1
|
Poudel I, Mita N, Babu RJ. 3D printed dosage forms, where are we headed? Expert Opin Drug Deliv 2024; 21:1595-1614. [PMID: 38993098 DOI: 10.1080/17425247.2024.2379943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Wojtyłko M, Lamprou DA, Froelich A, Kuczko W, Wichniarek R, Osmałek T. 3D-printed solid oral dosage forms for mental and neurological disorders: recent advances and future perspectives. Expert Opin Drug Deliv 2024; 21:1523-1541. [PMID: 38078427 DOI: 10.1080/17425247.2023.2292692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 11/10/2024]
Abstract
INTRODUCTION 3D printing (3DP) applications in medicine are intensively investigated, creating an opportunity to provide patient-tailored therapy by delivering a drug with an accurate dose and release profile. Moving away from the 'one size fits all' paradigm, it could be beneficial for treating mental and neurological disorders, improving the efficiency and safety of the therapy. The aim of this critical review is to assess recent advances and identify gaps regarding 3DP in this important and challenging field, by focusing on recent research examples. AREAS COVERED Applications of the 3DP techniques for solid dosage forms in mental and neurological disorders have been covered and discussed, together with recent advantages, limitations, and future directions. EXPERT OPINION The personalize treatment, which is considered as the most significant advantage of the 3DP technique, can be beneficial in mental and neurological disorders therapy, where the dose should be adjusted to the patient. Printing of medicines enables creating the structure modifications and thus controlling the drug release or combining multiple drugs into one tablet, simplifying the dose regimen. Medications printed on-demand, in health-care facilities, could address the special needs of pediatric patients and help avoid interruptions in the supply chain. Despite promising advances, the described methods have limitations and need further investigation before being scaled-up to an industrial manufacturing environment. There is also a need to establish protocols for the preparation and registration of 3DP dosage forms.
Collapse
Affiliation(s)
- Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wiesław Kuczko
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Radosław Wichniarek
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Tonk M, Gupta V, Dhwaj A, Sachdeva M. Current developments and advancements of 3-dimensional printing in personalized medication and drug screening. Drug Metab Pers Ther 2024:dmdi-2024-0024. [PMID: 39331538 DOI: 10.1515/dmpt-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVES 3-Dimensional printing (3DP) is an additive manufacturing (AM) technique that is expanding quickly because of its low cost and excellent efficiency. The 3D printing industry grew by 19.5 % in 2021 in spite of the COVID-19 epidemic, and by 2026, the worldwide market is expected to be valued up to 37.2 billion US dollars. CONTENT Science Direct, Scopus, MEDLINE, EMBASE, PubMed, DOAJ, and other academic databases provide evidence of the increased interest in 3DP technology and innovative drug delivery approaches in recent times. SUMMARY In this review four main 3DP technologies that are appropriate for pharmaceutical applications: extrusion-based, powder-based, liquid-based, and sheet lamination-based systems are discussed. This study is focused on certain 3DP technologies that may be used to create dosage forms, pharmaceutical goods, and other items with broad regulatory acceptance and technological viability for use in commercial manufacturing. It also discusses pharmaceutical applications of 3DP in drug delivery and drug screening. OUTLOOK The pharmaceutical sector has seen the prospect of 3D printing in risk assessment, medical personalisation, and the manufacture of complicated dose formulas at a reasonable cost. AM has great promise to revolutionise the manufacturing and use of medicines, especially in the field of personalized medicine. The need to understand more about the potential applications of 3DP in medical and pharmacological contexts has grown over time.
Collapse
Affiliation(s)
- Megha Tonk
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| | - Vishal Gupta
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| | | | - Monika Sachdeva
- Raj Kumar Goel Institute of Technology (Pharmacy), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024; 16:1285. [PMID: 39458614 PMCID: PMC11510916 DOI: 10.3390/pharmaceutics16101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pharmacy profession has undergone significant changes driven by advancements in patient care and healthcare systems. The FDA approval of Spritam® (levetiracetam), the first 3D-printed drug, has sparked increased interest in the use of Fused Deposition Modeling (FDM) 3D printing for pharmaceutical applications, particularly in the production of polypills. METHODS This review provides an overview of FDM 3D printing in the development of pharmaceutical dosage forms, focusing on its operation, printing parameters, materials, additives, advantages, and limitations. Key aspects, such as the ability to personalize medication and the challenges associated with the technique, including drug stability at high temperatures, are discussed. RESULTS Fourteen studies relevant to FDM 3D-printed polypills were analyzed from an initial pool of 60. The increasing number of publications highlights the growing global interest in this technology, with the UK contributing the highest number of studies. CONCLUSIONS FDM 3D printing offers significant potential for personalized medicine by enabling precise control over dosage forms and tailoring treatments to individual patient needs. However, limitations such as high printing temperatures and the lack of standardized GMP guidelines for large-scale production must be addressed to fully realize its potential in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Haya Yasin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moawia M. A. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
5
|
Protopapa C, Siamidi A, Junqueira LA, Kolipaka S, Tabriz AG, Douroumis D, Vlachou M. Sustained release of 3D printed bupropion hydrochloride tablets bearing Braille imprints for the visually impaired. Int J Pharm 2024; 663:124594. [PMID: 39154920 DOI: 10.1016/j.ijpharm.2024.124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
3D printing has been introduced as a novel approach for the design of personalized dosage forms and support patient groups with special needs that require additional assistance for enhanced medication adherence. In this study liquid crystal display (LCD) is introduced for the development of sustained release bupropion.HCl printed tablets. The optimization of printing hydrogel inks was combined with the display of Braille patterns on the tablet surface for blind or visually impaired patients. Due to the high printing accuracy, the Braille patterns could be verified by blind patients and provide the required information. Further characterization revealed the presence of BUP in amorphous state within the photopolymerized resins. The selection of poly(ethylene glycol) (PEG)-diacrylate (PEGDA) of different molecular weights and the presence of surfactants or solubilizers disrupted the resin photopolymerization, thus controlling the BUP dissolution rates. A small batch scale-up study demonstrated the capacity of LCD to print rapidly a notable number of tablets within 24 min.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece
| | - Angeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece
| | | | - Siva Kolipaka
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham Maritime, Chatham ME4 4TB, UK
| | | | - Dennis Douroumis
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham Maritime, Chatham ME4 4TB, UK; Delta Pharmaceutics Ltd., 1- 3 Manor Road, Chatham, ME4 6AE Kent, UK.
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| |
Collapse
|
6
|
Tegegne AM, Ayenew KD, Selam MN. Review on Recent Advance of 3DP-Based Pediatric Drug Formulations. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4875984. [PMID: 39364267 PMCID: PMC11449557 DOI: 10.1155/2024/4875984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/14/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a game-changing technology in the pharmaceutical industry, providing novel formulation development in the pharmaceutical sector as a whole, which improved patients' individualized therapy. The pediatric population is among the key targets for individualized therapy. Children are a diverse group that includes neonates, infants, and toddlers, each with unique physiological characteristics. Treatment adherence has a significant impact on safe and effective pharmacotherapy in the pediatric population. Improvement of therapeutic dosage forms that provide for the special demands of the pediatric population is a significant challenge for the pharmaceutical industry. Scientists have actively explored 3DP, a quick prototype manufacturing method that has emerged in recent years from many occupations due to its benefits of modest operation, excellent reproducibility, and vast adaptability. This review illuminates the most widely used 3DP technology and its application in the development of pediatric-friendly drug formulations. This 3DP technology allows optimization of pediatric dosage regimens and cases that require individualized treatment, such as geriatrics, renal impairment, liver impairment, critically ill, pregnancy populations, and drugs with nonlinear pharmacokinetics. The fast evolution of 3DP expertise, in addition to the introduction of pharmaceutical inks, has enormous promise for patient dosage form customization.
Collapse
Affiliation(s)
- Aychew Mekuriaw Tegegne
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Kassahun Dires Ayenew
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Muluken Nigatu Selam
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Ahmed M, Tomlin S, Tuleu C, Garfield S. Real-World Evidence of 3D Printing of Personalised Paediatric Medicines and Evaluating Its Potential in Children with Cancer: A Scoping Review. Pharmaceutics 2024; 16:1212. [PMID: 39339248 PMCID: PMC11434924 DOI: 10.3390/pharmaceutics16091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna Briggs Institute (JBI) methodology, a comprehensive search strategy was implemented to identify the relevant literature across databases including PubMed, Embase, and Web of Science. Three independent reviewers conducted study selection and data extraction, focusing on studies involving paediatric patients under 18 years old and pharmaceutical dosage forms manufactured using 3D printing technology. From 2752 records screened, only six studies met the inclusion criteria, none of which specifically targeted paediatric cancer patients. These studies examined aspects of acceptability, including swallowability, taste, and feasibility of 3D-printed formulations for children. While the studies demonstrated the potential benefits of 3D printing in paediatric medication, particularly in personalised dosing, there is a notable lack of evidence addressing its acceptability in paediatric cancer patients. Further interdisciplinary collaborative research is needed in this area to fully assess preferences and acceptability among children with cancer and their parents or caregivers.
