1
|
Kru̅kle-Be̅rziṇa K, Lends A, Boguszewska-Czubara A. Cyclodextrin Metal-Organic Frameworks as a Drug Delivery System for Selected Active Pharmaceutical Ingredients. ACS OMEGA 2024; 9:8874-8884. [PMID: 38434855 PMCID: PMC10905577 DOI: 10.1021/acsomega.3c06745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The cyclodextrin-based metal-organic frameworks (CD MOFs) are a suitable molecular platform for drug delivery systems of various active pharmaceutical ingredients (APIs). The low toxicity and cost-efficient synthesis make CD MOFs an attractive host for the encapsulation of APIs. In this study, we created a model system based on γCD-K MOFs with widely used drugs carmofur (HCFU), 5-fluorouracil (5-FU), and salicylic acid (HBA) to study host-guest encapsulation methods using different crystallization protocols. The host-guest complexes of API:CD MOF in an in-depth study were investigated by liquid chromatography-mass spectrometry (LC-MS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 19F- and 13C-detected solid-state NMR spectroscopy (ssNMR). These techniques confirmed the structure and interaction sites within the encapsulation product in the host-guest complex. We also evaluated the toxicity and biocompatibility of the API:CD MOF complex using in vitro and in vivo methods. The cytotoxicity, hepatotoxicity, and neurotoxicity were established with cell lines of fibroblasts (BJ), human liver cell line (HepG2), and human oligodendrocytic cells (MO3.13). Then, Danio rerio was used as an in vivo experimental model of ecotoxicity. The results showed the choice of γCD-K-5 as the most protective and safe option for drug encapsulation to decrease its toxicity level against normal cells.
Collapse
Affiliation(s)
| | - Alons Lends
- Latvian
Institute of Organic Synthesis, Aizkraukles iela 21, Riga LV-1006, Latvia
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, Chodzki 4A, Lublin 20-093, Poland
| |
Collapse
|
2
|
Islam MM, Mirza SP. Versatile use of Carmofur: A comprehensive review of its chemistry and pharmacology. Drug Dev Res 2022; 83:1505-1518. [PMID: 36031762 DOI: 10.1002/ddr.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Carmofur, 1-hexylcarbamoyl-5-fluorouracil (HCFU) is an antineoplastic drug, which has been in clinics in Japan since 1981 for the treatment of colorectal cancer. Subsequently, it was also introduced in China, Korea, and Finland. Besides colorectal cancer, it has also shown antitumor activity in other cancers such as breast, head and neck, pancreatic, gastrointestinal, and solid brain tumors. A prodrug of 5-fluorouracil (5-FU), carmofur has shown better gastrointestinal stability and superior antiproliferative activity compared to its active counterpart 5-FU. Recently, carmofur has gained attention as an acid ceramidase inhibitor and as a potential lead compound against several noncancerous diseases such as coronavirus disease 2019, Krabbe disease, acute lung injury, Parkinson's disease, dementia, childhood ependymoma etc. Carmofur has also been reported to have antifungal, and antimicrobial properties. Nevertheless, no comprehensive review is available on this drug. Herein, we summarized the chemistry, pharmacokinetics, and pharmacology of carmofur based on the literature published between January 1976 and March 2022 as identified from PubMed and Google Scholar search engines.
Collapse
Affiliation(s)
- Mohammad Mohiminul Islam
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Shama P Mirza
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Taniai T, Shirai Y, Shimada Y, Hamura R, Yanagaki M, Takada N, Horiuchi T, Haruki K, Furukawa K, Uwagawa T, Tsuboi K, Okamoto Y, Shimada S, Tanaka S, Ohashi T, Ikegami T. Inhibition of acid ceramidase elicits mitochondrial dysfunction and oxidative stress in pancreatic cancer cells. Cancer Sci 2021; 112:4570-4579. [PMID: 34459070 PMCID: PMC8586682 DOI: 10.1111/cas.15123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno-associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. Acid ceramidase inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.
