1
|
Bidooki S, Spitzer L, Petitpas A, Sánchez-Marco J, Martínez-Beamonte R, Lasheras R, Pellerin V, Rodríguez-Yoldi MJ, Navarro MA, Osada J, Fernandes SCM. Chitosan Nanoparticles, a Novel Drug Delivery System to Transfer Squalene for Hepatocyte Stress Protection. ACS OMEGA 2024; 9:51379-51393. [PMID: 39758614 PMCID: PMC11696419 DOI: 10.1021/acsomega.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025]
Abstract
The Mediterranean diet is a well-known dietary pattern that has gained considerable popularity worldwide for its ability to prevent the progression of nonalcoholic fatty liver disease. This is largely attributed to the use of virgin olive oil as the primary source of fat, which contains a substantial amount of squalene, a natural antioxidant. In order to enhance the delivery of squalene and amplify its effects due to its highly hydrophobic nature, herein, squalene has been incorporated into chitosan nanoparticles. The characterization of the resulting nanoparticles was conducted via scanning electron microscopy, dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Reactive oxygen species (ROS) generation and cell viability assays were conducted in oxidative and endoplasmic reticulum (ER) stress in AML12 and a TXNDC5-deficient AML12 cell line, which was generated by CRISPR/Cas9 technology. The results demonstrated that squalene was successfully encapsulated in chitosan nanoparticles and exhibited rapid and efficient cellular uptake at a 150 μM squalene concentration within 48 h. In conclusion, the encapsulation of squalene in chitosan nanoparticles, compared to the poly(d,l-lactide-co-glycolic acid) and ethanol drug carriers, significantly enhanced its cellular uptake. This allows the administration of higher doses, which improve hepatocyte viability and reduce ROS levels, effectively compensating for the adverse effects of TXNDC5 deficiency under the context of hepatocyte stress protection.
Collapse
Affiliation(s)
- Seyed
Hesamoddin Bidooki
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| | - Lea Spitzer
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| | - Arnaud Petitpas
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| | - Javier Sánchez-Marco
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
| | - Roberto Lasheras
- Laboratorio
Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección
General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, Av. de Montañana, 1070B, E-50192 Zaragoza, Spain
| | - Virginie Pellerin
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
| | - María J. Rodríguez-Yoldi
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
- Departamento
de Farmacología, Fisiología, Medicina Legal y Forense,
Facultad de Veterinaria, Instituto de Investigación
Sanitaria de Aragón-Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - María Angeles Navarro
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
| | - Jesús Osada
- Departamento
de Bioquímica y Biología Molecular y Celular, Facultad
de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
- Instituto
Agroalimentario de Aragón, CITA-Universidad
de Zaragoza, C/Miguel
Servet, 177, E-50013 Zaragoza, Spain
- Centro de
Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, E-28029 Madrid, Spain
- Departamento
de Farmacología, Fisiología, Medicina Legal y Forense,
Facultad de Veterinaria, Instituto de Investigación
Sanitaria de Aragón-Universidad de Zaragoza, C/Miguel Servet, 177, E-50013 Zaragoza, Spain
| | - Susana C. M. Fernandes
- Institute
of Analytical Sciences and Physico-Chemistry for Environment and Materials
(IPREM), E2S UPPA, CNRS, Université
de Pau et des Pays de l’Adour, University Avenue, 64 012 Pau, France
- MANTA—Marine
Materials Research Group, Universite de
Pau et des Pays de l’Adour, University Avenue, 64 053 Pau, France
| |
Collapse
|
2
|
Ferrentino N, Behroozi Kohlan T, Mehrtashfar S, Finne-Wistrand A, Pappalardo D. Dual-Responsive Nanoparticles for Smart Drug Delivery: A NIR Light-Sensitive and Redox-Reactive PEG-PCL-Based System. Biomacromolecules 2024; 25:7660-7673. [PMID: 39526863 DOI: 10.1021/acs.biomac.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stimuli-responsive polymeric nanoparticles (NPs) can serve as smart drug delivery systems (DDSs) by triggering drug release upon external or internal stimuli. A dual-responsive DDS made of a triblock poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-SS-PEG-SS-PCL) copolymer, bearing disulfide bonds between PCL and PEG, was synthesized. The copolymer was functionalized with coumarin and sensitive to near-infrared (NIR) light irradiation, while the S-S bonds could be cleaved by GSH (10 mM). Characterization was achieved by nuclear magnetic resonance, size exclusion chromatography, and Fourier transform infrared analyses. Nile Red (NR)-loaded NPs were prepared through self-assembly of the copolymer in water and analyzed by dynamic light scattering and field-emission scanning electron microscopy. The NR release upon ultraviolet (UV)/NIR light irradiation as well as by GSH concentrations was monitored by using fluorescence spectroscopy, while simultaneous exposure to UV/NIR light and intracellular GSH concentration led to faster NR release. AlamarBlue assay showed satisfactory cell viability of the NR-loaded NPs, while their cellular uptake in human dermal fibroblast cells was investigated by fluorescence microscopy and fluorescence emission measurements.