Collapse
Affiliation(s)
- Munsur Ahmed
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Stephen Tomlin
- Children's Medicine Research & Innovation Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Catherine Tuleu
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Sara Garfield
- School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
8
|
Wang L, Yong LX, Loo SCJ. Utilizing Food Waste in 3D-Printed PLA Formulations to Achieve Sustainable and Customizable Controlled Delivery Systems. ACS OMEGA 2024; 9:34140-34150. [PMID: 39130598 PMCID: PMC11307293 DOI: 10.1021/acsomega.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
This is the first study that explores blending polylactic acid (PLA) with various biomasses, including food wastes-brewer's spent grain (BSG), spent coffee grounds (SCG), sesame cake (SC), and thermoplastic starch (TPS) biomass to create composite gastric floating drug delivery systems (GFDDS) through 3D printing. The aim is to investigate the influence of biomass percentage, biomass type, and printing parameters on their corresponding drug release profiles. 3D-printed (3DP) composite filaments were prepared by blending biomasses and PLA before in vitro drug release studies were performed using hydrophilic and hydrophobic model drugs, metoprolol tartrate (MT), and risperidone (RIS). The data revealed that release profiles were influenced by composite compositions and wall thicknesses of 3DP GFDDS capsules. Up to 15% of food waste could be blended with PLA for all food waste types tested. Delivery studies for PLA-food wastes found that MT was fully released by 4 h, exhibiting burst release profiles after a lag time of 0.5 to 1.5 h, and RIS could achieve a sustained release profile of approximately 48 h. PLA-TPS was utilized as a comparison and demonstrated variable release profiles ranging from 8 to 120 h, depending on the TPS content. The results demonstrated the potential for adjusting drug release profiles by incorporating affordable biomasses into GFDDS. This study presents a promising direction for creating delivery systems that are sustainable, customizable, and cost-effective, utilizing sustainable materials that can also be employed for agricultural, nutraceutical, personal care, and wastewater treatment applications.
Collapse
Affiliation(s)
- Liwen Wang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ling Xin Yong
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang
Drive, 636921 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
9
|
Graça A, Bom S, Martins AM, Ribeiro HM, Marto J. Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications. Asian J Pharm Sci 2024; 19:100940. [PMID: 39253612 PMCID: PMC11381591 DOI: 10.1016/j.ajps.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 09/11/2024] Open
Abstract
Three-dimensional (3D) printing is an innovative manufacturing method with the potential to revolutionize topical and transdermal dosage forms. Nowadays, it is established that Vat-based photopolymerization (VP) 3D printing technologies offer superior printing efficiency and versatility compared to other 3D printing technologies available on the market. However, there are some limitations that impair their full application in pharmaceutical contexts, such as the lack of a range of biocompatible materials for topical and transdermal applications. This review article explores all types of VP-based 3D printing and discusses the relevance of implementing this kind of technology. We start with a detailed description of the printing process, focusing on the commercial materials available and lab-made resins proposed by different authors. We also review recent studies in this field, which mainly focus on the fabrication of transdermal devices based on microneedle arrays. In the future, it is expected that the manufacturers of 3D printers invest in modifications to the printing apparatus to allow the simultaneous printing of different resins and/or compound types, which will open frontiers to the personalization of treatment approaches.
Collapse
Affiliation(s)
- Angélica Graça
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bom
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Helena M Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Protopapa C, Siamidi A, Sakellaropoulou A, Kolipaka S, Junqueira LA, Tabriz AG, Douroumis D, Vlachou M. 3D-Printed Melatonin Tablets with Braille Motifs for the Visually Impaired. Pharmaceuticals (Basel) 2024; 17:1017. [PMID: 39204122 PMCID: PMC11357011 DOI: 10.3390/ph17081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
An innovative approach for creating customized dosage forms and supporting patient populations with specific requirements who need additional support to improve drug adherence is 3D printing. This work introduces liquid crystal display (LCD) 3D printing as a means of developing melatonin (MLT) tablets. For patients who are blind or visually challenged, Braille patterns were displayed on the tablet surface in addition to the optimization of printing hydrogel inks. Owing to the great printing accuracy, blind patients could validate the Braille patterns that provided the required information. Upon further examination MLT was found to be present in the photopolymerized resins in an amorphous state. The choice of poly(ethylene glycol)-diacrylate (PEGDA) with varying molecular weights and the inclusion of surfactants or solubilizers interfered with the photopolymerization of the resin, hence controlling the rates of MLT dissolution towards the sought sustained release. Nuclear magnetic resonance (NMR) analysis showed that photopolymerization of the PEGDA resins in the printed dosage forms has taken place. A small batch scale-up investigation showed that LCDs could print a significant number of tablets quickly-about twenty-four minutes.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.P.); (A.S.)
| | - Angeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.P.); (A.S.)
| | - Aikaterini Sakellaropoulou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Siva Kolipaka
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham ME4 4TB, UK; (S.K.); (L.A.J.)
| | - Laura Andrade Junqueira
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham ME4 4TB, UK; (S.K.); (L.A.J.)
| | | | - Dennis Douroumis
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham ME4 4TB, UK; (S.K.); (L.A.J.)
- Delta Pharmaceutics Ltd., 1-3 Manor Road, Chatham ME4 6AE, UK
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.P.); (A.S.)
| |
Collapse
|
11
|
Mehta T, Aziz H, Sen K, Chang SY, Nagarajan V, Ma AWK, Chaudhuri B. Numerical study of drop dynamics for inkjet based 3D printing of pharmaceutical tablets. Int J Pharm 2024; 656:124037. [PMID: 38522489 DOI: 10.1016/j.ijpharm.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Interest in 3D printing has been growing rapidly especially in pharmaceutical industry due to its multiple advantages such as manufacturing versatility, personalization of medicine, scalability, and cost effectiveness. Inkjet based 3D printing gained special attention after FDA's approval of Spritam® manufactured by Aprecia pharmaceuticals in 2015. The precision and printing efficiency of 3D printing is strongly influenced by the dynamics of ink/binder jetting, which further depends on the ink's fluid properties. In this study, Computational Fluid Dynamics (CFD) has been utilized to study the drop formation process during inkjet-based 3D printing for piezoelectric and thermal printhead geometries using Volume of Fluid (VOF) method. To develop the CFD model commercial software ANSYS-Fluent was used. The developed CFD model was experimentally validated using drop watcher setup to record drop progression and drop velocity. During the study, water, Fujifilm model fluid, and Amitriptyline drug solutions were evaluated as the ink solutions. The drop properties such as drop volume, drop diameter, and drop velocity were examined in detail in response to change ink solution properties such as surface tension, viscosity, and density. A good agreement was observed between the experimental and simulation data for drop properties such as drop volume and drop velocity.
Collapse
Affiliation(s)
- Tanu Mehta
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Hossain Aziz
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Koyel Sen
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Shing-Yun Chang
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA
| | | | - Anson W K Ma
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA.
| |
Collapse
|
12
|
Zgouro P, Katsamenis OL, Moschakis T, Eleftheriadis GK, Kyriakidis AS, Chachlioutaki K, Kyriaki Monou P, Ntorkou M, Zacharis CK, Bouropoulos N, Fatouros DG, Karavasili C, Gioumouxouzis CI. A floating 3D printed polypill formulation for the coadministration and sustained release of antihypertensive drugs. Int J Pharm 2024; 655:124058. [PMID: 38552754 DOI: 10.1016/j.ijpharm.2024.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release. The dosage forms (polypills) containing three anti-hypertensive API's (diltiazem (DIL), propranolol (PRP) and hydrochlorothiazide (HCTZ)) were created via Fused Deposition Modelling 3D printing. A multitude of the dosage forms were loaded into a capsule and the resulting formulation achieved prolonged retention times over a 12-hour period in vitro, by leveraging both the buoyancy of the dosage forms, and the "cheerios effect" that facilitates the aggregation and retention of the dosage forms via a combination of surface tension and shape of the objects. Physicochemical characterization methods and imaging techniques were employed to investigate the properties and the internal and external structure of the dosage forms. Furthermore, an ex vivo porcine stomach model revealed substantial aggregation, adhesion and retention of the 3D printed dosage forms in porcine stomach. In vitro dissolution testing demonstrated almost complete first-order release of PRP and DIL (93.52 % and 99.9 %, respectively) and partial release of HCTZ (65.22 %) in the 12 h timeframe. Finally, a convolution-based single-stage approach was employed in order to predict the pharmacokinetic (PK) parameters of the API's of the formulation and the resemblance of their PK behavior with previously reported data.
