement, we conducted a 42-day feeding experiment on freshly hatched broiler cockerels. XENOFOOD (containing autoclaved X. budapestensis, and X. szentirmaii cultures developed on chicken food) were consumed by the birds. The XENOFOOD exerted detectable gastrointestinal (GI) activity (reducing the numbers of the colony-forming Clostridium perfringens units in the lower jejunum. No animal was lost in the experiment. Neither the body weight, growth rate, feed-conversion ratio, nor organ-weight data differed between the control (C) and treated (T) groups, indicating that the XENOFOOD diet did not result in any detectable adverse effects. We suppose that the parameters indicating a moderate enlargement of bursas of Fabricius (average weight, size, and individual bursa/spleen weight-ratios) in the XENOFOOD-fed group must be an indirect indication that the bursa-controlled humoral immune system neutralized the cytotoxic ingredients of the XENOFOOD in the blood, not allowing to reach their critical cytotoxic concentration in the sensitive tissues.
Collapse
|
19
|
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023; 13:biom13030466. [PMID: 36979401 PMCID: PMC10046784 DOI: 10.3390/biom13030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Collapse
|
20
|
Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane-A Molecular Simulation Approach. Int J Mol Sci 2023; 24:ijms24032005. [PMID: 36768325 PMCID: PMC9916935 DOI: 10.3390/ijms24032005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6-HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an asymmetric bilayer, with the outer layer consisting exclusively of lipopolysaccharide molecules and the lower leaflet made up of phospholipids. The mechanisms by which short AMPs permeate the OM of Gram-negative bacteria are not well understood at the moment. For this study, two types of E. coli OM membrane models were built with (i) smooth LPS composed of lipid A, K12 core and O21 O-antigen, and (ii) rough type LPS composed of lipid A and R1 core. An OmpF monomer from E. coli was embedded in both membrane models. MD trajectories revealed that AMP insertion in the LPS layer was facilitated by the OmpF-created gap and allowed AMPs to form hydrogen bonds with the phosphate groups of inner core oligosaccharides. OM proteins such as OmpF may be essential for the permeation of short AMPs such as P6 by exposing the LPS binding site or even by direct translocation of AMPs across the OM.
Collapse
|
21
|
Bortolotti A, Troiano C, Bobone S, Konai MM, Ghosh C, Bocchinfuso G, Acharya Y, Santucci V, Bonacorsi S, Di Stefano C, Haldar J, Stella L. Mechanism of lipid bilayer perturbation by bactericidal membrane-active small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184079. [PMID: 36374761 DOI: 10.1016/j.bbamem.2022.184079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Membrane-active small molecules (MASMs) are small organic molecules designed to reproduce the fundamental physicochemical properties of natural antimicrobial peptides: their cationic charge and amphiphilic character. This class of compounds has a promising broad range of antimicrobial activity and, at the same time, solves some major limitations of the peptides, such as their high production costs and low in vivo stability. Most cationic antimicrobial peptides act by accumulating on the surface of bacterial membranes and causing the formation of defects when a threshold is reached. Due to the drastically different structures of the two classes of molecules, it is not obvious that small-molecule antimicrobials act in the same way as natural peptides, and very few data are available on this aspect. Here we combined spectroscopic studies and molecular dynamics simulations to characterize the mechanism of action of two different MASMs. Our results show that, notwithstanding their simple structure, these molecules act just like antimicrobial peptides. They bind to the membrane surface, below the head-groups, and insert their apolar moieties in the core of the bilayer. Like many natural peptides, they cause the formation of defects when they reach a high coverage of the membrane surface. In addition, they cause membrane aggregation, and this property could contribute to their antimicrobial activity.
Collapse
Affiliation(s)
- A Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - C Troiano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - S Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - M M Konai
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - C Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - G Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Y Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - V Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - S Bonacorsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - C Di Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - J Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India; School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India.