Collapse
Affiliation(s)
- Nancy Ferrentino
- Dipartimento di Scienze e Tecnologie, Università del Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Taha Behroozi Kohlan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Shokoufeh Mehrtashfar
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, via de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
3
|
Bidooki SH, Quero J, Sánchez-Marco J, Herrero-Continente T, Marmol I, Lasheras R, Sebastian V, Arruebo M, Osada J, Rodriguez-Yoldi MJ. Squalene in Nanoparticles Improves Antiproliferative Effect on Human Colon Carcinoma Cells Through Apoptosis by Disturbances in Redox Balance. Int J Mol Sci 2024; 25:13048. [PMID: 39684759 DOI: 10.3390/ijms252313048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Squalene, a triterpene found in extra virgin olive oil, has therapeutic properties in diseases related to oxidative stress, such as cancer. However, its hydrophobic nature and susceptibility to oxidation limit its bioavailability outside of olive oil. To expand its applications, alternative delivery methods are necessary. The objective of the present study was to examine the impact of squalene encapsulated in PLGA (poly(lactic-co-glycolic) acid) nanoparticles (PLGA + Sq) on the proliferation of human colon carcinoma Caco-2 cells, as well as its underlying mechanism of action. The findings demonstrated that PLGA + Sq exert no influence on differentiated cells; however, it is capable of reducing the proliferation of undifferentiated Caco-2 cells through apoptosis and cell cycle arrest in the G1 phase. This effect was initiated by the release of cytochrome c into the cytoplasm and the subsequent activation of caspase-3. Furthermore, squalene exhibited pro-oxidant activity, as evidenced by an increase in intracellular ROS (reactive oxygen species) levels. The results of the squalene effect on genes associated with cell death, inflammation, and the cell cycle indicate that its antiproliferative effect may be post-transcriptional. In conclusion, PLGA + Sq demonstrate an antiproliferative effect on Caco-2 cells through apoptosis by altering redox balance, suggesting squalene's potential as a functional food ingredient for colorectal cancer prevention.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Quero
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Inés Marmol
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Roberto Lasheras
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, E-50071 Zaragoza, Spain
| | - Victor Sebastian
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Manuel Arruebo
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María Jesús Rodriguez-Yoldi
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, CITA, Universidad de Zaragoza, E-50013 Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
4
|
Le TH, Nguyen MTT, Nguyen HX, Dang PH, Truong HN, Dang TM, Nguyen NT. Three undescribed phenylbutenoids derivatives from Zingiber cassumunar Roxb. rhizomes and their biological activities. Nat Prod Res 2024:1-9. [PMID: 39390806 DOI: 10.1080/14786419.2024.2411372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Phenylbutenoids belong to polyphenolic compounds that have demonstrated distinctive biological activities and are primarily characterised in the genus Zingiber (Zingiberaceae) species. From the EtOAc extract of the rhizomes of Zingiber cassumunar Roxb., three phenylbutenoid-type compounds, cassudimin B (1), cassumunol O (2), and cassumunol P (3), were isolated, along with five known compounds (4-8). Their structures were characterised through spectroscopic evidence and reference data. Biological activity investigation revealed that compounds 4, 5, and 8 exhibited promising potential for anti-α-glucosidase with IC50 values of 151.5, 180.1, and 39.5 µM, respectively, surpassing the positive control acarbose (IC50, 190.6 µM). Additionally, compounds 3-8 displayed cytotoxic effects on HepG2 cells ranging from 12.0 to 293.2 µM.
Collapse
Affiliation(s)
- Tho Huu Le
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Hai Xuan Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Phu Hoang Dang
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| | - Hai Nhung Truong
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Thanh Minh Dang
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, Ho Chi Minh City, Vietnam
| | - Nhan Trung Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research lab for Drug Discovery and Development, University of Science, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
de Andrade LRM, Dos Santos LF, Pires DS, Machado ÉP, Martines MAU, Macedo MLR, Cardoso TFM, Severino P, Souto EB, Kassab NM. A Newly Validated HPLC-DAD Method for the Determination of Ricinoleic Acid (RA) in PLGA Nanocapsules. Pharmaceuticals (Basel) 2024; 17:1220. [PMID: 39338382 PMCID: PMC11435140 DOI: 10.3390/ph17091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/30/2024] Open
Abstract
The assessment of ricinoleic acid (RA) incorporated into polymeric nanoparticles is a challenge that has not yet been explored. This bioactive compound, the main component of castor oil, has attracted attention in the pharmaceutical field for its valuable anti-inflammatory, antifungal, and antimicrobial properties. This work aims to develop a new and simple analytical method using high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the identification and quantification of ricinoleic acid, with potential applicability in several other complex systems. The method was validated through analytical parameters, such as linearity, limit of detection and quantification, accuracy, precision, selectivity, and robustness. The physicochemical properties of the nanocapsules were characterized by dynamic light scattering (DLS) to determine their hydrodynamic mean diameter, polydispersity index (PDI), and zeta potential (ZP), via transmission electron microscopy (TEM) and quantifying the encapsulation efficiency. The proposed analytical method utilized a mobile phase consisting of a 65:35 ratio of acetonitrile to water, acidified with 1.5% phosphoric acid. It successfully depicted a symmetric peak of ricinoleic acid (retention time of 7.5 min) for both the standard and the RA present in the polymeric nanoparticles, enabling the quantification of the drug loaded into the nanocapsules. The nanocapsules containing ricinoleic acid (RA) exhibited an approximate size ranging from 309 nm to 441 nm, a PDI lower than 0.2, ζ values of approximately -30 mV, and high encapsulation efficiency (~99%). Overall, the developed HPLC-DAD procedure provides adequate confidence for the identification and quantification of ricinoleic acid in PLGA nanocapsules and other complex matrices.
Collapse
Affiliation(s)
- Lucas Rannier M de Andrade
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Larissa F Dos Santos
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Débora S Pires
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Érika P Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Marco Antonio U Martines
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Maria Ligia R Macedo
- Pharmaceutical Sciences, Food and Nutrition College, University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Teófilo Fernando M Cardoso
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Patrícia Severino
- Institute of Technology and Research (ITP), Tiradentes University, Ave. Murilo Dantas, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Najla M Kassab
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
6
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
7
|
Martins-Gomes C, Nunes FM, Silva AM. Linking Variability in Phytochemical Composition with Safety Profile of Thymus carnosus Boiss. Extracts: Effect of Major Compounds and Evaluation of Markers of Oxidative Stress and Cell Death. Int J Mol Sci 2024; 25:5343. [PMID: 38791385 PMCID: PMC11120720 DOI: 10.3390/ijms25105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Wu KY, Wang XC, Anderson M, Tran SD. Advancements in Nanosystems for Ocular Drug Delivery: A Focus on Pediatric Retinoblastoma. Molecules 2024; 29:2263. [PMID: 38792122 PMCID: PMC11123804 DOI: 10.3390/molecules29102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
9
|
Shi H, Zheng F, Zheng Y, Sun X, Chen H, Gao Y. A carrier-free tri-component nanoreactor for multi-pronged synergistic cancer therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112886. [PMID: 38490055 DOI: 10.1016/j.jphotobiol.2024.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Non-invasive therapies such as photodynamic therapy (PDT) and chemodynamic therapy (CDT) have received wide attention due to their low toxicity and side effects, but their efficacy is limited by the tumor microenvironment (TME), and monotherapy cannot achieve satisfactory efficacy. In this work, a multifunctional nanoparticle co-assembled from oleanolic acid (OA), chlorin e6 (Ce6) and hemin was developed. The as-constructed nanoparticle named OCH with diameters of around 130 nm possessed good biostability, pH/GSH dual-responsive drug release properties, and remarkable cellular internalization and tumor accumulation capabilities. OCH exhibited prominent catalytic activities to generate •OH, deplete GSH, and produce O2 to overcome the hypoxia TME, thus potentiating the photodynamic and chemodynamic effect. In addition, OCH can induce the occurrence of ferroptosis in both ferroptosis-sensitive and ferroptosis-resistant cancer cells. The multi-pronged effects of OCH including hypoxia alleviation, GSH depletion, ferroptosis induction, CDT and PDT effects jointly facilitate excellent anticancer effects in vitro and in vivo. Hence, this work will advance the development of safe and effective clinically transformable nanomedicine by employing clinically-applied agents to form drug combinations for efficient multi-pronged combination cancer therapy.