Collapse
Affiliation(s)
- Paola Zgouro
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Orestis L Katsamenis
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Georgios K Eleftheriadis
- Pharmacare Premium Limited, R&D Department, HHF003 Hal Far Industrial Estate, Birzebbugia BBG3000, Malta
| | - Athanasios S Kyriakidis
- Pharmacare Premium Limited, R&D Department, HHF003 Hal Far Industrial Estate, Birzebbugia BBG3000, Malta
| | - Konstantina Chachlioutaki
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Marianna Ntorkou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science,University of Patras, 26504 Rio, Patras,Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Christos I Gioumouxouzis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
13
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
14
|
Liu X, Gao J, Liu J, Cheng J, Han Z, Li Z, Chang Z, Zhang L, Li M, Tang P. Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2581-2594. [PMID: 38489227 DOI: 10.1021/acsbiomaterials.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The treatment of bone tissue defects continues to be a complex medical issue. Recently, three-dimensional (3D)-printed scaffold technology for bone tissue engineering (BTE) has emerged as an important therapeutic approach for bone defect repair. Despite the potential of BTE scaffolds to contribute to long-term bone reconstruction, there are certain challenges associated with it including the impediment of bone growth within the scaffolds and vascular infiltration. These difficulties can be resolved by using scaffold structural modification strategies that can effectively guide bone regeneration. This study involved the preparation of biphasic calcium phosphate spherical hollow structural scaffolds (SHSS) with varying pore sizes using 3D printing (photopolymerized via digital light processing). The chemical compositions, microscopic morphologies, mechanical properties, biocompatibilities, osteogenic properties, and impact on repairing critical-sized bone defects of SHSS were assessed through characterization analyses, in vitro cytological assays, and in vivo biological experiments. The results revealed the biomimetic properties of SHSS and their favorable biocompatibility. The scaffolds stimulated cell adhesion, proliferation, differentiation, and migration and facilitated the expression of osteogenic genes and proteins, including Col-1, OCN, and OPN. Furthermore, they could effectively repair a critical-sized bone defect in a rabbit femoral condyle by establishing an osteogenic platform and guiding bone regeneration in the defect region. This innovative strategy presents a novel therapeutic approach for assessing critical-sized bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhenchuan Han
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zijian Li
- Medical School of Chinese PLA, Beijing 100853, China
| | | | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
15
|
Abdella S, Kim S, Afinjuomo F, Song Y, Upton R, Garg S. Combining the potential of 3D printed buccal films and nanostructured lipid carriers for personalised cannabidiol delivery. Drug Deliv Transl Res 2024; 14:984-1004. [PMID: 37903964 DOI: 10.1007/s13346-023-01446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Cannabidiol (CBD) has been recognized for its numerous therapeutic benefits, such as neuroprotection, anti-inflammatory effects, and cardioprotection. However, CBD has some limitations, including unpredictable pharmacokinetics and low oral bioavailability. To overcome the challenges associated with CBD delivery, we employed Design of Experiments (DoE), lipid carriers, and 3D printing techniques to optimize and develop buccal film loaded with CBD-NLCs. Three-factor Box-Behnken Design was carried out to optimise the NLCs and analyse the effect of independent factors on dependent factors. The emulsification-ultrasonication technique was used to prepare the NLCs. A pressure-assisted micro-syringe printing technique was used to produce the films. The produced films were studied for physicochemical, and mechanical properties, release profiles, and predicted in vivo performance. The observed particle size of the NLCs ranged from 12.17 to 84.91 nm whereas the PDI varied from 0.099 to 0.298. Lipid and sonication time positively affected the particle size whereas the surfactant concentration was inversely related. CBD was incorporated into the optimal formulation and the observed particle size, PDI, and zeta potential for the CBD-NLCs were 94.2 ± 0.47 nm, 0.11 ± 0.01 and - 11.8 ± 0.52 mV. Hydroxyethyl cellulose (HEC)-based gel containing the CBD-NLCs was prepared and used as a feed for 3D printing. The CBD-NLCs film demonstrated a slow and sustained in vitro release profile (84. 11 ± 7.02% in 6 h). The predicted AUC0-10 h, Cmax, and Tmax were 201.5 µg·h/L, 0.74 µg/L, and 1.28 h for a film with 0.4 mg of CBD, respectively. The finding demonstrates that a buccal film of CBD-NLCs can be fabricated using 3D printing.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Richard Upton
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
16
|
Curti C, Kirby DJ, Russell CA. Systematic screening of photopolymer resins for stereolithography (SLA) 3D printing of solid oral dosage forms: Investigation of formulation factors on printability outcomes. Int J Pharm 2024; 653:123862. [PMID: 38307399 DOI: 10.1016/j.ijpharm.2024.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Pharmaceutical three-dimensional printing (3DP) is now in its golden age. Recent years have seen a dramatic increase in the research in 3D printed pharmaceuticals due to their potential to deliver highly personalised medicines, thus revolutionising the way medicines are designed, manufactured, and dispensed. A particularly attractive 3DP technology used to manufacture medicines is stereolithography (SLA), which features key advantages in terms of printing resolution and compatibility with thermolabile drugs. Nevertheless, the enthusiasm for pharmaceutical SLA has not been followed by the introduction of novel excipients specifically designed for the fabrication of medicines; hence, the choice of biocompatible polymers and photoinitiators available is limited. This work provides an insight on how to maximise the usefulness of the limited materials available by evaluating how different formulation factors affect printability outcomes of SLA 3D printed medicines. 156 photopolymer formulations were systematically screened to evaluate the influence of factors including photoinitiator amount, photopolymer molecular size, and type and amount of liquid filler on the printability outcomes. Collectively, these factors were found highly influential in modulating the print quality of the final dosage forms. Findings provide enhanced understanding of formulation parameters informing the future of SLA 3D printed medicines and the personalised medicines revolution.
Collapse
Affiliation(s)
- Carlo Curti
- School of Pharmacy, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Daniel J Kirby
- School of Pharmacy, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Craig A Russell
- School of Pharmacy, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
17
|
Ebrahimi F, Xu H, Fuenmayor E, Major I. Tailoring drug release in bilayer tablets through droplet deposition modeling and injection molding. Int J Pharm 2024; 653:123859. [PMID: 38307401 DOI: 10.1016/j.ijpharm.2024.123859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
This study explores the innovative production of personalized bilayer tablets, integrating two advanced manufacturing techniques: Droplet Deposition Modeling (DDM) and Injection Molding (IM). Unlike traditional methods limited to customizing dense bilayer medicines, our approach uses Additive Manufacturing (AM) to effectively adjust drug release profiles. Focusing on Caffeine and Paracetamol, we found successful processing for both DDM and IM using Caffeine formulation. The high viscosity of Paracetamol formulation posed challenges during DDM processing. Integrating Paracetamol formulation for the over-molding process proved effective, demonstrating IM's versatility in handling complex formulations. Varying infill percentages in DDM tablets led to distinct porosities affecting diverse drug release profiles in DDM-fabricated tablets. In contrast, tablets with high-density structures formed through the over-molding process displayed slower and more uniform release patterns. Combining DDM and IM techniques allows for overcoming the inherent limitations of each technique independently, enabling the production of bilayer tablets with customizable drug release profiles. The study's results offer promising insights into the future of personalized medicine, suggesting new pathways for the development of customized oral dosage forms.
Collapse
Affiliation(s)
- Farnoosh Ebrahimi
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Han Xu
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Evert Fuenmayor
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland.
| |
Collapse
|
18
|
Milliken RL, Quinten T, Andersen SK, Lamprou DA. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int J Pharm 2024; 653:123902. [PMID: 38360287 DOI: 10.1016/j.ijpharm.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.
Collapse
Affiliation(s)
- Rachel L Milliken
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Quinten
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sune K Andersen
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
Chan AKC, Ranjitham Gopalakrishnan N, Traore YL, Ho EA. Formulating biopharmaceuticals using three-dimensional printing. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12797. [PMID: 38558867 PMCID: PMC10979422 DOI: 10.3389/jpps.2024.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Additive manufacturing, commonly referred to as three-dimensional (3D) printing, has the potential to initiate a paradigm shift in the field of medicine and drug delivery. Ever since the advent of the first-ever United States Food and Drug Administration (US FDA)-approved 3D printed tablet, there has been an increased interest in the application of this technology in drug delivery and biomedical applications. 3D printing brings us one step closer to personalized medicine, hence rendering the "one size fits all" concept in drug dosing obsolete. In this review article, we focus on the recent developments in the field of modified drug delivery systems in which various types of additive manufacturing technologies are applied.
Collapse
Affiliation(s)
- Alistair K. C. Chan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Nehil Ranjitham Gopalakrishnan
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Yannick Leandre Traore
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Emmanuel A. Ho
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
- Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| |
Collapse
|
20
|
Pan S, Ding S, Zhou X, Zheng N, Zheng M, Wang J, Yang Q, Yang G. 3D-printed dosage forms for oral administration: a review. Drug Deliv Transl Res 2024; 14:312-328. [PMID: 37620647 DOI: 10.1007/s13346-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Oral administration is the most commonly used form of treatment due to its advantages, including high patient compliance, convenient administration, and minimal preparation required. However, the traditional preparation process of oral solid preparation has many defects. Although continuous manufacturing line that combined all the unit operations has been developed and preliminarily applied in the pharmaceutical industry, most of the currently used manufacturing processes are still complicated and discontinuous. As a result, these complex production steps will lead to low production efficiency and high quality control risk of the final product. Additionally, the large-scale production mode is inappropriate for the personalized medicines, which commonly is customized with small amount. Several attractive techniques, such as hot-melt extrusion, fluidized bed pelletizing and spray drying, could effectively shorten the process flow, but still, they have inherent limitations that are challenging to address. As a novel manufacturing technique, 3D printing could greatly reduce or eliminate these disadvantages mentioned above, and could realize a desirable continuous production for small-scale personalized manufacturing. In recent years, due to the participation of 3D printing, the development of printed drugs has progressed by leaps and bounds, especially in the design of oral drug dosage forms. This review attempts to summarize the new development of 3D printing technology in oral preparation and also discusses their advantages and disadvantages as well as potential applications.
Collapse
Affiliation(s)
- Siying Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zheng
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Juan Wang
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| |
Collapse
|
21
|
Kocabas LI, Ayyoubi S, Tajqurishi M, Quodbach J, Vermonden T, Kok RJ. 3D-printed prednisolone phosphate suppositories with tunable dose and rapid release for the treatment of inflammatory bowel disease. Int J Pharm 2024; 649:123639. [PMID: 38042381 DOI: 10.1016/j.ijpharm.2023.123639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Established medicines are often not tailored to the needs of the pediatric population, causing difficulties with administration or dosing. Three-dimensional (3D) printing technology allows novel approaches for compounding of personalized medicine, as is exemplified in this study for the automated compounding of rectal preparations for children. We investigated the material requirements to print prednisolone phosphate-loaded suppositories with tunable dose and rapid drug release for the treatment of inflammatory bowel diseases. Three formulations containing 4 % w/w prednisolone sodium phosphate (PSP) and different amounts of hydroxypropyl cellulose (HPC) and mannitol as excipients were printed as suppositories with a fused deposition modeling (FDM) 3D-printer. Dissolution studies showed that the PSP release rate was increased when higher weight fractions of mannitol were added as a pore former, with 90 % drug release within 30 min for mannitol 48 % w/w. We further printed suppositories with 48 % mannitol with different infill densities and dimensions to tune the dose. Our findings demonstrated that 3D-printed suppositories with PSP doses ranging from 6 to 30 mg could be compounded without notably affecting the dissolution kinetics, ensuring equivalent therapeutic efficacies for different doses.