| | - L Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
22
|
Yadav M, Eswari JS. Opportunistic Challenges of Computer-aided Drug Discovery of Lipopeptides: New Insights for Large Molecule Therapeutics. Avicenna J Med Biotechnol 2023; 15:3-13. [PMID: 36789119 PMCID: PMC9895984 DOI: 10.18502/ajmb.v15i1.11419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/27/2022] [Indexed: 12/27/2022] Open
Abstract
Computer-aided drug designing is a promising approach to defeating the dry pipeline of drug discovery. It aims at reduced experimental efforts with cost-effectiveness. Naturally occurring large molecules with molecular weight higher than 500 Dalton such as cationic peptides, cyclic peptides, glycopeptides and lipopeptides are a few examples of large molecules which have successful applications as the broad spectrum antibacterial, anticancer, antiviral, antifungal and antithrombotic drugs. Utilization of microbial metabolites as potential drug candidates incur cost effectiveness through large scale production of such molecules rather than a synthetic approach. Computational studies on such compounds generate tremendous possibilities to develop novel leads with challenges to handle these complex molecules with available computational tools. The opportunities begin with the desired structural modifications in the parent drug molecule. Virtual modifications followed by molecular interaction studies at the target site through molecular modeling simulations and identification of structure-activity relationship models to develop more prominent and potential drug molecules. Lead optimization studies to develop novel compounds with increased specificity and reduced off targeting is a big challenge computationally for large molecules. Prediction of optimized pharmacokinetic properties facilitates development of a compound with lower toxicity as compared to the natural compounds. Generating the library of compounds and studies for target specificity and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) for large molecules are laborious and incur huge cost and chemical wastage through in-vitro methods. Hence, computational methods need to be explored to develop novel compounds from natural large molecules with higher specificity. This review article is focusing on possible challenges and opportunities in the pathway of computer-aided drug discovery of large molecule therapeutics.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biotechnology, National Institute of Technology Raipur, C.G., India
| | - J. Satya Eswari
- Department of Biotechnology, National Institute of Technology Raipur, C.G., India
| |
Collapse
|
23
|
Cai X, Orsi M, Capecchi A, Köhler T, van Delden C, Javor S, Reymond JL. An intrinsically disordered antimicrobial peptide dendrimer from stereorandomized virtual screening. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101161. [PMID: 36632208 PMCID: PMC9780108 DOI: 10.1016/j.xcrp.2022.101161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Membrane-disruptive amphiphilic antimicrobial peptides behave as intrinsically disordered proteins by being unordered in water and becoming α-helical in contact with biological membranes. We recently discovered that synthesizing the α-helical antimicrobial peptide dendrimer L-T25 ((KL)8(KKL)4(KLL)2 KKLL) using racemic amino acids to form stereorandomized sr-T25, an analytically pure mixture of all possible diastereoisomers of L-T25, preserved antibacterial activity but abolished hemolysis and cytotoxicity, pointing to an intrinsically disordered antibacterial conformation and an α-helical cytotoxic conformation. In this study, to identify non-toxic intrinsically disordered homochiral antimicrobial peptide dendrimers (AMPDs), we surveyed sixty-three sr-analogs of sr-T25 selected by virtual screening. One of the analogs, sr-X18 ((KL)8(KLK)4(KLL)2 KLLL), lost antibacterial activity as L-enantiomer and became hemolytic due to α-helical folding. By contrast, the L- and D-enantiomers of sr-X22 ((KL)8(KL)4(KKLL)2 KLKK) were equally antibacterial, non-hemolytic, and non-toxic, implying an intrinsically disordered bioactive conformation. Screening stereorandomized libraries may be generally useful to identify or optimize intrinsically disordered bioactive peptides.