Collapse
Affiliation(s)
- Tomohiko Taniai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Yanagaki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takada
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | - Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | - Shu Shimada
- Department of Molecular Oncology Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Turkez H, Tozlu OO, Arslan ME, Mardinoglu A. Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy: From In Vitro Experiences to Animal and Clinical Studies. Neurochem Int 2021; 150:105168. [PMID: 34450218 DOI: 10.1016/j.neuint.2021.105168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for GBM therapies with antioxidants in the future.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
5
|
Munk R, Anerillas C, Rossi M, Tsitsipatis D, Martindale JL, Herman AB, Yang JH, Roberts JA, Varma VR, Pandey PR, Thambisetty M, Gorospe M, Abdelmohsen K. Acid ceramidase promotes senescent cell survival. Aging (Albany NY) 2021; 13:15750-15769. [PMID: 34102611 PMCID: PMC8266329 DOI: 10.18632/aging.203170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023]
Abstract
Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jackson A Roberts
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vijay R Varma
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
6
|
Ben Taleb A, Karakuş S, Tan E, Ilgar M, Kutlu Ö, Gözüaçık D, Kutlu HM, Kilislioğlu A. Antitumor Efficacy of Ceranib-2 with Nano-Formulation of PEG and Rosin Esters. Methods Mol Biol 2021; 2207:199-220. [PMID: 33113138 DOI: 10.1007/978-1-0716-0920-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ceranib-2 is a recently discovered, poorly water-soluble potent ceramidase inhibitor, with the ability to suppress cancer cell proliferation and delay tumor growth. However, its poor water solubility and weak cellular bioavailability hinder its use as a therapeutic agent for cancer. PEGylated rosin esters are an excellent platform as a natural polymer for drug delivery applications, especially for controlling drug release due to their degradability, biocompatibility, capability to improve solubility, and pharmacokinetics of potent drugs. In this study, stable aqueous amphiphilic submicron-sized PEG400-rosin ester-ceranib-2 (PREC-2) particles, ranging between 100 and 350 nm in a 1:1 mixture, were successfully synthesized by solvent evaporation mediated by sonication.Conclusion: Stable aqueous PEGylated rosin ester nanocarriers might present a significant solution to improve solubility, pharmacokinetic, and bioavailability of ceranib-2, and hold promises for use as an anticancer adjacent drug after further investigations.
Collapse
Affiliation(s)
- Ali Ben Taleb
- Faculty of Engineering, Department of Bio and Nanotechnology, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Selcan Karakuş
- Faculty of Engineering, Department of Bio and Nanotechnology, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ezgi Tan
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ilgar
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Özlem Kutlu
- Nanotechnology Research andApplication Center (SUNUM),Sabanci University, Istanbul, Turkey
| | - Devrim Gözüaçık
- Koç University Hospital, School of Medicine and Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Zeytinburnu 34010, Istanbul, Turkey
| | - Hatice Mehtap Kutlu
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Ayben Kilislioğlu
- Faculty of Engineering, Department of Bio and Nanotechnology, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
El Bairi K, Trapani D, Petrillo A, Le Page C, Zbakh H, Daniele B, Belbaraka R, Curigliano G, Afqir S. Repurposing anticancer drugs for the management of COVID-19. Eur J Cancer 2020; 141:40-61. [PMID: 33125946 PMCID: PMC7508523 DOI: 10.1016/j.ejca.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
Since its outbreak in the last December, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has rapidly spread worldwide at a pandemic proportion and thus is regarded as a global public health emergency. The existing therapeutic options for COVID-19 beyond the intensive supportive care are limited, with an undefined or modest efficacy reported so far. Drug repurposing represents an enthusiastic mechanism to use approved drugs outside the scope of their original indication and accelerate the discovery of new therapeutic options. With the emergence of COVID-19, drug repurposing has been largely applied for early clinical testing. In this review, we discuss some repurposed anticancer drugs for the treatment of COVID-19, which are under investigation in clinical trials or proposed for the clinical testing.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | | | - Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy; University of Study of Campania "L.Vanvitelli", Naples, Italy
| | - Cécile Le Page
- Research Institute of McGill University Health Center (RI-MUHC), Montréal, QC, Canada
| | - Hanaa Zbakh
- Center of Marine Sciences, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Rhizlane Belbaraka
- Department of Medical Oncology, "Bioscience et Santé" Research Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakesh, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy; University of Milan, Department of Oncology and Hematology, Milan, Italy
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
8
|