Collapse
Affiliation(s)
- L I Kocabas
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands.
| | - S Ayyoubi
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - M Tajqurishi
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - J Quodbach
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - T Vermonden
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| | - R J Kok
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CG, the Netherlands
| |
Collapse
|
22
|
Pitzanti G, Mohylyuk V, Corduas F, Byrne NM, Coulter JA, Lamprou DA. Urethane dimethacrylate-based photopolymerizable resins for stereolithography 3D printing: A physicochemical characterisation and biocompatibility evaluation. Drug Deliv Transl Res 2024; 14:177-190. [PMID: 37454029 PMCID: PMC10746761 DOI: 10.1007/s13346-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Vat photopolymerisation (VP) three-dimensional printing (3DP) has attracted great attention in many different fields, such as electronics, pharmaceuticals, biomedical devices and tissue engineering. Due to the low availability of biocompatible photocurable resins, its application in the healthcare sector is still limited. In this work, we formulate photocurable resins based on urethane dimethacrylate (UDMA) combined with three different difunctional methacrylic diluents named ethylene glycol dimethacrylate (EGDMA), di(ethylene glycol) dimethacrylate (DEGDMA) or tri(ethylene glycol) dimethacrylate (TEGDMA). The resins were tested for viscosity, thermal behaviour and printability. After printing, the 3D printed specimens were measured with a digital calliper in order to investigate their accuracy to the digital model and tested with FT-IR, TGA and DSC. Their mechanical properties, contact angle, water sorption and biocompatibility were also evaluated. The photopolymerizable formulations investigated in this work achieved promising properties so as to be suitable for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Giulia Pitzanti
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, 21 Konsula Street, Riga, 1007, Latvia
| | - Francesca Corduas
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey, BT37 0QB, UK
| | - Niall M Byrne
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | |
Collapse
|
23
|
Stokes K, Clark K, Odetade D, Hardy M, Goldberg Oppenheimer P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. DISCOVER NANO 2023; 18:153. [PMID: 38082047 PMCID: PMC10713959 DOI: 10.1186/s11671-023-03938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.
Collapse
Affiliation(s)
- Kate Stokes
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kieran Clark
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Odetade
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mike Hardy
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
24
|
Utomo E, Domínguez-Robles J, Anjani QK, Picco CJ, Korelidou A, Magee E, Donnelly RF, Larrañeta E. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X 2023; 5:100142. [PMID: 36531743 PMCID: PMC9755236 DOI: 10.1016/j.ijpx.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is an abnormal condition caused by the change of microbiota in the vagina. One of the most common bacteria found in the case of BV is Gardnerella vaginalis, which is categorised as anaerobic facultative bacteria. Currently, the available treatment for BV is the use of antibiotics, such as metronidazole (MTZ), in topical and oral dosage forms. The limitation of the currently available treatment is that multiple administration is required and thus, the patient needs to apply the drug frequently to maintain the drug efficacy. To address these limitations, this research proposed prolonged delivery of MTZ in the form of intravaginal devices made from biodegradable and biocompatible polymers. Semi-solid extrusion (SSE) 3D printing was used to prepare the intravaginal devices. The ratio of high and low molecular weight poly(caprolactone) (PCL) was varied to evaluate the effect of polymer composition on the drug release. The versatility of SSE 3D printer was used to print the intravaginal devices into two different shapes (meshes and discs) and containing two different polymer layers made from PCL and a copolymer of methyl vinyl ether and maleic anhydride (Gantrez™-AN119), which provided mucoadhesive properties. Indeed, this layer made from Gantrez™-AN119 increased ca. 5 times the mucoadhesive properties of the final 3D-printed devices (from 0.52 to 2.57 N). Furthermore, MTZ was homogenously dispersed within the polymer matrix as evidenced by scanning electron microscopy analysis. Additionally, in vitro drug release, and antibacterial activity of the MTZ-loaded intravaginal devices were evaluated. Disc formulations were able to sustain the release of MTZ for 72 h for formulations containing 70/30 and 60/40 ratio of high molecular weight/low molecular weight PCL. On the other hand, the discs containing a 50/50 ratio of high molecular weight/low molecular weight PCL showed up to 9 days of release. However, no significant differences in the MTZ release from the MTZ-loaded meshes (60/40 and 50/50 ratio of high molecular weight/low molecular weight PCL) were found after 24 h. The results showed that the different ratios of high and low molecular weight PCL did not significantly affect the MTZ release. However, the shape of the devices did influence the release of MTZ, showing that larger surface area of the meshes provided a faster MTZ release. Moreover, MTZ loaded 3D-printed discs (5% w/w) were capable of inhibiting the growth of Gardnerella vaginalis. These materials showed clear antimicrobial properties, exhibiting a zone of inhibition of 19.0 ± 1.3 mm. Based on these findings, the manufactured represent a valuable alternative approach to the current available treatment, as they were able to provide sustained release of MTZ, reducing the frequency of administration and thus improving patient compliance.
Collapse
Affiliation(s)
| | | | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J. Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
25
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
26
|
Li H, E Alkahtani M, W Basit A, Elbadawi M, Gaisford S. Optimizing Environmental Sustainability in Pharmaceutical 3D Printing through Machine Learning. Int J Pharm 2023; 648:123561. [PMID: 39492436 DOI: 10.1016/j.ijpharm.2023.123561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
3D Printing (3DP) of pharmaceuticals could drastically transform the manufacturing of medicines and facilitate the widespread availability of personalised healthcare. However, with increasing awareness of the environmental damage of manufacturing, 3DP must be eco-friendly, especially when it comes to carbon emissions. This study investigated the environmental effects of pharmaceutical 3DP. Using Design of Experiments (DoE) and Machine Learning (ML), we looked at energy use in pharmaceutical Fused Deposition Modeling (FDM). From 136 experimental runs across four common dosage forms, we identified several key parameters that contributed to energy consumption, and consequently CO2 emission. These parameters, identified by both DoE and ML, were the number of objects printed, build plate temperature, nozzle temperature, and layer height. Our analysis revealed that minimizing trial-and-error by being more efficient in R&D and reducing the build plate temperature can significantly decrease CO2 emissions. Furthermore, we demonstrated that only the ML pipeline could accurately predict CO2 emissions, suggesting ML could be a powerful tool in in the development of more sustainable manufacturing processes. The models were validated experimentally on new dosage forms of varying geometric complexities and were found to maintain high accuracy across all three dosage forms. The study underscores the potential of merging sustainability and digitalization in the pharmaceutical sector, aligning with the principles of Industry 5.0. It highlights the comparable learning traits between DoE and ML, indicating a promising pathway for wider adoption of ML in pharmaceutical manufacturing. Through focused efforts to reduce wasteful practices and optimize printing parameters, we can pave the way for a more environmentally sustainable future in pharmaceutical 3DP.
Collapse
Affiliation(s)
- Hanxiang Li
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Manal E Alkahtani
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4DQ, UK.
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
27
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
28
|
Agarwal P, Arora G, Panwar A, Mathur V, Srinivasan V, Pandita D, Vasanthan KS. Diverse Applications of Three-Dimensional Printing in Biomedical Engineering: A Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1140-1163. [PMID: 37886418 PMCID: PMC10599440 DOI: 10.1089/3dp.2022.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A three-dimensional (3D) printing is a robotically controlled state-of-the-art technology that is promising for all branches of engineering with a meritorious emphasis to biomedical engineering. The purpose of 3D printing (3DP) is to create exact superstructures without any framework in a brief period with high reproducibility to create intricate and complex patient-tailored structures for organ regeneration, drug delivery, imaging processes, designing personalized dose-specific tablets, developing 3D models of organs to plan surgery and to understand the pathology of disease, manufacturing cost-effective surgical tools, and fabricating implants and organ substitute devices for prolonging the lives of patients, etc. The formulation of bioinks and programmed G codes help to obtain precise 3D structures, which determines the stability and functioning of the 3D-printed structures. Three-dimensional printing for medical applications is ambitious and challenging but made possible with the culmination of research expertise from various fields. Exploring and expanding 3DP for biomedical and clinical applications can be life-saving solutions. The 3D printers are cost-effective and eco-friendly, as they do not release any toxic pollutants or waste materials that pollute the environment. The sampling requirements and processing parameters are amenable, which further eases the production. This review highlights the role of 3D printers in the health care sector, focusing on their roles in tablet development, imaging techniques, disease model development, and tissue regeneration.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gargi Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
| | - Amit Panwar
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, Hong Kong
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Government of NCT of Delhi, New Delhi, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
29
|
Wyszogrodzka-Gaweł G, Shuklinova O, Lisowski B, Wiśniowska B, Polak S. 3D printing combined with biopredictive dissolution and PBPK/PD modeling optimization and personalization of pharmacotherapy: Are we there yet? Drug Discov Today 2023; 28:103731. [PMID: 37541422 DOI: 10.1016/j.drudis.2023.103731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Precision medicine requires selecting the appropriate dosage regimen for a patient using the right drug, at the right time. Model-Informed Precision Dosing (MIPD) is a concept suggesting utilization of model-based prediction methods for optimizing the treatment benefit-harm balance, based on individual characteristics of the patient, disease, treatment method, and other factors. Here, we discuss a theoretical workflow comprising several elements, beginning from the physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models, through 3D printed tablets with the model proposed dose, information range and flow, and the patient themselves. We also describe each of these elements, and the connection between them, highlighting challenges and potential obstacles.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka-Gaweł
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Olha Shuklinova
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy. Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bartek Lisowski
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy. Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Barbara Wiśniowska
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy. Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Sebastian Polak
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy. Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
30
|
Tabriz AG, Gonot-Munck Q, Baudoux A, Garg V, Farnish R, Katsamenis OL, Hui HW, Boersen N, Roberts S, Jones J, Douroumis D. 3D Printing of Personalised Carvedilol Tablets Using Selective Laser Sintering. Pharmaceutics 2023; 15:2230. [PMID: 37765199 PMCID: PMC10537056 DOI: 10.3390/pharmaceutics15092230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Selective laser sintering (SLS) has drawn attention for the fabrication of three-dimensional oral dosage forms due to the plurality of drug formulations that can be processed. The aim of this work was to employ SLS with a CO2 laser for the manufacturing of carvedilol personalised dosage forms of various strengths. Carvedilol (CVD) and vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64) blends of various ratios were sintered to produce CVD tablets of 3.125, 6.25, and 12.5 mg. The tuning of the SLS processing laser intensity parameter improved printability and impacted the tablet hardness, friability, CVD dissolution rate, and the total amount of drug released. Physicochemical characterization showed the presence of CVD in the amorphous state. X-ray micro-CT analysis demonstrated that the applied CO2 intensity affected the total tablet porosity, which was reduced with increased laser intensity. The study demonstrated that SLS is a suitable technology for the development of personalised medicines that meet the required specifications and patient needs.