Collapse
Affiliation(s)
- Xingguang Cai
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Markus Orsi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Alice Capecchi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Sacha Javor
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
25
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
26
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
27
|
Anti-cancer Effect of Recombinant PI-Laterosporulin10 as a Novel Bacteriocin with Selective Cytotoxicity on Triple Negative Breast Cancer Cells. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Bahatheg G, Kuppusamy R, Yasir M, Black DS, Willcox M, Kumar N. Short Tryptamine-Based Peptoids as Potential Therapeutics for Microbial Keratitis: Structure-Function Correlation Studies. Antibiotics (Basel) 2022; 11:1074. [PMID: 36009943 PMCID: PMC9404767 DOI: 10.3390/antibiotics11081074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Peptoids are peptidomimetics that have attracted considerable interest as a promising class of antimicrobials against multi-drug-resistant bacteria due to their resistance to proteolysis, bioavailability, and thermal stability compared to their corresponding peptides. Staphylococcus aureus is a significant contributor to infections worldwide and is a major pathogen in ocular infections (keratitis). S. aureus infections can be challenging to control and treat due to the development of multiple antibiotic resistance. This work describes short cationic peptoids with activity against S. aureus strains from keratitis. The peptoids were synthesized via acid amine-coupling between naphthyl-indole amine or naphthyl-phenyl amine with different amino acids to produce primary amines (series I), mono-guanidines (series II), tertiary amine salts (series III), quaternary ammonium salts (series IV), and di-guanidine (series V) peptoids. The antimicrobial activity of the peptoids was compared with ciprofloxacin, an antibiotic that is commonly used to treat keratitis. All new compounds were active against Staphylococcus aureus S.aureus 38. The most active compounds against S.aur38 were 20a and 22 with MIC = 3.9 μg mL−1 and 5.5 μg mL−1, respectively. The potency of these two active molecules was investigated against 12 S. aureus strains that were isolated from microbial keratitis. Compounds 20a and 22 were active against 12 strains with MIC = 3.2 μg mL−1 and 2.1 μg mL−1, respectively. There were two strains that were resistant to ciprofloxacin (Sa.111 and Sa.112) with MIC = 128 μg mL−1 and 256 μg mL−1, respectively. Compounds 12c and 13c were the most active against E. coli, with MIC > 12 μg mL−1. Cytoplasmic membrane permeability studies suggested that depolarization and disruption of the bacterial cell membrane could be a possible mechanism for antibacterial activity and the hemolysis studies toward horse red blood cells showed that the potent compounds are non-toxic at up to 50 μg mL−1.
Collapse
Affiliation(s)
- Ghayah Bahatheg
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Muhammad Yasir
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - David StC. Black
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Rivera-Sanchez SP, Ocampo-Ibáñez ID, Liscano Y, Martínez N, Muñoz I, Manrique-Moreno M, Martinez-Martinez L, Oñate-Garzon J. Integrating In Vitro and In Silico Analysis of a Cationic Antimicrobial Peptide Interaction with Model Membranes of Colistin-Resistant Pseudomonas aeruginosa Strains. Pharmaceutics 2022; 14:pharmaceutics14061248. [PMID: 35745820 PMCID: PMC9230736 DOI: 10.3390/pharmaceutics14061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial antibiotic resistance is a serious global public health concern. Infections caused by colistin-resistant Pseudomonas aeruginosa (CRPa) strains represent a serious threat due to their considerable morbidity and mortality rates, since most of the current empirical antibiotic therapies are ineffective against these strains. Accordingly, cationic antimicrobial peptides (CAMPs) have emerged as promising alternatives to control resistant bacteria. In this study, the interaction of a CAMP derived from cecropin D-like (∆M2) with model membranes mimicking bacterial biomembranes of wild-type (WTPa) strains of P. aeruginosa and CRPa was evaluated through in vitro and in silico approaches. In vitro interaction was determined by infrared spectroscopy, whereas in silico molecular dynamics was performed to predict specific interactions between amino acids of ∆M2 and lipids of model membrane systems. Experimental analysis showed this peptide interacted with the lipids of bacterial-like model membranes of WTPa and CRPa. In both cases, an increase in the concentration of peptides induced an increase in the phase transition temperature of the lipid systems. On the other hand, the peptides in solution underwent a transition from a random to a helical secondary structure after interacting with the membranes mostly favored in the CRPa system. The α-helix structure percentage for ΔM2 interacting with WTPa and CRPa lipid systems was 6.4 and 33.2%, respectively. Finally, molecular dynamics showed ∆M2 to have the most affinities toward the phospholipids palmitoyl-oleyl-phosphatidylglycerol (POPG) and palmitoyl-oleoyl-phosphatidylethanolamine (POPE) that mimic membranes of WTPa and CRPa, respectively. This work provides clues for elucidating the membrane-associated mechanism of action of ∆M2 against colistin-susceptible and -resistant strains of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Sandra Patricia Rivera-Sanchez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago of Cali, Cali 760035, Colombia; (I.D.O.-I.); (N.M.); (I.M.)
- Transnational Research Group on Infectious Diseases, PhD School of Biomedicine, University of Córdoba, 14071 Córdoba, Spain
- Correspondence: (S.P.R.-S.); (J.O.-G.)
| | - Iván Darío Ocampo-Ibáñez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago of Cali, Cali 760035, Colombia; (I.D.O.-I.); (N.M.); (I.M.)
| | - Yamil Liscano
- Research Group of Comprehensive Health (GISI), Department Faculty of Health, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Natalia Martínez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago of Cali, Cali 760035, Colombia; (I.D.O.-I.); (N.M.); (I.M.)
| | - Isamar Muñoz
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago of Cali, Cali 760035, Colombia; (I.D.O.-I.); (N.M.); (I.M.)