Collapse
Affiliation(s)
- Huifang Shi
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fangying Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
10
|
Diedericks B, Kok AM, Mandiwana V, Lall N. A Review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an Active Antimycobacterial Compound, 7-Methyljuglone. Pharmaceutics 2024; 16:216. [PMID: 38399270 PMCID: PMC10893214 DOI: 10.3390/pharmaceutics16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Chemicals Cluster, Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 643001, India
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston IAU-016615, Jamaica
| |
Collapse
|
11
|
Sharma DK, Pattnaik G, Behera A. Recent developments in nanoparticles for the treatment of diabetes. J Drug Target 2023; 31:908-919. [PMID: 37725445 DOI: 10.1080/1061186x.2023.2261077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Changes in the homeostasis of blood sugar levels are a hallmark of diabetes mellitus, an incurable metabolic condition, for which the first-line treatment is the subcutaneous injection of insulin. However, this method of administration is linked to low patient compliance because of the possibility of local infection, discomfort and pain. To enable the administration of the peptide through more palatable paths without requiring an injection, like by oral routes, the use of nanoparticles as insulin carriers has been suggested. The use of nanoparticles usually improves the bioavailability and physicochemical stability of the loaded medicine. The utilisation of several forms of nanoparticles (like lipid and polymeric nanoparticles, micelles, dendrimers, liposomes, niosomes, nanoemulsions and drug nanosuspensions) is discussed in this article as a way to improve the administration of various oral hypoglycaemic medications when compared to conventional treatments.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
12
|
Onugwu AL, Ugorji OL, Ufondu CA, Ihim SA, Echezona AC, Nwagwu CS, Onugwu SO, Uzondu SW, Agbo CP, Ogbonna JD, Attama AA. Nanoparticle-based delivery systems as emerging therapy in retinoblastoma: recent advances, challenges and prospects. NANOSCALE ADVANCES 2023; 5:4628-4648. [PMID: 37705787 PMCID: PMC10496918 DOI: 10.1039/d3na00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Retinoblastoma is the most common intraocular malignancy in children. The treatment of this rare disease is still challenging in developing countries due to delayed diagnosis. The current therapies comprise mainly surgery, radiotherapy and chemotherapy. The adverse effects of radiation and chemotherapeutic drugs have been reported to contribute to the high mortality rate and affect patients' quality of life. The systemic side effects resulting from the distribution of chemotherapeutic drugs to non-cancerous cells are enormous and have been recognized as one of the reasons why most potent anticancer compounds fail in clinical trials. Nanoparticulate delivery systems have the potential to revolutionize cancer treatment by offering targeted delivery, enhanced penetration and retention effects, increased bioavailability, and an improved toxicity profile. Notwithstanding the plethora of evidence on the beneficial effects of nanoparticles in retinoblastoma, the clinical translation of this carrier is yet to be given the needed attention. This paper reviews the current and emerging treatment options for retinoblastoma, with emphasis on recent investigations on the use of various classes of nanoparticles in diagnosing and treating retinoblastoma. It also presents the use of ligand-conjugated and smart nanoparticles in the active targeting of anticancer and imaging agents to the tumour cells. In addition, this review discusses the prospects and challenges in translating this nanocarrier into clinical use for retinoblastoma therapy. This review may provide new insight for formulation scientists to explore in order to facilitate the development of more effective and safer medicines for children suffering from retinoblastoma.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Onyinyechi Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka Enugu State Nigeria
| | - Chinasa A Ufondu
- Molecular Pharmacology and Therapeutics, Department of Pharmacology, University of Minnesota Twin Cities USA
| | - Stella Amarachi Ihim
- Department of Science Laboratory Technology (Physiology and Pharmacology Unit), University of Nigeria Nsukka Enugu State Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Sabastine Obinna Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology Enugu State Nigeria
| | - Samuel WisdomofGod Uzondu
- NanoMalaria Research Unit, Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - John Dike Ogbonna
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria Nsukka Enugu State Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka Enugu State Nigeria
| |
Collapse
|
13
|
Pingale P, Kendre P, Pardeshi K, Rajput A. An emerging era in manufacturing of drug delivery systems: Nanofabrication techniques. Heliyon 2023; 9:e14247. [PMID: 36938476 PMCID: PMC10018573 DOI: 10.1016/j.heliyon.2023.e14247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Nanotechnology has the capability of making significant contributions to healthcare. Nanofabrication of multifunctional nano- or micro-character systems is becoming incredibly influential in various sectors like electronics, photonics, energy, and biomedical gadgets worldwide. The invention of such items led to the merger of moderate cost and excellent quality nano or micro-characters into 3D structures. Nanofabrication techniques have many benefits as the primary technology for manipulating cellular surroundings to research signaling processes. The inherent nanoscale mechanisms of cyto-reactions include the existence and death of cells, stem cell segmentation, multiplication, cellular relocation, etc. Nanofabrication is essential in developing various nano-formulations like solid lipid nanoparticles, nanostructured lipid carriers, liposomes, niosomes, nanoemulsions, microemulsions etc. Despite the initial development cost in designing the nanofabrication-based products, it has also reduced the total cost of the healthcare system by considering the added benefits compared to the other standard formulations. Thus, the current review mainly focuses on nanofabrication techniques, advantages, disadvantages, applications in developing various nanocarrier systems, challenges and future perspectives.