Collapse
Affiliation(s)
- Atabak Ghanizadeh Tabriz
- Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK;
- CRI Centre for Research Innovation, University of Greenwich, Chatham ME4 4TB, UK
| | - Quentin Gonot-Munck
- Institute of Technology in Measurements and Instrumentation, University of Rouen, 76130 Mont Saint Aignan, France; (Q.G.-M.); (A.B.)
| | - Arnaud Baudoux
- Institute of Technology in Measurements and Instrumentation, University of Rouen, 76130 Mont Saint Aignan, France; (Q.G.-M.); (A.B.)
| | - Vivek Garg
- The Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering, Science University of Greenwich, Chatham ME4 4TB, UK; (V.G.); (R.F.)
| | - Richard Farnish
- The Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering, Science University of Greenwich, Chatham ME4 4TB, UK; (V.G.); (R.F.)
| | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Ho-Wah Hui
- Drug Product Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA; (H.-W.H.); (N.B.); (S.R.)
| | - Nathan Boersen
- Drug Product Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA; (H.-W.H.); (N.B.); (S.R.)
| | - Sandra Roberts
- Drug Product Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA; (H.-W.H.); (N.B.); (S.R.)
| | - John Jones
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK;
| | - Dennis Douroumis
- Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK;
- CRI Centre for Research Innovation, University of Greenwich, Chatham ME4 4TB, UK
| |
Collapse
|
31
|
Ong JJ, Chow YL, Gaisford S, Cook MT, Swift T, Telford R, Rimmer S, Qin Y, Mai Y, Goyanes A, Basit AW. Supramolecular chemistry enables vat photopolymerization 3D printing of novel water-soluble tablets. Int J Pharm 2023; 643:123286. [PMID: 37532009 DOI: 10.1016/j.ijpharm.2023.123286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Vat photopolymerization has garnered interest from pharmaceutical researchers for the fabrication of personalised medicines, especially for drugs that require high precision dosing or are heat labile. However, the 3D printed structures created thus far have been insoluble, limiting printable dosage forms to sustained-release systems or drug-eluting medical devices which do not require dissolution of the printed matrix. Resins that produce water-soluble structures will enable more versatile drug release profiles and expand potential applications. To achieve this, instead of employing cross-linking chemistry to fabricate matrices, supramolecular chemistry may be used to impart dynamic interaction between polymer chains. In this study, water-soluble drug-loaded printlets (3D printed tablets) are fabricated via digital light processing (DLP) 3DP for the first time. Six formulations with varying ratios of an electrolyte acrylate monomer, [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMAEA), and a co-monomer, 1-vinyl-2-pyrrolidone (NVP), were prepared to produce paracetamol-loaded printlets. 1H NMR spectroscopy analysis confirmed the integration of TMAEA and NVP in the polymer, and residual TMAEA monomers were found to be present only in trace amounts (0.71 - 1.37 %w/w). The apparent molecular mass of the photopolymerised polymer was found to exceed 300,000 Da with hydrodynamic radii of 15 - 20 nm, estimated based on 1H DOSY NMR measurements The loaded paracetamol was completely released from the printlets between 45 minutes to 5 hours. In vivo single-dose acute toxicity studies in rats suggest that the printlets did not cause any tissue damage. The findings reported in this study represent a significant step towards the adoption of vat photopolymerization-based 3DP to produce personalised medicines.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yee Lam Chow
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michael T Cook
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Swift
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Richard Telford
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Stephen Rimmer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Yujia Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
32
|
Krueger L, Cao Y, Zheng Z, Ward J, Miles JA, Popat A. 3D printing tablets for high-precision dose titration of caffeine. Int J Pharm 2023; 642:123132. [PMID: 37315638 DOI: 10.1016/j.ijpharm.2023.123132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Through 3D printing (3DP), many parameters of solid oral dosage forms can be customised, allowing for truly personalised medicine in a way that traditional pharmaceutical manufacturing would struggle to achieve. One of the many options for customisation involves dose titration, allowing for gradual weaning of a medication at dose intervals smaller than what is available commercially. In this study we demonstrate the high accuracy and precision of 3DP dose titration of caffeine, selected due to its global prevalence as a behavioural drug and well-known titration-dependent adverse reactions in humans. This was achieved using a simple filament base of polyvinyl alcohol, glycerol, and starch, utilising hot melt extrusion coupled with fused deposition modelling 3DP. Tablets containing 25 mg, 50 mg, and 100 mg doses of caffeine were successfully printed with drug content in the accepted range prescribed for conventional tablets (90 - 110%), and excellent precision whereby the weights of all doses showed a relative standard deviation of no more than 3%. Importantly, these results proved 3D printed tablets to be far superior to splitting a commercially available caffeine tablet. Additional assessment of filament and tablet samples were reviewed by differential scanning calorimetry, thermogravimetric analysis, HPLC, and scanning electron microscopy, showing no evidence of degradation of caffeine or the raw materials, with smooth and consistent filament extrusion. Upon dissolution, all tablets achieved greater than 70% release between 50 and 60 min, showing a predictable rapid release profile regardless of dose. The outcomes of this study highlight the benefits that dose titration with 3DP can offer, especially to more commonly prescribed medications that can have even more harmful withdrawal-induced adverse reactions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zheng Zheng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason Ward
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
33
|
Hisham M, Salih AE, Butt H. 3D Printing of Multimaterial Contact Lenses. ACS Biomater Sci Eng 2023; 9:4381-4391. [PMID: 37364228 PMCID: PMC10336843 DOI: 10.1021/acsbiomaterials.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
3D printing of multimaterial objects is an emerging field with promising applications. The layer-by-layer material addition technique used in 3D printing enables incorporation of distinct functionalized materials into the specialized devices. However, very few studies have been performed on the usage of multimaterial 3D printing for printable photonic and wearable devices. Here, we employ vat photopolymerization-based 3D printing to produce multimaterial contact lenses, offering enhanced multiband optical filtration, which can be valuable for tackling ocular conditions such as color blindness. A combination of hydroxyethyl methacrylate (HEMA) and polyethylene glycol diacrylate (PEGDA) was used as the base hydrogel for 3D printing. Atto565 and Atto488 dyes were added to the hydrogel for wavelength filtering, each dye suitable for a different type of color blindness. Multimaterial disks and contact lenses, with separate sections containing distinct dyes, were 3D-printed, and their optical properties were studied. The characteristics of multimaterial printing were analyzed, focusing on the formation of a uniform multimaterial interface. In addition, a novel technique was developed for printing multiple dyed materials in complex lateral geometrical patterns, by employing suitable variations in CAD models and the UV curing time. It was observed that the multimaterial printing process does not negatively affect the optical properties of the contact lenses. The printed multimaterial contact lenses offered a combined multi-band color blindness correction due to the two dyes used. The resulting optical spectrum was a close match to the commercially available color blindness correction glasses.