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia;
| | - Luis Martinez-Martinez
- Microbiology Unit, Reina Sofía University Hospital, 14008 Córdoba, Spain;
- Maimonides Institute for Biomedical Research of Córdoba, 14008 Córdoba, Spain
- Department of Agricultural Chemistry, Soil Sciencies and Microbiology, University of Córdoba, 14071 Córdoba, Spain
| | - José Oñate-Garzon
- Research Group of Chemistry and Biotechnology, Faculty of Basic Sciences, Universidad Santiago of Cali, Cali 760035, Colombia
- Correspondence: (S.P.R.-S.); (J.O.-G.)
| |
Collapse
|
30
|
|
31
|
Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072290. [PMID: 35408688 PMCID: PMC9000865 DOI: 10.3390/molecules27072290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a common skin disease mainly caused by the Gram-positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates the inflammation process in human sebaceous glands. The giant African snail (Achatina fulica) is an alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of these snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using bioinformatic tools for the determination of antimicrobial (iAMPpred), anti-biofilm (dPABBs), cytotoxic (ToxinPred) and cell-membrane-penetrating (CPPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti-P. acnes (APA) peptide candidates were performed using the PEP-FOLD3 program and the four previous tools. All candidates had a random coiled structure and were named APAP-1 ori, APAP-2 ori, APAP-3 ori, APAP-1 mod, APAP-2 mod, and APAP-3 mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on three isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.
Collapse
|
32
|
Progress Report: Antimicrobial Drug Discovery in the Resistance Era. Pharmaceuticals (Basel) 2022; 15:ph15040413. [PMID: 35455410 PMCID: PMC9030565 DOI: 10.3390/ph15040413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance continues to be a most serious threat to public health. This situation demands that the scientific community increase their efforts for the discovery of alternative strategies to circumvent the problems associated with conventional small molecule therapeutics. The Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report (published in June 2021) discloses the rapidly increasing number of bacterial infections that are mainly caused by antimicrobial-resistant bacteria. These concerns have initiated various government agencies and other organizations to educate the public regarding the appropriate use of antibiotics. This review discusses a brief highlight on the timeline of antimicrobial drug discovery with a special emphasis on the historical development of antimicrobial resistance. In addition, new antimicrobial targets and approaches, recent developments in drug screening, design, and delivery were covered. This review also discusses the emergence and roles of various antibiotic adjuvants and combination therapies while shedding light on current challenges and future perspectives. Overall, the emergence of resistant microbial strains has challenged drug discovery but their efforts to develop alternative technologies such as nanomaterials seem to be promising for the future.
Collapse
|
33
|
Filatova SM, Guseva MK, Bodrova TG, Parshina DV, Budanova UA, Sebyakin YL. Evolutionary Development and Structural Diversity of Natural Antimicrobial Peptides, Peptidometics, and Cationic Amphiphiles Based on Amino Acids. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221130338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Zhang B, Zhang M, Lin M, Dong X, Ma X, Xu Y, Sun J. Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106936. [PMID: 35142040 DOI: 10.1002/smll.202106936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The preparation of a type of innovative cationic copolypeptoid antimicrobials containing various hydrophobic moieties that resemble both structure and membrane-lytic antibacterial mechanism of natural antimicrobial peptides (AMPs) is reported. By finely tuning the hydrophilic/hydrophobic balance, the polypeptoids exhibit a wide spectrum of antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria with the lowest minimum inhibitory concentration (MIC) at only 2 µg mL-1 , whereas they also show low haemolytic properties. In particular, high selectivity (>128) is achieved from the polymers with butyl moieties. Moreover, the polypeptoids can readily inhibit the formation of biofilms and effectively eradicate the bacteria embedded in the mature biofilms, which is superior to many natural AMPs and vancomycin. Unlike conventional antibiotics, the polypeptoids possess potent activity against drug-resistant bacteria without visible resistance development after repeated usage. Notably, the polypeptoid antimicrobials not only have inherently fast bactericidal properties and excellent stability against incubation with human plasma, but also show excellent in vivo antibacterial effect. The prepared antimicrobials, coated onto magnetic nanospheres show recycling properties and enhanced antibacterial activity as combined with near-infrared (NIR)-induced photothermal antibacterial therapy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Meng Zhang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinzhe Dong
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Xutao Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