Collapse
Affiliation(s)
- Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Prakash Kendre
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, At Post-Malvihir, Botha Road, Tal. Buldana, Dist. Buldana, 422005, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422231, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Bharti Vidyapeeth Educational Complex, Erandwane, Pune 411038, Maharashtra, India
| |
Collapse
|
14
|
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2023; 25:43. [PMID: 36875184 PMCID: PMC9970140 DOI: 10.1007/s11051-023-05690-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC Canada
| | - Ghazal Shineh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| |
Collapse
|
15
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
16
|
Nanotechnology for Pediatric Retinoblastoma Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091087. [PMID: 36145308 PMCID: PMC9504930 DOI: 10.3390/ph15091087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma is a rare, sometimes hereditary, pediatric cancer. In high-income countries this disease has a survival rate approaching 100%, while in low- and middle-income countries the prognosis is fatal for about 80% of cases. Depending on the stage of the disease, different therapeutic protocols are applied. In more advanced forms of the disease, surgical removal of the entire globe and its intraocular contents (enucleation) is, unfortunately, necessary, whereas in other cases, conventional chemotherapy is normally used. To overcome the side-effects and reduced efficacy of traditional chemotherapic drugs, nanodelivery systems that ensure a sustained drug release and manage to reach the target site have more recently been developed. This review takes into account the current use and advances of nanomedicine in the treatment of retinoblastoma and discusses nanoparticulate formulations that contain conventional drugs and natural products. In addition, future developments in retinoblastoma treatment are discussed.
Collapse
|
17
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems-A Review. Int J Mol Sci 2022; 23:3591. [PMID: 35408950 PMCID: PMC8998931 DOI: 10.3390/ijms23073591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essential oil and extracts of Melissa officinalis have active compounds that determine many pharmacological effects with potential medical uses. A new field of research has led to the development of controlled release systems with active substances from plants. Therefore, the essential oil or extract of Melissa officinalis has become a major target to be incorporated into various controlled release systems which allow a sustained delivery.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Luminita Narcisa Craciun
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
19
|
Bidooki SH, Alejo T, Sánchez-Marco J, Martínez-Beamonte R, Abuobeid R, Burillo JC, Lasheras R, Sebastian V, Rodríguez-Yoldi MJ, Arruebo M, Osada J. Squalene Loaded Nanoparticles Effectively Protect Hepatic AML12 Cell Lines against Oxidative and Endoplasmic Reticulum Stress in a TXNDC5-Dependent Way. Antioxidants (Basel) 2022; 11:antiox11030581. [PMID: 35326231 PMCID: PMC8945349 DOI: 10.3390/antiox11030581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Virgin olive oil, the main source of fat in the Mediterranean diet, contains a substantial amount of squalene which possesses natural antioxidant properties. Due to its highly hydrophobic nature, its bioavailability is reduced. In order to increase its delivery and potentiate its actions, squalene has been loaded into PLGA nanoparticles (NPs). The characterization of the resulting nanoparticles was assessed by electron microscopy, dynamic light scattering, zeta potential and high-performance liquid chromatography. Reactive oxygen species (ROS) generation and cell viability assays were carried out in AML12 (alpha mouse liver cell line) and a TXNDC5-deficient AML12 cell line (KO), which was generated by CRISPR/cas9 technology. According to the results, squalene was successfully encapsulated in PLGA NPs, and had rapid and efficient cellular uptake at 30 µM squalene concentration. Squalene reduced ROS in AML12, whereas ROS levels increased in KO cells and improved cell viability in both when subjected to oxidative stress by significant induction of Gpx4. Squalene enhanced cell viability in ER-induced stress by decreasing Ern1 or Eif2ak3 expressions. In conclusion, TXNDC5 shows a crucial role in regulating ER-induced stress through different signaling pathways, and squalene protects mouse hepatocytes from oxidative and endoplasmic reticulum stresses by several molecular mechanisms depending on TXNDC5.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (R.A.)
| | - Teresa Alejo
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain; (T.A.); (V.S.); (M.A.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (R.A.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (R.A.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Roubi Abuobeid
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (R.A.)
| | - Juan Carlos Burillo
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, E-50059 Zaragoza, Spain; (J.C.B.); (R.L.)
| | - Roberto Lasheras
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, E-50059 Zaragoza, Spain; (J.C.B.); (R.L.)
| | - Victor Sebastian
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain; (T.A.); (V.S.); (M.A.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Manuel Arruebo
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, E-50018 Zaragoza, Spain; (T.A.); (V.S.); (M.A.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (R.A.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761-644; Fax: +34-976-761-612
| |
Collapse
|
20
|
Silva AM, Félix LM, Teixeira I, Martins-Gomes C, Schäfer J, Souto EB, Santos DJ, Bunzel M, Nunes FM. Orange thyme: Phytochemical profiling, in vitro bioactivities of extracts and potential health benefits. Food Chem X 2021; 12:100171. [PMID: 34901827 PMCID: PMC8639431 DOI: 10.1016/j.fochx.2021.100171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
The use of orange thyme as food, condiments and infusions has health benefits. Phytochemical characterization of hydroethanolic and aqueous extracts was performed. Orange thyme extracts present neuroprotective, anti-aging and antioxidant activity. Orange thyme extracts present high anti-inflammatory activity with no cytotoxicity.
Orange thyme (Thymus fragrantissimus) is becoming widely used in food as a condiment and herbal tea, nevertheless its chemical composition and potential bioactivities are largely unknown. Thus the objective of this work is to obtain a detailed phytochemical profile of T. fragrantissimus by exhaustive ethanolic extraction and by aqueous decoction mimicking its consumption. Extracts showed high content in rosmarinic acid, luteolin-O-hexuronide and eriodictyol-O-hexuronide; these were the main phenolic compounds present in orange thyme accounting for 85% of the total phenolic compounds. Orange thyme extracts presented high scavenging activity against nitric oxide and superoxide radicals. Both extracts presented significant inhibitory effect of tyrosinase activity and moderate anti-acetylcholinesterase activity. Both extracts showed a good in vitro anti-inflammatory activity and a weak anti-proliferative/cytotoxic activity against Caco-2 and HepG2 cell lines supporting its safe use. Orange thyme is a very good source of bioactive compounds with potential use in different food and nutraceutical industries.