Collapse
Affiliation(s)
- Muhammed Hisham
- Department of Mechanical
Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical
Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Haider Butt
- Department of Mechanical
Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
34
|
Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics 2023; 15:1877. [PMID: 37514063 PMCID: PMC10385973 DOI: 10.3390/pharmaceutics15071877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Three-dimensional (3D) printing is an unrivaled technique that uses computer-aided design and programming to create 3D products by stacking materials on a substrate. Today, 3D printing technology is used in the whole drug development process, from preclinical research to clinical trials to frontline medical treatment. From 2009 to 2020, the number of research articles on 3D printing in healthcare applications surged from around 10 to 2000. Three-dimensional printing technology has been applied to several kinds of drug delivery systems, such as oral controlled release systems, micropills, microchips, implants, microneedles, rapid dissolving tablets, and multiphase release dosage forms. Compared with conventional manufacturing methods of pharmaceutical products, 3D printing has many advantages, including high production rates due to the flexible operating systems and high drug loading with the desired precision and accuracy for potent drugs administered in small doses. The cost of production via 3D printing can be decreased by reducing material wastage, and the process can be adapted to multiple classes of pharmaceutically active ingredients, including those with poor solubility. Although several studies have addressed the benefits of 3D printing technology, hospitals and pharmacies have only implemented this process for a small number of practical applications. This article discusses recent 3D printing applications in hospitals and pharmacies for medicinal preparation. The article also covers the potential future applications of 3D printing in pharmaceuticals.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Saensook, Muang, Chonburi 20131, Thailand
| |
Collapse
|
35
|
Anaya BJ, Cerda J, Datri R, Yuste I, Luciano FC, Kara A, Ruiz HK, Ballesteros MP, Serrano DR. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int J Pharm 2023:123194. [PMID: 37394160 DOI: 10.1016/j.ijpharm.2023.123194] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Metabolic syndrome is a collection of abnormalities, including at least three of the following insulin resistance, hypertension, dyslipidemia, type 2 diabetes, obesity, inflammation, and non-alcoholic fatty liver disease. 3D printed solid dosage forms have emerged as a promising tool enabling the fabrication of personalized medicines and offering solutions that cannot be achieved by industrial mass production. Most attempts found in the literature to manufacture polypills for this syndrome contain just two drugs. However, most fixed-dose combination (FDC) products in clinical practice required the use of three or more drugs. In this work, Fused deposition modelling (FDM) 3D printing technology coupled with Hot-melt extrusion (HME) has been successfully applied in the manufacture of polypills containing nifedipine (NFD), as an antihypertensive drug, simvastatin (SMV), as an antihyperlipidemic drug, and gliclazide (GLZ) as an antiglycemic drug. Hanssen solubility parameters (HSPs) were utilized as predictors to guide the formation of amorphous solid dispersion between drug and polymer to ensure miscibility and enhanced oral bioavailability. The HSP varied from 18.3 for NFD, 24.6 for SMV, and 7.0 for GLZ while the total solubility parameter for the excipient mixture was 27.30.5. This allowed the formation of an amorphous solid dispersion in SMV and GLZ 3D printed tablets compared to NFD which was partially crystalline. Popypill showed a dual release profile combining a faster SMV release (< 6 h) with a 24 h sustained release for NDF and GLZ. This work demonstrated the transformation of FDC into dynamic dose-personalized polypills.
Collapse
Affiliation(s)
- Brayan J Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - José Cerda
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rita Datri
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - I Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - F C Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Aytug Kara
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Helga K Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - M P Ballesteros
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - D R Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Saitta L, Cutuli E, Celano G, Tosto C, Stella G, Cicala G, Bucolo M. A Regression Approach to Model Refractive Index Measurements of Novel 3D Printable Photocurable Resins for Micro-Optofluidic Applications. Polymers (Basel) 2023; 15:2690. [PMID: 37376336 DOI: 10.3390/polym15122690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, a quadratic polynomial regression model was developed to aid practitioners in the determination of the refractive index value of transparent 3D printable photocurable resins usable for micro-optofluidic applications. The model was experimentally determined by correlating empirical optical transmission measurements (the dependent variable) to known refractive index values (the independent variable) of photocurable materials used in optics, thus obtaining a related regression equation. In detail, a novel, simple, and cost-effective experimental setup is proposed in this study for the first time for collecting the transmission measurements of smooth 3D printed samples (roughness ranging between 0.04 and 2 μm). The model was further used to determine the unknown refractive index value of novel photocurable resins applicable in vat photopolymerization (VP) 3D printing techniques for manufacturing micro-optofluidic (MoF) devices. In the end, this study proved how knowledge of this parameter allowed us to compare and interpret collected empirical optical data from microfluidic devices made of more traditional materials, i.e., Poly(dimethylsiloxane) (PDMS), up to novel 3D printable photocurable resins suitable for biological and biomedical applications. Thus, the developed model also provides a quick method to evaluate the suitability of novel 3D printable resins for MoF device fabrication within a well-defined range of refractive index values (1.56; 1.70).
Collapse
Affiliation(s)
- Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giovanni Celano
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giovanna Stella
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- INSTM-UDR CT, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
37
|
Rosas-Val P, Adhami M, Brotons-Canto A, Gamazo C, Irache JM, Larrañeta E. 3D printing of microencapsulated Lactobacillus rhamnosus for oral delivery. Int J Pharm 2023; 641:123058. [PMID: 37207858 DOI: 10.1016/j.ijpharm.2023.123058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
3D Printing is an innovative technology within the pharma and food industries that allows the design and manufacturing of novel delivery systems. Orally safe delivery of probiotics to the gastrointestinal tract faces several challenges regarding bacterial viability, in addition to comply with commercial and regulatory standpoints. Lactobacillus rhamnosus CNCM I-4036 (Lr) was microencapsulated in generally recognised as safe (GRAS) proteins, and then assessed for robocasting 3D printing. Microparticles (MP-Lr) were developed and characterised, prior to being 3D printed with pharmaceutical excipients. MP-Lr showed a size of 12.3 ± 4.1 µm and a non-uniform wrinkled surface determined by Scanning Electron Microscopy (SEM). Bacterial quantification by plate counting accounted for 8.68 ±0.6 CFU/g of live bacteria encapsulated within. Formulations were able to keep the bacterial dose constant upon contact with gastric and intestinal pH. Printlets consisted in oval-shape formulations (15 mm × 8 mm × 3.2 mm) of ca. 370 mg of total weight, with a uniform surface. After the 3D printing process, bacterial viability remained even as MP-Lr protected bacteria alongside the process (log reduction of 0.52, p>0.05) in comparison with non-encapsulated probiotic (log reduction of 3.05). Moreover, microparticle size was not altered during the 3D printing process. We confirmed the success of this technology for developing an orally safe formulation, GRAS category, of microencapsulated Lr for gastrointestinal vehiculation.
Collapse
Affiliation(s)
- Pablo Rosas-Val
- Nucaps Nanotechnology S.L., Spain; Department of Microbiology & Parasitology, University of Navarra, Spain
| | | | | | - Carlos Gamazo
- Department of Microbiology & Parasitology, University of Navarra, Spain
| | - Juan M Irache
- Department of Technology & Pharmaceutical Chemistry, University of Navarra, Spain
| | | |
Collapse
|
38
|
Gao J, Liu X, Cheng J, Deng J, Han Z, Li M, Wang X, Liu J, Zhang L. Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering. Regen Biomater 2023; 10:rbad037. [PMID: 37250979 PMCID: PMC10219790 DOI: 10.1093/rb/rbad037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
Bone tissue engineering (BTE) has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders. Photocrosslinkable hydrogels (PCHs) with good biocompatibility and biodegradability can significantly promote the migration, proliferation and differentiation of cells and have been widely used in BTE. Moreover, photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone, meeting the structural requirements of bone regeneration. Nanomaterials, cells, drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE. In this review, we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE. Finally, the challenges and potential future approaches for bone defects are outlined.
Collapse
Affiliation(s)
| | | | | | - Junhao Deng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Zhenchuan Han
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100036, China
| | - Xiumei Wang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Jianheng Liu
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| | - Licheng Zhang
- Correspondence address: E-mail: (X.W); (J.L.); (L.Z.)
| |
Collapse
|
39
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
40
|
Englezos K, Wang L, Tan ECK, Kang L. 3D printing for personalised medicines: implications for policy and practice. Int J Pharm 2023; 635:122785. [PMID: 36849040 DOI: 10.1016/j.ijpharm.2023.122785] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
The current healthcare dynamic has shifted from one-size-fits-all to patient-centred care, with our increased understanding of pharmacokinetics and pharmacogenomics demanding a switch to more individualised therapies. As the pharmaceutical industry remains yet to succumb to the push of a technological paradigm shift, pharmacists lack the means to provide completely personalised medicine (PM) to their patients in a safe, affordable, and widely accessible manner. As additive manufacturing technology has already established its strength in producing pharmaceutical formulations, it is necessary to next consider methods by which this technology can create PM accessible from pharmacies. In this article, we reviewed the limitations of current pharmaceutical manufacturing methods for PMs, three-dimensional (3D) printing techniques that are most beneficial for PMs, implications of bringing this technology into pharmacy practice, and implications for policy surrounding 3D printing techniques in the manufacturing of PMs.
Collapse
Affiliation(s)
- Klaudia Englezos
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lingxin Wang
- Pharmacy Department, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Edwin C K Tan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Rekowska N, Wulf K, Koper D, Senz V, Seitz H, Grabow N, Teske M. Influence of PEGDA Molecular Weight and Concentration on the In Vitro Release of the Model Protein BSA-FITC from Photo Crosslinked Systems. Pharmaceutics 2023; 15:pharmaceutics15041039. [PMID: 37111525 PMCID: PMC10145661 DOI: 10.3390/pharmaceutics15041039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Novel 3D printing techniques enable the development of medical devices with drug delivery systems that are tailored to the patient in terms of scaffold shape and the desired pharmaceutically active substance release. Gentle curing methods such as photopolymerization are also relevant for the incorporation of potent and sensitive drugs including proteins. However, retaining the pharmaceutical functions of proteins remains challenging due to the possible crosslinking between the functional groups of proteins, and the used photopolymers such as acrylates. In this work, the in vitro release of the model protein drug, albumin-fluorescein isothiocyanate conjugate (BSA-FITC) from differently composed, photopolymerized poly(ethylene) glycol diacrylate (PEGDA), an often employed, nontoxic, easily curable resin, was investigated. Different PEGDA concentrations in water (20, 30, and 40 wt %) and their different molecular masses (4000, 10,000, and 20,000 g/mol) were used to prepare a protein carrier with photopolymerization and molding. The viscosity measurements of photomonomer solutions revealed exponentially increasing values with increasing PEGDA concentration and molecular mass. Polymerized samples showed increasing medium uptake with an increasing molecular mass and decreasing uptake with increasing PEGDA content. Therefore, the modification of the inner network resulted in the most swollen samples (20 wt %) also releasing the highest amount of incorporated BSA-FITC for all PEGDA molecular masses.