Liu M, Dexheimer T, Sui D, Hovde S, Deng X, Kwok R, Bochar DA, Kuo MH. Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer's disease and cognitive functions. Sci Rep 2020; 10:16551. [PMID: 33024171 PMCID: PMC7539012 DOI: 10.1038/s41598-020-73680-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies. Intracerebral injection of tau aggregates isolated from tauopathy brains causes similar pathology in the recipient mice, demonstrating the pathogenic role of abnormally phosphorylated tau. Compounds controlling the aggregation of hyperphosphorylated tau therefore are probable modulators for the disease. Here we report the use of recombinant hyperphosphorylated tau (p-tau) to identify potential tauopathy therapeutics and risk factors. Hyperphosphorylation renders tau prone to aggregate and to impair cell viability. Taking advantage of these two characters of p-tau, we performed a screen of a 1280-compound library, and tested a selective group of prescription drugs in p-tau aggregation and cytotoxicity assays. R-(-)-apomorphine and raloxifene were found to be p-tau aggregation inhibitors that protected p-tau-treated cells. In contrast, a subset of benzodiazepines exacerbated p-tau cytotoxicity apparently via enhancing p-tau aggregation. R-(-)apomorphine and raloxifene have been shown to improve cognition in animals or in humans, whereas benzodiazepines were linked to increased risks of dementia. Our results demonstrate the feasibility and potential of using hyperphosphorylated tau-based assays for AD drug discovery and risk factor identification.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Stacy Hovde
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Xiexiong Deng
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Roland Kwok
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol 2020; 27:529-532. [PMID: 32382072 DOI: 10.1038/s41594-020-0440-6] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
The antineoplastic drug carmofur is shown to inhibit the SARS-CoV-2 main protease (Mpro). Here, the X-ray crystal structure of Mpro in complex with carmofur reveals that the carbonyl reactive group of carmofur is covalently bound to catalytic Cys145, whereas its fatty acid tail occupies the hydrophobic S2 subsite. Carmofur inhibits viral replication in cells (EC50 = 24.30 μM) and is a promising lead compound to develop new antiviral treatment for COVID-19.
Collapse
|
10
|
Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers (Basel) 2020; 12:cancers12040937. [PMID: 32290213 PMCID: PMC7226351 DOI: 10.3390/cancers12040937] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is one of the most common and detrimental forms of solid brain tumor, with over 10,000 new cases reported every year in the United States. Despite aggressive multimodal treatment approaches, the overall survival period is reported to be less than 15 months after diagnosis. A widely used approach for the treatment of glioblastoma is surgical removal of the tumor, followed by radiotherapy and chemotherapy. While there are several drugs available that are approved by the Food and Drug Administration (FDA), significant efforts have been made in recent years to develop new chemotherapeutic agents for the treatment of glioblastoma. This review describes the molecular targets and pathogenesis as well as the current progress in chemotherapeutic development and other novel therapies in the clinical setting for the treatment of glioblastoma.
Collapse
|
11
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
12
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
13
|
Pearson JM, Tan SF, Sharma A, Annageldiyev C, Fox TE, Abad JL, Fabrias G, Desai D, Amin S, Wang HG, Cabot MC, Claxton DF, Kester M, Feith DJ, Loughran TP. Ceramide Analogue SACLAC Modulates Sphingolipid Levels and MCL-1 Splicing to Induce Apoptosis in Acute Myeloid Leukemia. Mol Cancer Res 2019; 18:352-363. [PMID: 31744877 DOI: 10.1158/1541-7786.mcr-19-0619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease characterized by uncontrolled proliferation of immature myeloid cells in the blood and bone marrow. The 5-year survival rate is approximately 25%, and recent therapeutic developments have yielded little survival benefit. Therefore, there is an urgent need to identify novel therapeutic targets. We previously demonstrated that acid ceramidase (ASAH1, referred to as AC) is upregulated in AML and high AC activity correlates with poor patient survival. Here, we characterized a novel AC inhibitor, SACLAC, that significantly reduced the viability of AML cells with an EC50 of approximately 3 μmol/L across 30 human AML cell lines. Treatment of AML cell lines with SACLAC effectively blocked AC activity and induced a decrease in sphingosine 1-phosphate and a 2.5-fold increase in total ceramide levels. Mechanistically, we showed that SACLAC treatment led to reduced levels of splicing factor SF3B1 and alternative MCL-1 mRNA splicing in multiple human AML cell lines. This increased proapoptotic MCL-1S levels and contributed to SACLAC-induced apoptosis in AML cells. The apoptotic effects of SACLAC were attenuated by SF3B1 or MCL-1 overexpression and by selective knockdown of MCL-1S. Furthermore, AC knockdown and exogenous C16-ceramide supplementation induced similar changes in SF3B1 level and MCL-1S/L ratio. Finally, we demonstrated that SACLAC treatment leads to a 37% to 75% reduction in leukemic burden in two human AML xenograft mouse models. IMPLICATIONS: These data further emphasize AC as a therapeutic target in AML and define SACLAC as a potent inhibitor to be further optimized for future clinical development.