Collapse
Affiliation(s)
- Amélia M Silva
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Isabel Teixeira
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.,Chemistry Research Center -Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry - Karlsruhe Institute of Technology (KIT), Germany
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Dario J Santos
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Mirko Bunzel
- Chemistry Research Center -Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Fernando M Nunes
- Department of Food Chemistry and Phytochemistry - Karlsruhe Institute of Technology (KIT), Germany.,Department of Chemistry, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal Vila Real, Portugal
| |
Collapse
|
21
|
Zhou D, Bao Q, Fu S. Anticancer activity of ursolic acid on retinoblastoma cells determined by bioinformatics analysis and validation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1548. [PMID: 34790754 PMCID: PMC8576664 DOI: 10.21037/atm-21-4617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Background This article aims to explore whether ursolic acid (UA) inhibits the progression of retinoblastoma (Rb) by regulating stearoyl-CoA desaturase (SCD). Methods The Gene Expression Omnibus (GEO) database was used to filter the chip, then the GEO2R software was used to analyze the microarray data (GSE97508, GSE24673, and GSE110811). Gene set enrichment analysis (GSEA) was used to analyze the relationship between the expression level of SCD and the proliferation, migration, invasion, and inflammation in Rb patients. SO-RB50 and Y79 cell proliferation, migration, and invasion were assessed by the CCK-8 assay, the colony formation assay, the Transwell assay, and the wound scratch test. The protein expression levels of SCD were measured by western blot. The mRNA expression levels of IL-8, IL-6, CXCL1, and CCL2 were measured by RT-qPCR. The protein expression levels of IL-8 and IL-6 were measured by ELISA. A xenograft nude mouse model was established to evaluate the effect of UA on tumor growth in male BALB/c mice. Results The expression levels of SCD were related to cell proliferation, migration, invasion, and inflammation. UA inhibited SO-RB50 and Y79 cell proliferation, migration, and invasion. At the same time, UA suppressed tumor growth in the xenograft nude mouse model. Overexpression of SCD promoted SO-RB50 and Y79 cell proliferation, migration, invasion, and inflammation, while SCD knockout inhibited SO-RB50 and Y79 cell proliferation, migration, invasion, and inflammation. Importantly, UA inhibited the proliferation, migration, and invasion of Rb cells through SCD inhibition. Conclusions UA inhibited the proliferation, migration, and invasion of Rb cells through SCD. This provides a new scientific basis for targeted therapy of Rb.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Ophthalmology, Suzhou High Tech Zone People's Hospital, Suzhou, China
| | - Qi Bao
- Department of Ophthalmology, Suzhou High Tech Zone People's Hospital, Suzhou, China
| | - Songbin Fu
- Department of Ophthalmology, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
23
|
Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of Ursolic Acid: A Modern Natural Anticancer Molecule. Front Pharmacol 2021; 12:706121. [PMID: 34295253 PMCID: PMC8289884 DOI: 10.3389/fphar.2021.706121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Ursolic acid (UA) is a natural pentacyclic triterpene derived from fruit, herb, and other plants. UA can act on molecular targets of various signaling pathways, inhibit the growth of cancer cells, promote cycle stagnation, and induce apoptosis, thereby exerting anticancer activity. However, its poor water-solubility, low intestinal mucosal absorption, and low bioavailability restrict its clinical application. In order to overcome these deficiencies, nanotechnology, has been applied to the pharmacological study of UA. Objective: In this review, we focused on the absorption, distribution, and elimination pharmacokinetics of UA in vivo, as well as on the research progress in various UA nanoformulations, in the hope of providing reference information for the research on the anticancer activity of UA. Methods: Relevant research articles on Pubmed and Web of Science in recent years were searched selectively by using the keywords and subheadings, and were summarized systematically. Key finding: The improvement of the antitumor ability of the UA nanoformulations is mainly due to the improvement of the bioavailability and the enhancement of the targeting ability of the UA molecules. UA nanoformulations can even be combined with computational imaging technology for monitoring or diagnosis. Conclusion: Currently, a variety of UA nanoformulations, such as micelles, liposomes, and nanoparticles, which can increase the solubility and bioactivity of UA, while promoting the accumulation of UA in tumor tissues, have been prepared. Although the research of UA in the nanofield has made great progress, there is still a long way to go before the clinical application of UA nanoformulations.
Collapse
Affiliation(s)
- Longyun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Tang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
24
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
25
|
Chen X, Bremner DH, Ye Y, Lou J, Niu S, Zhu LM. A dual-prodrug nanoparticle based on chitosan oligosaccharide for enhanced tumor-targeted drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Gudoityte E, Arandarcikaite O, Mazeikiene I, Bendokas V, Liobikas J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int J Mol Sci 2021; 22:4599. [PMID: 33925641 PMCID: PMC8124962 DOI: 10.3390/ijms22094599] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.
Collapse
Affiliation(s)
- Evelina Gudoityte
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Celignis Limited, Unit 11 Holland Road, Plassey Technology Park Castletroy, County Limerick, Ireland
| | - Odeta Arandarcikaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
| | - Ingrida Mazeikiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Vidmantas Bendokas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
27
|
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021; 13:1896. [PMID: 33920840 PMCID: PMC8071188 DOI: 10.3390/cancers13081896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a key role in the assessment of nanopharmaceuticals' potential imaging analysis and for site-specific delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their properties so that they can be properly used in cancer therapy. This paper describes the role of multifunctional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be useful in modern chemotherapy, and finally, the challenges associated with the commercialization of nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marlena Szalata
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - José M. Cabeda
- ESS-FP, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia 334, 4200-253 Porto, Portugal;
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB–Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
| |
Collapse
|
28
|
Nanoformulations for Delivery of Pentacyclic Triterpenoids in Anticancer Therapies. Molecules 2021; 26:molecules26061764. [PMID: 33801096 PMCID: PMC8004206 DOI: 10.3390/molecules26061764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The search for safe and effective anticancer therapies is one of the major challenges of the 21st century. The ineffective treatment of cancers, classified as civilization diseases, contributes to a decreased quality of life, health loss, and premature mortality in oncological patients. Many natural phytochemicals have anticancer potential. Pentacyclic triterpenoids, characterized by six- and five-membered ring structures, are one of the largest class of natural metabolites sourced from the plant kingdom. Among the known natural triterpenoids, we can distinguish lupane-, oleanane-, and ursane-types. Pentacyclic triterpenoids are known to have many biological activities, e.g., anti-inflammatory, antibacterial, hepatoprotective, immunomodulatory, antioxidant, and anticancer properties. Unfortunately, they are also characterized by poor water solubility and, hence, low bioavailability. These pharmacological properties may be improved by both introducing some modifications to their native structures and developing novel delivery systems based on the latest nanotechnological achievements. The development of nanocarrier-delivery systems is aimed at increasing the transport capacity of bioactive compounds by enhancing their solubility, bioavailability, stability in vivo and ensuring tumor-targeting while their toxicity and risk of side effects are significantly reduced. Nanocarriers may vary in sizes, constituents, shapes, and surface properties, all of which affect the ultimate efficacy and safety of a given anticancer therapy, as presented in this review. The presented results demonstrate the high antitumor potential of systems for delivery of pentacyclic triterpenoids.