Collapse
Affiliation(s)
- Natalia Rekowska
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Katharina Wulf
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Chair of Piston Machines and Internal Combustion Engines, University of Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany
| | - Daniela Koper
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Institute for Implant Technology and Biomaterials E.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Michael Teske
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| |
Collapse
|
42
|
A Review of the Benefits 3D Printing Brings to Patients with Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15030892. [PMID: 36986752 PMCID: PMC10051330 DOI: 10.3390/pharmaceutics15030892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
This interdisciplinary review focuses on how flexible three-dimensional printing (3DP) technology can aid patients with neurological diseases. It covers a wide variety of current and possible applications ranging from neurosurgery to customizable polypill along with a brief description of the various 3DP techniques. The article goes into detail about how 3DP technology can aid delicate neurosurgical planning and its consequent outcome for patients. It also covers areas such as how the 3DP model can be utilized in patient counseling along with designing specific implants involved in cranioplasty and customization of a specialized instrument such as 3DP optogenetic probes. Furthermore, the review includes how a 3DP nasal cast can contribute to the development of nose-to-brain drug delivery along with looking into how bioprinting could be used for regenerating nerves and how 3D-printed drugs could offer practical benefits to patients suffering from neurological diseases via polypill.
Collapse
|
43
|
McDonagh T, Belton P, Qi S. Manipulating drug release from 3D printed dual-drug loaded polypills using challenging polymer compositions. Int J Pharm 2023; 637:122895. [PMID: 36972779 DOI: 10.1016/j.ijpharm.2023.122895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Combining multiple medications in a single dosage form has emerged as an important strategy for treating complex diseases and could help tackle the growing issue of polypharmacy. In this study we investigated the suitability of different dual-drug designs for achieving simultaneous, delayed and pulsatile drug release regimes using two model formulations: an immediate release erodible system of Eudragit E PO loaded with paracetamol; and an erodible swellable system of Soluplus loaded with felodipine. Both binary formulations, despite not fused deposition modelling (FDM) printable, were successfully printed using thermal droplet-based 3D printing method, Arburg Plastic Freeforming (APF), and exhibited good reproducibility. X-ray powder diffraction (XRPD), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC) were used to assess drug-excipient interaction. The printed tablets were evaluated for drug release using in vitro dissolution testing. We found the simultaneous and delayed release designs were effective at generating the intended drug release profiles, giving insight into the types of dual-drug designs which can be used to create complex release profiles. In contrast the pulsatile tablet release was non-defined, highlighting the design limitations when using erodible materials.
Collapse
Affiliation(s)
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, UK.
| |
Collapse
|
44
|
Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023; 24:57. [PMID: 36759435 DOI: 10.1208/s12249-023-02524-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
There has been a tremendous increase in the investigations of three-dimensional (3D) printing for biomedical and pharmaceutical applications, and drug delivery in particular, ever since the US FDA approved the first 3D printed medicine, SPRITAM® (levetiracetam) in 2015. Three-dimensional printing, also known as additive manufacturing, involves various manufacturing techniques like fused-deposition modeling, 3D inkjet, stereolithography, direct powder extrusion, and selective laser sintering, among other 3D printing techniques, which are based on the digitally controlled layer-by-layer deposition of materials to form various geometries of printlets. In contrast to conventional manufacturing methods, 3D printing technologies provide the unique and important opportunity for the fabrication of personalized dosage forms, which is an important aspect in addressing diverse patient medical needs. There is however the need to speed up the use of 3D printing in the biopharmaceutical industry and clinical settings, and this can be made possible through the integration of modern technologies like artificial intelligence, machine learning, and Internet of Things, into additive manufacturing. This will lead to less human involvement and expertise, independent, streamlined, and intelligent production of personalized medicines. Four-dimensional (4D) printing is another important additive manufacturing technique similar to 3D printing, but adds a 4th dimension defined as time, to the printing. This paper aims to give a detailed review of the applications and principles of operation of various 3D printing technologies in drug delivery, and the materials used in 3D printing, and highlight the challenges and opportunities of additive manufacturing, while introducing the concept of 4D printing and its pharmaceutical applications.
Collapse
Affiliation(s)
- Derick Muhindo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Priyanka Srinivasan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.,Pii Center for Pharmaceutical Technology, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
45
|
Chang T, Kjeldsen RB, Christfort JF, Vila EM, Alstrøm TS, Zór K, Hwu E, Nielsen LH, Boisen A. 3D-Printed Radiopaque Microdevices with Enhanced Mucoadhesive Geometry for Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2201897. [PMID: 36414017 PMCID: PMC11468800 DOI: 10.1002/adhm.202201897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Indexed: 11/24/2022]
Abstract
During the past decades, microdevices have been evaluated as a means to overcome challenges within oral drug delivery, thus improving bioavailability. Fabrication of microdevices is often limited to planar or simple 3D designs. Therefore, this work explores how microscale stereolithography 3D printing can be used to fabricate radiopaque microcontainers with enhanced mucoadhesive geometries, which can enhance bioavailability by increasing gastrointestinal retention. Ex vivo force measurements suggest increased mucoadhesion of microcontainers with adhering features, such as pillars and arrows, compared to a neutral design. In vivo studies, utilizing planar X-ray imaging, show the time-dependent gastrointestinal location of microcontainers, whereas computed tomography scanning and cryogenic scanning electron microscopy reveal information about their spatial dynamics and mucosal interactions, respectively. For the first time, the effect of 3D microdevice modifications on gastrointestinal retention is traced in vivo, and the applied methods provide a much-needed approach for investigating the impact of device design on gastrointestinal retention.
Collapse
Affiliation(s)
- Tien‐Jen Chang
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Eduard Marzo Vila
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Tommy Sonne Alstrøm
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| | - En‐Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| |
Collapse
|
46
|
Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, Molina G, Diez L, Ramirez BI, Ramirez IO, Sánchez-Guirales SA, Fernández-García R, Bautista L, Ruiz HK, Lalatsa A. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023; 15:313. [PMID: 36839636 PMCID: PMC9967161 DOI: 10.3390/pharmaceutics15020313] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the combination of one or more drugs within the same solid dosage form to improve patient compliance, facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form is available. Sustained-release 3D-printed implants, stents, and medical devices have been used mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have also been manufactured using 3D printing techniques. The challenge is to select the 3D printing technique most suitable for each application and the type of pharmaceutical ink that should be developed that possesses the required physicochemical and biological performance. The integration of biopharmaceuticals and nanotechnology-based drugs along with 3D printing ("nanoprinting") brings printed personalized nanomedicines within the most innovative perspectives for the coming years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their translation into clinical practice.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iván Yuste
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Diez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irving O. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Liliana Bautista
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
47
|
Kaguelidou F, Ouèdraogo M, Treluyer JM, Le Jeunne C, Annereau M, Blanc P, Bureau S, Ducassou S, Fiquet B, Flamein F, Gaillard S, Hankard R, Laugel V, Laurent C, Levy C, Marquet T, Polak M, Portefaix A, Vassal G. Paediatric drug development and evaluation: Existing challenges and recommendations. Therapie 2023; 78:105-114. [PMID: 36528416 DOI: 10.1016/j.therap.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/11/2022]
Abstract
Despite various international regulatory initiatives over the last 20 years, many challenges remain in the field of paediatric drug development and evaluation. Indeed, drug research and development is still focused essentially on adult indications, thereby excluding many paediatric patients, limiting the feasibility of trials and favouring competing developments. Off-label prescribing persists and the development of age-appropriate dosage forms for children remains limited. Against this background, the members of this panel (TR) recommend the launch of multi-partner exchange forums on specific topics in order to focus new drug research and development on the real, unmet medical needs of children and adolescents, and in keeping with the underlying mechanisms of action. Scientific information sharing and cooperation between stakeholders are also essential for defining reference evaluation methods in each medical field. These forums can be organised through existing paediatric facilities and research networks at the French and European level. The latter are specifically dedicated to paediatric research and can facilitate clinical trial implementation and patient enrolment. Moreover, specific grants and public/private partnerships are still needed to support studies on the repositioning of drugs in paediatric indications, and pharmacokinetic studies aimed at defining appropriate dosages. The development of new pharmaceutical forms, better suited for paediatric use, and the promotion of resulting innovations will stimulate future investments. Initiatives to gather observational safety and efficacy data following off-label and/or derogatory early access should also be encouraged to compensate for the lack of information available in these situations. Finally, the creation of Ethics Committees (EC) with a specific "mother-child" advisory expertise should be promoted to ensure that the current regulation (Jardé law in France) is implemented whilst also taking into account the paediatric specificities in medical trials.