Collapse
Affiliation(s)
- Jennifer M Pearson
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jose Luis Abad
- Department of Biological Chemistry, Networking Biomedical Research Centre on Liver and Digestive Diseases (CIBER-EHD), Institute for Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Department of Biological Chemistry, Networking Biomedical Research Centre on Liver and Digestive Diseases (CIBER-EHD), Institute for Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), Barcelona, Spain
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Hong-Gang Wang
- Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Mark Kester
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - David J Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - Thomas P Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia. .,University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
14
|
Lai M, La Rocca V, Amato R, Freer G, Pistello M. Sphingolipid/Ceramide Pathways and Autophagy in the Onset and Progression of Melanoma: Novel Therapeutic Targets and Opportunities. Int J Mol Sci 2019; 20:ijms20143436. [PMID: 31336922 PMCID: PMC6678284 DOI: 10.3390/ijms20143436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a malignant tumor deriving from neoplastic transformation of melanocytes. The incidence of melanoma has increased dramatically over the last 50 years. It accounts for most cases of skin cancer deaths. Early diagnosis leads to remission in 90% of cases of melanoma; conversely, for melanoma at more advanced stages, prognosis becomes more unfavorable also because dvanced melanoma is often resistant to pharmacological and radiological therapies due to genetic plasticity, presence of cancer stem cells that regenerate the tumor, and efficient elimination of drugs. This review illustrates the role of autophagy in tumor progression and resistance to therapy, focusing on molecular targets for future drugs.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Veronica La Rocca
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Rachele Amato
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy.
- Virology Unit, Pisa University Hospital, 56127 Pisa, Italy.
| |
Collapse
|
15
|
Awad D, Prattes M, Kofler L, Rössler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H. Inhibiting eukaryotic ribosome biogenesis. BMC Biol 2019; 17:46. [PMID: 31182083 PMCID: PMC6558755 DOI: 10.1186/s12915-019-0664-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.
Collapse
Affiliation(s)
- Dominik Awad
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
- Present address: Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Melanie Pertl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010, Graz, Austria.
| |
Collapse
|
16
|
Dementiev A, Joachimiak A, Nguyen H, Gorelik A, Illes K, Shabani S, Gelsomino M, Ahn EYE, Nagar B, Doan N. Molecular Mechanism of Inhibition of Acid Ceramidase by Carmofur. J Med Chem 2018; 62:987-992. [PMID: 30525581 DOI: 10.1021/acs.jmedchem.8b01723] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human acid ceramidase (AC) is a lysosomal cysteine amidase, which has received a great deal of interest in recent years as a potential target for the development of new therapeutics against melanoma and glioblastoma tumors. Despite the strong interest in obtaining structural information, only the structures of the apo-AC enzyme in its zymogen and activated conformations are available. In this work, the crystal structure of AC in complex with the covalent carmofur inhibitor is presented. Carmofur is an antineoplastic drug containing an electrophilic carbonyl reactive group that targets the catalytic cysteine. This novel structural data explains the basis of the AC inhibition, provides insights into the enzymatic properties of the protein, and is a great aid toward the structure-based drug design of potent inhibitors for AC, providing the detailed mechanism, which has eluded the scientific community for more than 30 years, of carmofur's mysterious 5-fluorouracil-independent antitumor activity.