35
|
Lim EJ, Leng EGT, Tram NDT, Periayah MH, Ee PLR, Barkham TMS, Poh ZS, Verma NK, Lakshminarayanan R. Rationalisation of Antifungal Properties of α-Helical Pore-Forming Peptide, Mastoparan B. Molecules 2022; 27:molecules27041438. [PMID: 35209228 PMCID: PMC8879275 DOI: 10.3390/molecules27041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high mortality associated with invasive fungal infections, narrow spectrum of available antifungals, and increasing evolution of antifungal resistance necessitate the development of alternative therapies. Host defense peptides are regarded as the first line of defense against microbial invasion in both vertebrates and invertebrates. In this work, we investigated the effectiveness of four naturally occurring pore-forming antimicrobial peptides (melittin, magainin 2, cecropin A, and mastoparan B) against a panel of clinically relevant pathogens, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. We present data on the antifungal activities of the four pore-forming peptides, assessed with descriptive statistics, and their cytocompatibility with cultured human cells. Among the four peptides, mastoparan B (MB) displayed potent antifungal activity, whereas cecropin A was the least potent. We show that MB susceptibility of phylogenetically distant non-candida albicans can vary and be described by different intrinsic physicochemical parameters of pore-forming α-helical peptides. These findings have potential therapeutic implications for the design and development of safe antifungal peptide-based drugs.
Collapse
Affiliation(s)
- Edward Jianyang Lim
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Eunice Goh Tze Leng
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Nhan Dai Thien Tram
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
| | - Mercy Halleluyah Periayah
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
| | | | - Zhi Sheng Poh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore;
| | - Navin Kumar Verma
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore;
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
- Correspondence: (N.K.V.); (R.L.)
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
- Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: (N.K.V.); (R.L.)
| |
Collapse
|
36
|
Synthesis of 5‐Alkynyl and 2,5‐Dialkynyl‐L‐histidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Silva ARP, Guimarães M, Rabelo J, Belen L, Perecin C, Farias J, Picado Madalena Santos JH, Rangel-Yagui CO. Recent advances in the design of antimicrobial peptide conjugates. J Mater Chem B 2022; 10:3587-3600. [DOI: 10.1039/d1tb02757c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous host defense peptides characterized by antibiotic activity and lower propensity for developing resistance compared to classic antibiotics. While several AMPs have shown activity against antibiotic-sensitive...
Collapse
|
38
|
Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Facile synthesis of polypeptoids bearing bulky sidechains via urea accelerated ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides. Polym Chem 2022. [DOI: 10.1039/d1py01324f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organocatalyst 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (U–O) accelerates the ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides (NNCAs) for the rapid synthesis of polypeptoids bearing bulky sidechains.
Collapse
Affiliation(s)
- Kang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiyi Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Mojsoska B. Solid-phase synthesis of novel antimicrobial peptoids with α- and β-chiral side chains. Methods Enzymol 2022; 663:327-340. [DOI: 10.1016/bs.mie.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Zouhir A, Semmar N. Structure-activity trend analysis between amino-acids and minimal inhibitory concentration of antimicrobial peptides. Chem Biol Drug Des 2021; 99:438-455. [PMID: 34965022 DOI: 10.1111/cbdd.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) provide large structural libraries of molecules with high variability of constitutional amino-acids (AAs). Highlighting structural organization and structure-activity trends in such molecular systems provide key information on structural associations and functional conditions that could usefully help for drug design. This work presents link analyses between minimal inhibitory concentration (MIC) and different types of constitutional AAs of anti-Pseudomonas aeruginosa AMPs. This scope was based on a dataset of 328 published molecules. Regulation levels of AAs in AMPs were statistically ordinated by correspondence analysis helping for classification of the 328 AMPs into nine structurally homogeneous peptide clusters (PCs 1-9) characterized by high/low relative occurrences of different AAs. Within each PC, negative trends between MIC and AAs were highlighted by iterated multiple linear regression models built by bootstrap processes (bagging). MIC-decrease was linked to different AAs that varied with PCs: alcohol type AAs (Thr, Ser) in Cys-rich and low Arg PCs (PCs 1-3); basic AAs (Lys, Arg) in Pro-rich and low Val PCs (PCs 4-8); Trp (heterocyclic AA) in Arg-rich PCs (PCs 6, 7, 9). Aliphatic AAs (more particularly Gly) showed MIC-reduction effects in different PCs essentially under interactive forms.