Collapse
|
29
|
Xiaofei J, Mingqing S, Miao S, Yizhen Y, Shuang Z, Qinhua X, Kai Z. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway. Biochem Biophys Res Commun 2021; 545:81-88. [PMID: 33548628 DOI: 10.1016/j.bbrc.2021.01.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Cervical cancer remains the leading cause of cancerous death among women worldwide. Oleanolic acid (OA) is a substance that occurs naturally in the leaves, fruits, and rhizomes of plants and has anti-cancer activity. In this study, tumor-bearing mice were used as the animal model and Hela cells were used as cellular model. In vivo experiments have showed that OA significantly reduced the size and mass of cervical cancer tumors in mice. In vitro experiments have showed that OA significantly reduced the viability and proliferative capacity of Hela cells. In both in vivo and in vitro assays, OA increased the oxidative stress levels and Fe2+ content, and increased the expression of ferroptosis-related proteins. We found that ACSL4 was highly expressed in both xenograft models and cervical carcinoma cells with OA treatment. Further use of siRNA to interfere with ACSL4 expression in cervical cancer cells revealed that the inhibitory effect of OA on cell viability and proliferative capacity was counteracted, while a decrease in ROS levels and GPX4 was detected, suggesting that OA activated ferroptosis in Hela cells by promoting ACSL4 expression, thereby reducing the survival rate of Hela cells. Therefore, promotion of ACSL4-dependent ferroptosis by OA may be a potential approach for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jiang Xiaofei
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Shi Mingqing
- Department of Obstetrics and Gynecology, Lishui Hospital of Chinese Medicine, Lishui, Zhejiang, 323000, China
| | - Sui Miao
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Yuan Yizhen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhang Shuang
- Zhangjiagang Hospital of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Xia Qinhua
- Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Zhao Kai
- Xuzhou City Hospital of Chinese Medicine, Xuzhou, Jiangsu, 221009, China.
| |
Collapse
|
30
|
Jiang Y, Liu X, Tan X, Hou Y, Sun W, Gou J, Yin T, He H, Zhang Y, Tang X. In Vitro and In Vivo Evaluation of SP94 Modified Liposomes Loaded with N-14NCTDA, a Norcantharimide Derivative for Hepatocellular Carcinoma-Targeting. AAPS PharmSciTech 2020; 21:277. [PMID: 33033942 DOI: 10.1208/s12249-020-01829-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this research is to develop a liposomal drug delivery system, which can selectively target hepatocellular carcinoma (HCC) to deliver the antitumor agent N-14NCTDA, a C14 alkyl chain norcantharimide derivative of norcantharidin. N-14NCTDA-loaded liposomes were successfully prepared by lipid membrane hydration and extrusion methods. SP94, a targeting peptide for HCC cells, was attached to the liposomes loaded with N-14NCTDA by the post-insertion method to obtain SP94 modified liposomes (SP94-LPs). SP94-LPs had a significant cytotoxicity against Hep G2 cells with the IC50 of 15.395 ± 0.89 μg/mL, which is lower than that of NCTD-S (IC50 = 20.863 ± 0.56 μg/mL) and GAL-LPs (IC50 = 24.589 ± 1.02 μg/mL). Compared with conventional liposomes (Con-LPs), SP94-LPs showed greater cellular uptake in Hep G2 cells. Likewise, significant tumor suppression was achieved in H22 tumor-bearing mice which were treated with SP94-LPs. The tumor inhibition rate (IRw) of SP94-LPs was 82 ± 0.98%, obviously higher than that of GAL-LPs (69 ± 1.39%), Con-LPs (60 ± 2.78%), and NCTD-S (51 ± 3.67%). SP94-LPs exhibited a significant hepatocellular carcinoma-targeting activity in vitro and in vivo, which will provide a new alternative for hepatocellular carcinoma treatment in future. Graphical Abstract.
Collapse
|
31
|
Abstract
Cosmetics composed of synthetic and/or semi-synthetic polymers, associated or not with natural polymers, exhibit a dashing design, with thermal and chemo-sensitive properties. Cosmetic polymers are also used for the preparation of nanoparticles for the delivery of, e.g., fragrances, with the purpose to modify their release profile and also reducing the risk of evaporation. Besides, other cosmetically active nutrients, dermal permeation enhancers, have also been loaded into nanoparticles to improve their bioactivities on the skin. The use of natural polymers in cosmetic formulations is of particular relevance because of their biocompatible, safe, and eco-friendly character. These formulations are highly attractive and marketable to consumers, and are suitable for a plethora of applications, including make-up, skin, and hair care, and as modifiers and stabilizers. In this review, natural synthetic, semi-synthetic, and synthetic polymers are discussed considering their properties for cosmetic applications. Their uses in conventional and novel formulations are also presented.
Collapse
|
32
|
Nhu TQ, Dam NP, Bich Hang BT, Bach LT, Thanh Huong DT, Buu Hue BT, Scippo ML, Phuong NT, Quetin-Leclercq J, Kestemont P. Immunomodulatory potential of extracts, fractions and pure compounds from Phyllanthus amarus and Psidium guajava on striped catfish (Pangasianodon hypophthalmus) head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2020; 104:289-303. [PMID: 32544554 DOI: 10.1016/j.fsi.2020.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to identify major phytochemical constituents, as well as compare the immunomodulatory effects of Psidium guajava L. and Phyllanthus amarus Schun and Thonn crude ethanol extracts and their fractions on striped catfish (Pangasianodon hypophthalmus) head kidney leukocytes (HKLs). Moreover, pure constituents were also investigated for their effects on those cells: hypophyllanthin, identified as a major constituent of P. amarus crude extracts and its hexane fraction; corosolic acid, ursolic acid, and oleanolic acid, identified in P. guajava crude extract, ethyl acetate and dichloromethane fractions; with other terpenic derivatives, as well as guajaverin and avicularin, identified with other flavonoids by LC-UV-MS in the crude P. guajava extract and its ethyl acetate fraction. Cell viability, respiratory burst assay (RBA), nitric oxide synthase (NOS) and lysozyme activity in HKLs were analyzed after 24 h stimulation with each extract (10, 20 and 40 μg/mL) or pure compound (7.5, 15 and 30 μM). Our results show that the hexane fraction of both plant extracts inhibited the viability of HKLs, while several other fractions enhanced the cell viability. All P. guajava fractions at all or some concentration considerably enhanced the RBA production in HKLs. Similarly, NOS production was also significantly increased by some or all concentrations of P. guajava dichloromethane and ethyl acetate fractions. However, the NOS production was dose-dependently inhibited in HKLs treated with Pa ethyl acetate and both plants aqueous fractions at 10 or 10 and 40 μg/mL respectively. The lysozyme activity in cells treated with P. guajava crude extracts and all its organic solvent fractions were stronger than those in P. amarus treatments. Pure compounds including corosolic acid, guajaverin, ursolic acid, hypophyllanthin inhibited the HKLs viability according to concentration and type of compound. All pure compounds except avicularin significantly stimulated, at certain or all concentrations, the RBA production and/or the lysozyme activity in HKLs. The NOS production was significantly reduced in HKLs treated with oleanolic acid (30 μM) and hypophyllanthin (7.5 μM) while its level was increased by hypophyllanthin at 30 μM. These results highlighted that the crude ethanol extracts of P. guajava and P. amarus, their fractions and some of their pure components at certain concentrations can potentially act as immunomodulators, and could be considered as valuable candidates in fishery sciences.