Collapse
Affiliation(s)
- Florentia Kaguelidou
- Center of Clinical Investigations and Pediatric Pharmacology, Inserm CIC1426, Robert-Debré hospital, AP-HP.Nord, 75000 Paris, France; Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France.
| | - Maria Ouèdraogo
- Lead « partenaires parcours de soins référents médicaux », laboratoire Roche, 92100 Boulogne, France
| | - Jean-Marc Treluyer
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Département de pharmacologie, CRPV, hôpital Cochin, AP-HP.Centre, 75014 Paris, France
| | - Claire Le Jeunne
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Service de médecine interne, hôpital Cochin, AP-HP Centre, 75014 Paris, France
| | - Maxime Annereau
- Département de pharmacie clinique, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Patricia Blanc
- Association de patients («) Imagine for Margo - Enfants sans Cancer », 78100 Saint-Germain-en-Laye, France
| | - Serge Bureau
- Direction de la recherche clinique, de l'innovation, des relations avec les universités et organismes de recherche (DRCI), Assistance publique-Hôpitaux de Paris, 75000 Paris, France
| | - Stéphane Ducassou
- Unité hématologie oncologie pédiatrique, CHU Bordeaux, 33000 Bordeaux, France
| | - Béatrice Fiquet
- Département médical, Amgen, 92100 Boulogne-Billancourt, France
| | - Florence Flamein
- University Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, 59000 Lille, France; French Clinical Research Infrastructure Network (F-CRIN) - PEDSTART, 94000 Créteil, France
| | - Ségolène Gaillard
- Hospices civils de Lyon, EPICIME-CIC 1407 de Lyon, Inserm, CHU-Lyon, 69677 Bron, France; Université Lyon 1, CNRS UMR 5558, laboratoire de biométrie et biologie évolutive, 69622 Villeurbanne, France
| | | | - Vincent Laugel
- Pôle médico-chirurgical de pédiatrie, centre d'investigation clinique, hôpitaux universitaires de Strasbourg, 67098 Strasbourg, France
| | | | - Corinne Levy
- Clinical Research Center (CRC), centre hospitalier intercommunal de Créteil, 94000 Créteil, France
| | - Thierry Marquet
- Accès des patients à l'innovation, Takeda, 75116 Paris, France
| | - Michel Polak
- Unité d'endocrinologie, gynécologie, diabétologie pédiatriques, Inserm U1016, Institut Imagine, centre de référence des maladies endocriniennes rares de la croissance et du développement, hôpital universitaire Necker-Enfants-Malades, AP-HP Centre, université Paris-Descartes, 75743 Paris, France
| | - Aurélie Portefaix
- Hospices civils de Lyon, Pediatric Clinic Investigation Center, Inserm P-1407, 69500 Bron, France
| | - Gilles Vassal
- Département de cancérologie de l'enfant et de l'adolescent, Gustave Roussy Comprehensive Cancer Center et université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
48
|
Muacevic A, Adler JR, Simran FNU, Kumari M, Aisha FNU, Sai Kiran K, Kakarlapudi Y, Saleem F. Effect of the Polypill on Adherence and Prevention of Cardiovascular Diseases in Patients With or at High Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. Cureus 2023; 15:e34134. [PMID: 36843692 PMCID: PMC9948510 DOI: 10.7759/cureus.34134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
It is important to understand the role of polypills on medication adherence and clinical outcomes in patients with or at high risk of cardiovascular diseases (CVD) to help decision-makers make robust guidelines on using polypills in these people. Therefore, the current meta-analysis was conducted to assess the impact of polypills on medication adherence and clinical outcomes in patients with or at high risk of CVD. The present meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We searched the electronic databases PubMed, Embase, and the Cochrane Library for randomized control trials (RCTs) from inception to January 1, 2023. The outcomes assessed in the present meta-analysis were adherence to prescribed drugs at the study end, the incidence of cardiovascular events, and change in low-density lipoprotein cholesterol (LDL-C), total cholesterol, and high-density lipoprotein (HDL) from baseline to the study end in mmol/l. A total of six studies were included in the present meta-analysis, with a total sample size of 13139 (6577 in the polypill group and 6562 in the control group). Meta-analysis showed that medication adherence was significantly higher in patients receiving polypills compared to the control group (relative risk (RR): 1.38, 95% confidence interval (CI): 1.22-1.56, p-value: 0.001). The risk of a cardiovascular event was significantly lower in the polypill group (RR: 0.72, 95% CI: 0.63-0.82, p-value: 0.001). No significant differences were found in the changes in LDL-C and total cholesterol between the two groups. This meta-analysis shows a significant impact of polypills on medication adherence. We also found that polypills can reduce the incidence of cardiovascular events in patients with or at high risk of CVD. Our study has also shown that regardless of the history of CVD, polypills play an important role in promoting medication adherence in patients with and without a history of CVD.
Collapse
|
49
|
Kaguelidou F, Ouèdraogo M, Treluyer JM, Le Jeunne C, Annereau M, Blanc P, Bureau S, Ducassou S, Fiquet B, Flamein F, Gaillard S, Hankard R, Laugel V, Laurent C, Levy C, Marquet T, Polak M, Portefaix A, Vassal G. Développement des médicaments en pédiatrie : défis existants et recommandations. Therapie 2023; 78:95-104. [PMID: 36543724 DOI: 10.1016/j.therap.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Florentia Kaguelidou
- Center of Clinical Investigations and Pediatric Pharmacology, Inserm CIC1426, Robert-Debré Hospital, AP-HP Nord, 75000 Paris, France; Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France.
| | - Maria Ouèdraogo
- Lead « partenaires parcours de soins référents médicaux », laboratoire Roche, 92100 Boulogne, France
| | - Jean-Marc Treluyer
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Département de pharmacologie, CRPV, hôpital Cochin, AP-HP Centre, 75014 Paris, France
| | - Claire Le Jeunne
- Paris Cité University, EA7323 « Therapeutic assessment, and perinatal and pediatric pharmacology », 75000 Paris, France; Service de médecine interne, hôpital Cochin, AP-HP Centre, 75014 Paris, France
| | - Maxime Annereau
- Département de pharmacie clinique, Gustave-Roussy Cancer Campus, 94800 Villejuif, France
| | - Patricia Blanc
- Association de patients « Imagine for Margo - Enfants sans Cancer », 78100 Saint-Germain-en-Laye, France
| | - Serge Bureau
- Direction de la recherche clinique, de l'innovation, des relations avec les universités et organismes de recherche (DRCI), Assistance publique-Hôpitaux de Paris, 75000 Paris, France
| | - Stéphane Ducassou
- Unité hématologie oncologie pédiatrique, CHU Bordeaux, 33000 Bordeaux, France
| | - Béatrice Fiquet
- Département médical, Amgen, 92100 Boulogne-Billancourt, France
| | - Florence Flamein
- Université Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, 59000 Lille, France; French Clinical Research Infrastructure Network (F-CRIN) - PEDSTART, 94000 Créteil, France
| | - Ségolène Gaillard
- Hospices civils de Lyon, EPICIME-CIC 1407 de Lyon, Inserm, CHU-Lyon, 69677 Bron, France; Université Lyon 1, CNRS UMR 5558, laboratoire de biométrie et biologie évolutive, 69622 Villeurbanne, France
| | | | - Vincent Laugel
- Pôle médicochirurgical de pédiatrie, centre d'investigation clinique, hôpitaux universitaires de Strasbourg, 67098 Strasbourg, France
| | | | - Corinne Levy
- Clinical Research Center (CRC), centre hospitalier intercommunal de Créteil, 94000 Créteil, France
| | - Thierry Marquet
- Directeur de l'accès des patients à l'innovation, Takeda, 75116 Paris, France
| | - Michel Polak
- Unité d'endocrinologie, gynécologie, diabétologie pédiatriques, Inserm U1016, Institut Imagine, centre de référence des maladies endocriniennes rares de la croissance et du développement, hôpital universitaire Necker-Enfants-Malades, AP-HP Centre, université Paris Descartes, 75743 Paris, France
| | - Aurélie Portefaix
- Hospices civils de Lyon, Pediatric Clinic Investigation Center, Inserm P-1407, 69500 Bron, France
| | - Gilles Vassal
- Département de cancérologie de l'enfant et de l'adolescent, Gustave-Roussy Comprehensive Cancer Center, université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
50
|
Shaukat U, Sölle B, Rossegger E, Rana S, Schlögl S. Vat Photopolymerization 3D-Printing of Dynamic Thiol-Acrylate Photopolymers Using Bio-Derived Building Blocks. Polymers (Basel) 2022; 14:5377. [PMID: 36559744 PMCID: PMC9784638 DOI: 10.3390/polym14245377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
As an energy-efficient additive manufacturing process, vat photopolymerization 3D-printing has become a convenient technology to fabricate functional devices with high resolution and freedom in design. However, due to their permanently crosslinked network structure, photopolymers are not easily reprocessed or repaired. To improve the environmental footprint of 3D-printed objects, herein, we combine the dynamic nature of hydroxyl ester links, undergoing a catalyzed transesterification at elevated temperature, with an acrylate monomer derived from renewable resources. As a sustainable building block, we synthesized an acrylated linseed oil and mixed it with selected thiol crosslinkers. By careful selection of the transesterification catalyst, we obtained dynamic thiol-acrylate resins with a high cure rate and decent storage stability, which enabled the digital light processing (DLP) 3D-printing of objects with a structure size of 550 µm. Owing to their dynamic covalent bonds, the thiol-acrylate networks were able to relax 63% of their initial stress within 22 min at 180 °C and showed enhanced toughness after thermal annealing. We exploited the thermo-activated reflow of the dynamic networks to heal and re-shape the 3D-printed objects. The dynamic thiol-acrylate photopolymers also demonstrated promising healing, shape memory, and re-shaping properties, thus offering great potential for various industrial fields such as soft robotics and electronics.
Collapse
Affiliation(s)
- Usman Shaukat
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Bernhard Sölle
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Sravendra Rana
- School of Engineering, Energy Acres, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|