Collapse
Affiliation(s)
- Abdelmajid Zouhir
- University of Tunis El Manar, Institut Supérieur des Sciences Biologiques Appliquées de Tunis
| | - Nabil Semmar
- University of Tunis El Manar, Laboratory of BioInformatics, bioMathematics and bioStatistics (BIMS), Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
41
|
Baeriswyl S, Personne H, Di Bonaventura I, Köhler T, van Delden C, Stocker A, Javor S, Reymond JL. A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography. RSC Chem Biol 2021; 2:1608-1617. [PMID: 34977576 PMCID: PMC8637766 DOI: 10.1039/d1cb00124h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
The peptide α-helix is right-handed when containing amino acids with l-chirality, and left-handed with d-chirality, however mixed chirality peptides generally do not form α-helices unless a helix inducer such as the non-natural residue amino-isobutyric acid is used. Herein we report the first X-ray crystal structures of mixed chirality α-helices in short peptides comprising only natural residues as the example of a stapled bicyclic and a linear membrane disruptive amphiphilic antimicrobial peptide (AMP) containing seven l- and four d-residues, as complexes of fucosylated analogs with the bacterial lectin LecB. The mixed chirality α-helices are superimposable onto the homochiral α-helices and form under similar conditions as shown by CD spectra and MD simulations but non-hemolytic and resistant to proteolysis. The observation of a mixed chirality α-helix with only natural residues in the protein environment of LecB suggests a vast unexplored territory of α-helical mixed chirality sequences and their possible use for optimizing bioactive α-helical peptides. We report the first X-ray crystal structures of mixed chirality α-helices comprising only natural residues as the example of bicyclic and linear membrane disruptive amphiphilic antimicrobial peptides containing seven l- and four d-residues.![]()
Collapse
Affiliation(s)
- Stéphane Baeriswyl
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Hippolyte Personne
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Ivan Di Bonaventura
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva Geneva Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious Diseases, University Hospital of Geneva Geneva Switzerland
| | - Achim Stocker
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Sacha Javor
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
42
|
Shyam R, Forestier C, Charbonnel N, Roy O, Taillefumier C, Faure S. Solution‐Phase Synthesis of Backbone‐Constrained Cationic Peptoid Hexamers with Antibacterial and Anti‐Biofilm Activities. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Radhe Shyam
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | | | | | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| |
Collapse
|
43
|
Wu CL, Peng KL, Yip BS, Chih YH, Cheng JW. Boosting Synergistic Effects of Short Antimicrobial Peptides With Conventional Antibiotics Against Resistant Bacteria. Front Microbiol 2021; 12:747760. [PMID: 34733262 PMCID: PMC8558513 DOI: 10.3389/fmicb.2021.747760] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
The global spread of antibiotic-resistant infections has meant that there is an urgent need to develop new antimicrobial alternatives. In this study, we developed a strategy to boost and/or synergize the activity of conventional antibiotics by combination with antimicrobial peptides tagged with the bulky non-natural amino acid β-naphthylalanine (Nal) to their N- or C-terminus. A checkerboard method was used to evaluate synergistic effects of the parent peptide and the Nal-tagged peptides. Moreover, boron-dipyrro-methene labeled vancomycin was used to characterize the synergistic mechanism of action between the peptides and vancomycin on the bacterial strains. These Nal-tagged antimicrobial peptides also reduced the antibiotic-induced release of lipopolysaccharide from Gram-negative bacteria by more than 99.95%. Our results demonstrate that Nal-tagged peptides could help in developing antimicrobial peptides that not only have enhanced antibacterial activities but also increase the synergistic effects with conventional antibiotics against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuang-Li Peng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bak-Sau Yip
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ya-Han Chih
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
44
|
Novel Antimicrobial Peptides from a Cecropin-Like Region of Heteroscorpine-1 from Heterometrus laoticus Venom with Membrane Disruption Activity. Molecules 2021; 26:molecules26195872. [PMID: 34641415 PMCID: PMC8512776 DOI: 10.3390/molecules26195872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The increasing antimicrobial-resistant prevalence has become a severe health problem. It has led to the invention of a new antimicrobial agent such as antimicrobial peptides. Heteroscorpine-1 is an antimicrobial peptide that has the ability to kill many bacterial strains. It consists of 76 amino acid residues with a cecropin-like region in N-terminal and a defensin-like region in the C-terminal. The cecropin-like region from heteroscorpine-1 (CeHS-1) is similar to cecropin B, but it lost its glycine-proline hinge region. The bioinformatics prediction was used to help the designing of mutant peptides. The addition of glycine-proline hinge and positively charged amino acids, the deletion of negatively charged amino acids, and the optimization of the hydrophobicity of the peptide resulted in two mutant peptides, namely, CeHS-1 GP and CeHS-1 GPK. The new mutant peptide showed higher antimicrobial activity than the native peptide without increasing toxicity. The interaction of the peptides with the membrane showed that the peptides were capable of disrupting both the inner and outer bacterial cell membrane. Furthermore, the SEM analysis showed that the peptides created the pore in the bacterial cell membrane resulted in cell membrane disruption. In conclusion, the mutants of CeHS-1 had the potential to develop as novel antimicrobial peptides.