Collapse
Affiliation(s)
- Truong Quynh Nhu
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Nguyen Phuc Dam
- Department of Chemistry Education, School of Education, Can Tho University, Can Tho City, Viet Nam; Louvain Drug Research Institute (LDRI) Pharmacognosy Research Group, Université Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Le Thi Bach
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Viet Nam.
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Viet Nam.
| | - Marie-Louise Scippo
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Bât. B43bis, 10 Avenue de Cureghem, Sart-Tilman, Liège, Belgium.
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Joëlle Quetin-Leclercq
- Louvain Drug Research Institute (LDRI) Pharmacognosy Research Group, Université Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.
| |
Collapse
|
33
|
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020; 25:E3731. [PMID: 32824172 PMCID: PMC7464532 DOI: 10.3390/molecules25163731] [Citation(s) in RCA: 584] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term "nanoparticle" stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Filipa Carreiró
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Ana M. Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Andreia Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Bárbara Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - D. Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643 001, Tamil Nadu, India;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60–355 Poznań, Poland;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Tras-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
34
|
Chen X, Niu S, Bremner DH, Zhang X, Zhang H, Zhang Y, Li S, Zhu LM. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 2020; 247:116672. [PMID: 32829800 DOI: 10.1016/j.carbpol.2020.116672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Nanocomposites as "stevedores" for co-delivery of multidrugs hold great promise in addressing the drawbacks of traditional cancer chemotherapy. In this work, our strategy presents a new avenue for the stepwise release of two co-delivered agents into the tumor cells. The hybrid nanocomposite consists of a pH-responsive chitosan (CS), a thermosensitive poly(N-vinylcaprolactam) (PNVCL) and a functionalized cell-penetrating peptide (H6R6). Doxorubicin (DOX) and oleanolic acid (OA) are loaded into the nanocomposite (H6R6-CS-g-PNVCL). The system displayed a suitable size (∼190 nm), a high DOX loading (13.2 %) and OA loading efficiency (7.3 %). The tumor microenvironment triggered the nanocomposite to be selectively retained in tumor cells, then releasing the drugs. Both in vitro and in vivo studies showed a significant enhancement in antitumor activity of the co-delivered system in comparison to mono-delivery. This approach which relies on redox, pH and temperature effects utilizing co-delivery nanosystems may be beneficial for future applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, PR China
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee, DD1 1HG, Scotland, UK
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Hongmei Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, PR China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China.
| |
Collapse
|
35
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
36
|
Silva AM, Martins-Gomes C, Souto EB, Schäfer J, Santos JA, Bunzel M, Nunes FM. Thymus zygis subsp. zygis an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. Antioxidants (Basel) 2020; 9:antiox9060482. [PMID: 32503184 PMCID: PMC7346176 DOI: 10.3390/antiox9060482] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Thymus zygis subsp. zygis is an endemic Portuguese plant belonging to the Thymus zygis species. Although T. zygis is commonly used as a condiment and as a medicinal herb, a detailed description of the polyphenol composition of hydroethanolic (HE) and aqueous decoction (AD) extracts is not available. In this work, we describe for the first time a detailed phenolic composition of Thymus zygis subsp. zygis HE and AD extracts, together with their antioxidant, anti-proliferative and anti-inflammatory activities. Unlike other Thymus species, T. zygis subsp. zygis extracts contain higher amounts of luteolin-(?)-O-hexoside. However, the major phenolic compound is rosmarinic acid, and high amounts of salvianolic acids K and I were also detected. T. zygis subsp. zygis extracts exhibited significant scavenging activity of ABTS+, hydroxyl (•OH), and nitric oxide (NO) radicals. Regarding the anti-proliferative/cytotoxic effect, tested against Caco-2 and HepG2 cells, the AD extract only slightly reduced cell viability at higher concentrations (IC50 > 600 µg/mL, 48 h exposure), denoting very low toxicity, while the HE extract showed a high anti-proliferative effect, especially at 48 h exposure (IC50 of 85.01 ± 15.10 μg/mL and 82.19 ± 2.46 μg/mL, for Caco-2 and HepG2, respectively). At non-cytotoxic concentrations, both extracts reduced the nitric oxide (NO) release by lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (at 50 μg/mL, HE and AD extracts inhibited NO release in ~89% and 48%, respectively). In conclusion, the results highlight the non-toxic effect of aqueous extracts, both resembling the consumption of antioxidants in foodstuff or in functional food. Furthermore, the HE extract of T. zygis subsp. zygis is a source of promising molecules with antioxidant, anti-inflammatory and anticancer activities, highlighting its potential as a source of bioactive ingredients for nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal; (C.M.-G.); (J.A.S.)
- Correspondence: (A.M.S.); (F.M.N.); Tel.: +351-259-350-921 (A.M.S.); +351-259-350-907 (F.M.N.)
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal; (C.M.-G.); (J.A.S.)
- Food and Wine Chemistry Lab., Chemistry Research Centre-Vila Real (CQ-VR), UTAD, 5001-801 Vila Real, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.S.); (M.B.)
| | - João A. Santos
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal; (C.M.-G.); (J.A.S.)