Collapse
Affiliation(s)
- Alexey Dementiev
- Structural Biology Center, Biosciences Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Ha Nguyen
- California Institute of Neuroscience , Thousand Oaks , California 91360 , United States.,National Skull Base Center , Thousand Oaks , California 91360 , United States
| | - Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines , McGill University , Montreal , Quebec H3G 0B1 , Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines , McGill University , Montreal , Quebec H3G 0B1 , Canada
| | - Saman Shabani
- Department of Neurosurgery , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Michael Gelsomino
- Department of Neurosurgery , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Eun-Young Erin Ahn
- Department of Neurosurgery, Mitchell Cancer Institute , University of South Alabama , Mobile , Alabama 36617 United States
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines , McGill University , Montreal , Quebec H3G 0B1 , Canada
| | - Ninh Doan
- Department of Neurosurgery, Mitchell Cancer Institute , University of South Alabama , Mobile , Alabama 36617 United States
| |
Collapse
|
17
|
Irradiation of pediatric glioblastoma cells promotes radioresistance and enhances glioma malignancy via genome-wide transcriptome changes. Oncotarget 2018; 9:34122-34131. [PMID: 30344926 PMCID: PMC6183347 DOI: 10.18632/oncotarget.26137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023] Open
Abstract
Pediatric glioblastoma (GBM) is a relatively rare brain tumor in children that has a dismal prognosis. Surgery followed by radiotherapy is the main treatment protocol used for older patients. The benefit of adjuvant chemotherapy is still limited due to a poor understanding of the underlying molecular and genetic changes that occur with irradiation of the tumor. In this study, we performed total RNA sequencing on an established stable radioresistant pediatric GBM cell line to identify mRNA expression changes following radiation. The expression of many genes was altered in the radioresistant pediatric GBM model. These genes have never before been reported to be associated with the development of radioresistant GBM. In addition to exhibiting an accelerated growth rate, radioresistant GBM cells also have overexpression of the DNA synthesis-rate-limiting enzyme ribonucleotide reductase, and pro-cathepsin B. These newly identified genes should be concertedly studied to better understand their role in pediatric GBM recurrence and progression after radiation. It was observed that the changes in multiple biological pathways protected GBM cells against radiation and transformed them to a more malignant form. These changes emphasize the importance of developing a treatment regimen that consists of a multiple-agent cocktail that acts on multiple implicated pathways to effectively target irradiated pediatric GBM. An alternative to radiation or a novel therapy that targets differentially expressed genes, such as metalloproteases, growth factors, and oncogenes and aim to minimize oncogenic changes following radiation is necessary to improve recurrent GBM survival.
Collapse
|
18
|
Nguyen HS, Shabani S, Awad AJ, Kaushal M, Doan N. Molecular Markers of Therapy-Resistant Glioblastoma and Potential Strategy to Combat Resistance. Int J Mol Sci 2018; 19:ijms19061765. [PMID: 29899215 PMCID: PMC6032212 DOI: 10.3390/ijms19061765] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system. With its overall dismal prognosis (the median survival is 14 months), GBMs demonstrate a resounding resilience against all current treatment modalities. The absence of a major progress in the treatment of GBM maybe a result of our poor understanding of both GBM tumor biology and the mechanisms underlying the acquirement of treatment resistance in recurrent GBMs. A comprehensive understanding of these markers is mandatory for the development of treatments against therapy-resistant GBMs. This review also provides an overview of a novel marker called acid ceramidase and its implication in the development of radioresistant GBMs. Multiple signaling pathways were found altered in radioresistant GBMs. Given these global alterations of multiple signaling pathways found in radioresistant GBMs, an effective treatment for radioresistant GBMs may require a cocktail containing multiple agents targeting multiple cancer-inducing pathways in order to have a chance to make a substantial impact on improving the overall GBM survival.
Collapse
Affiliation(s)
- Ha S Nguyen
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Faculty of Neurosurgery, California Institute of Neuroscience, Thousand Oaks, CA 91360, USA.
| | - Saman Shabani
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ahmed J Awad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 11941, Palestine.
| | - Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ninh Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Neurosurgery, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|