Collapse
|
45
|
Cai J. Editorial of Special Column "Novel Peptides and Peptidomimetics in Drug Discovery". Acta Pharm Sin B 2021; 11:2606-2608. [PMID: 34589384 PMCID: PMC8463287 DOI: 10.1016/j.apsb.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
46
|
Liu S, Wang YN, Ma B, Shao J, Liu H, Ge S. Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates In Situ Periodontal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36880-36893. [PMID: 34324286 DOI: 10.1021/acsami.1c08855] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing local drug delivery systems for periodontitis suffer from poor antibacterial effect and unsatisfied periodontal regeneration. In this study, a smart gingipain-responsive hydrogel (PEGPD@SDF-1) was synthesized as an environmentally sensitive carrier for on-demand drug delivery. The PEGPD@SDF-1 hydrogel was synthesized from polyethylene glycol diacrylate (PEG-DA) based scaffolds, dithiothreitol (DTT), and a novel designed functional peptide module (FPM) via Michael-type addition reaction, and the hydrogel was further loaded with stromal cell derived factor-1 (SDF-1). The FPM exhibiting a structure of anchor peptide-short antimicrobial peptide (SAMP)-anchor peptide could be cleaved by gingipain specifically, and the SAMP was released out of the hydrogel for antibacterial effect in response to gingipain. The hydrogel properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling ratio analysis, degradation evaluation, and release curve description of the SAMP and SDF-1. Results in vitro indicated the PEGPD@SDF-1 hydrogel exhibited preferable biocompatibility and could promote the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Antibacterial testing demonstrated that the PEGPD@SDF-1 hydrogel released the SAMP stressfully in response to gingipain stimulation, thereby strongly inhibiting the growth of Porphyromonas gingivalis. Furthermore, the study in vivo indicated that the PEGPD@SDF-1 hydrogel inhibited P. gingivalis reproduction, created a low-inflammatory environment, facilitated the recruitment of CD90+/CD34- stromal cells, and induced osteogenesis. Taken together, these results suggest that the gingipain-responsive PEGPD@SDF-1 hydrogel could facilitate in situ periodontal tissue regeneration and is a promising candidate for the on-demand local drug delivery system for periodontitis.
Collapse
Affiliation(s)
- Shiyue Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Baojin Ma
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Hongrui Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
47
|
Hernández-Aristizábal I, Ocampo-Ibáñez ID. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int J Mol Sci 2021; 22:7927. [PMID: 34360692 PMCID: PMC8347216 DOI: 10.3390/ijms22157927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of bacteria resistant to conventional antibiotics is of great concern in modern medicine because it renders ineffectiveness of the current empirical antibiotic therapies. Infections caused by vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-intermediate S. aureus (VISA) strains represent a serious threat to global health due to their considerable morbidity and mortality rates. Therefore, there is an urgent need of research and development of new antimicrobial alternatives against these bacteria. In this context, the use of antimicrobial peptides (AMPs) is considered a promising alternative therapeutic strategy to control resistant strains. Therefore, a wide number of natural, artificial, and synthetic AMPs have been evaluated against VRSA and VISA strains, with great potential for clinical application. In this regard, we aimed to present a comprehensive and systematic review of research findings on AMPs that have shown antibacterial activity against vancomycin-resistant and vancomycin-intermediate resistant strains and clinical isolates of S. aureus, discussing their classification and origin, physicochemical and structural characteristics, and possible action mechanisms. This is the first review that includes all peptides that have shown antibacterial activity against VRSA and VISA strains exclusively.
Collapse
Affiliation(s)
| | - Iván Darío Ocampo-Ibáñez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
48
|
Gómez J, Sierra D, Ojeda C, Thavalingam S, Miller R, Guzmán F, Metzler-Nolte N. Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds. J Biol Inorg Chem 2021; 26:599-615. [PMID: 34292404 DOI: 10.1007/s00775-021-01877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
A series of novel water-soluble short peptide-bioconjugates containing a ferrocenoyl (Fc) or ruthenocenoyl (Rc) unit was synthesized and characterized to combine the unique activity of ferrocene and the isoelectronic ruthenocene with precisely designed peptide structures. We aim at evaluating these bioconjugates as a new class of OrganoMetallic Short AntiMicrobial Peptides (OM-SAMPs). The series of OM-SAMPs was designed with a set of linear and "head-to-tail" cyclic metallocene-based hexapeptides derived from the homo-sequence H-KKKKKK-NH2 by substitution of lysine (K) by tryptophan (W) and by orthogonal derivatization of the ε-N-amine group of lysine by a metallocene moiety. Peptide conjugates were characterized by RP-HPLC, mass spectrometry (ESI and MALDI-TOF) and circular dichroism (CD) spectroscopy. Gram-positive and Gram-negative antibacterial activity testings were carried out to explore the role of insertion of the metallocene fragment into the peptide, and the effect of the modification of the cationic charge and aromatic residues on the physiochemical properties of these OM-SAMPs. These results show that the insertion of two tryptophan residues and ferrocenoyl/ruthenocenoyl moieties into a linear homo-sequence peptides increase significantly their antibacterial activity with minimum inhibitory concentration values as low as 5 μM for the most active compounds. However, "head-to-tail" cyclic metallocene-based hexapeptides were not active against Gram-negative bacteria up to concentrations of 50 μM. These studies provide a better understanding of the role of structural modifications to enhance antibacterial peptide activity, which is promising for their therapeutic application.
Collapse
Affiliation(s)
- Johana Gómez
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaiso, Chile.
| | - Diego Sierra
- Instituto de Química Y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaiso, Chile.
| | - Claudia Ojeda
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaiso, Chile
| | - Sugina Thavalingam
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| | - Reece Miller
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaiso, Chile
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
49
|
Immunomodulatory Properties of Host Defence Peptides in Skin Wound Healing. Biomolecules 2021; 11:biom11070952. [PMID: 34203393 PMCID: PMC8301823 DOI: 10.3390/biom11070952] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous wound healing is a vital biological process that aids skin regeneration upon injury. Wound healing failure results from persistent inflammatory conditions observed in diabetes, or autoimmune diseases like psoriasis. Chronic wounds are incurable due to factors like poor oxygenation, aberrant function of peripheral sensory nervature, inadequate nutrients and blood tissue supply. The most significant hallmark of chronic wounds is heavily aberrant immune skin function. The immune response in humans relies on a large network of signalling molecules and their interactions. Research studies have reported on the dual role of host defence peptides (HDPs), which are also often called antimicrobial peptides (AMPs). Their duality reflects their potential for acting as antibacterial peptides, and as immunodulators that assist in modulating several biological signalling pathways related to processes such as wound healing, autoimmune disease, and others. HDPs may differentially control gene regulation and alter the behaviour of epithelial and immune cells, resulting in modulation of immune responses. In this review, we shed light on the understanding and most recent advances related to molecular mechanisms and immune modulatory features of host defence peptides in human skin wound healing. Understanding their functional role in skin immunity may further inspire topical treatments for chronic wounds.
Collapse
|
50
|
Bhat R, Foster LL, Rani G, Vemparala S, Kuroda K. The function of peptide-mimetic anionic groups and salt bridges in the antimicrobial activity and conformation of cationic amphiphilic copolymers. RSC Adv 2021; 11:22044-22056. [PMID: 35480841 PMCID: PMC9034112 DOI: 10.1039/d1ra02730a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the net charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as "adhesives" which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles.
Collapse
Affiliation(s)
- Rajani Bhat
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Leanna L Foster
- Macromolecular Science and Engineering Center, University of Michigan Ann Arbor Michigan 48109 USA
| | - Garima Rani
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad 500046 India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C. I. T. Campus Taramani Chennai 600113 India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan Ann Arbor Michigan 48109 USA
- Macromolecular Science and Engineering Center, University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|