- Department of Physics, School of Sciences and Technology, UTAD, 5001-801 Vila Real, Portugal
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany; (J.S.); (M.B.)
| | - Fernando M. Nunes
- Food and Wine Chemistry Lab., Chemistry Research Centre-Vila Real (CQ-VR), UTAD, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: (A.M.S.); (F.M.N.); Tel.: +351-259-350-921 (A.M.S.); +351-259-350-907 (F.M.N.)
| |
Collapse
|
37
|
Sun Y, Li L, Xie H, Wang Y, Gao S, Zhang L, Bo F, Yang S, Feng A. Primary Studies on Construction and Evaluation of Ion-Sensitive in situ Gel Loaded with Paeonol-Solid Lipid Nanoparticles for Intranasal Drug Delivery. Int J Nanomedicine 2020; 15:3137-3160. [PMID: 32440115 PMCID: PMC7210040 DOI: 10.2147/ijn.s247935] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Paeonol (PAE) is a potential central neuroprotective agent with poor water solubility and rapid metabolism in vivo. The key to improve the clinical application of PAE in the treatment of neurodegenerative diseases is to improve the brain delivery of it. The purpose of this study was to construct a paeonol-solid lipid nanoparticles-in situ gel (PAE-SLNs-ISG) drug delivery system based on nose-brain transport pathway. MATERIALS AND METHODS In this study, the stability of PAE in simulated biological samples was studied firstly in order to clarify the reasons for low oral bioavailability. Paeonol-solid lipid nanoparticles (PAE-SLNs) were prepared by high-temperature emulsification-low-temperature curing combined with ultrasound. The PAE-SLNs-ISG drug delivery system was constructed, and related formulation optimization, preparation characterization, cell evaluation and in vivo evaluation were performed. RESULTS The metabolic mechanism of PAE incubated in the liver microsomes metabolic system was in accordance with the first-order kinetics, and the half-life was 0.23 h. PAE-SLNs were polyhedral or spherical particles with good dispersion and the particle size was 166.79 nm ± 2.92 nm. PAE-SLNs-ISG solution was a Newtonian fluid with a viscosity of 44.36 mPa · S ± 2.89 mPa · S. The viscosity of PAE-SLNs-ISG gel was 1542.19 mPa · S ± 19.30 mPa · S, and the rheological evaluation showed that the gel was a non-Newtonian pseudoplastic fluid with shear thinning, thixotropy and yield value. The release mechanism of PAE from PAE-SLNs was drug diffusion; the release mechanism of PAE from PAE-SLNs-ISG was a synergistic effect of skeleton erosion and drug diffusion. The cell viabilities of PAE-SLNs and PAE-SLNs-ISG in the concentration range of 0.001 µg/mL to 10 µg/mL were higher than 90%, showing a low level of cytotoxicity. The geometric mean fluorescent intensities of RPMI 2650 cells incubated with fluorescein isothiocyanate-solid lipid nanoparticles (FITC-SLNs) for 1 h, 4 h and 6 h were 1841 ± 24, 2261 ± 27 and 2757 ± 22, respectively. Cyanine7 NHS ester-solid lipid nanoparticles-in situ gel (Cy7-SLNs-ISG) accumulated effectively in the brain area after administration through the olfactory area, and the fluorescence response was observed in olfactory bulb, cerebellum and striatum. CONCLUSION SLNs-ISG nose-brain drug delivery system can effectively deliver SLNs to brain regions, and it is a potentially effective strategy to realize the brain region delivery of PAE.
Collapse
Affiliation(s)
- Yue Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Lingjun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Yuzhen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Shuang Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Li Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Fumin Bo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Shanjing Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| | - Anjie Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, People’s Republic of China
| |
Collapse
|
38
|
In Vitro Characterization, Modelling, and Antioxidant Properties of Polyphenon-60 from Green Tea in Eudragit S100-2 Chitosan Microspheres. Nutrients 2020; 12:nu12040967. [PMID: 32244441 PMCID: PMC7230985 DOI: 10.3390/nu12040967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Eudragit S100-coated chitosan microspheres (S100Ch) are proposed as a new oral delivery system for green tea polyphenon-60 (PP60). PP60 is a mixture of polyphenolic compounds, known for its active role in decreasing oxidative stress and metabolic risk factors involved in diabetes and in other chronic diseases. Chitosan-PP60 microspheres prepared by an emulsion cross-linking method were coated with Eudragit S100 to ensure the release of PP60 in the terminal ileum. Different core–coat ratios of Eudragit and chitosan were tested. Optimized chitosan microspheres were obtained with a chitosan:PP60 ratio of 8:1 (Ch-PP608:1), rotation speed of 1500 rpm, and surfactant concentration of 1.0% (m/v) achieving a mean size of 7.16 µm. Their coating with the enteric polymer (S100Ch-PP60) increased the mean size significantly (51.4 µm). The in vitro modified-release of PP60 from S100Ch-PP60 was confirmed in simulated gastrointestinal conditions. Mathematical fitting models were used to characterize the release mechanism showing that both Ch-PP608:1 and S100Ch-PP60 fitted the Korsmeyers–Peppas model. The antioxidant activity of PP60 was kept in glutaraldehyde-crosslinked chitosan microspheres before and after their coating, showing an IC50 of 212.3 µg/mL and 154.4 µg/mL, respectively. The potential of chitosan microspheres for the delivery of catechins was illustrated, with limited risk of cytotoxicity as shown in Caco-2 cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The beneficial effects of green tea and its derivatives in the management of metabolic disorders can be exploited using mucoadhesive chitosan microspheres coated with enteric polymers for colonic delivery.
Collapse
|
39
|
Souto EB, Campos JR, Da Ana R, Martins-Gomes C, Silva AM, Souto SB, Lucarini M, Durazzo A, Santini A. Ocular Cell Lines and Genotoxicity Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2046. [PMID: 32204489 PMCID: PMC7142522 DOI: 10.3390/ijerph17062046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
Genotoxicity screening tests aim to evaluate if and to what extent a compound in contact with the human body (e.g., a drug molecule, a compound from the environment) interacts with DNA. The comet assay is a sensitive method used to predict the risk of DNA damage in individual cells, as it quantifies the tape breaks, being the alkaline version (pH > 13) the most commonly used in the laboratory. Epithelial cells serve as biomatrices in genotoxicity assessments. As ca. 80% of solid cancers are of epithelial origin, the quantification of the DNA damage upon exposure of epithelial cells to a drug or drug formulation becomes relevant. Comet assays run in epithelial cells also have clinical applications in human biomonitoring, which assesses whether and to what extent is the human body exposed to environmental genotoxic compounds and how such exposure changes over time. Ocular mucosa is particularly exposed to environmental assaults. This review summarizes the published data on the genotoxicity assessment in estimating DNA damage in epithelial cells with a special focus on ocular cell lines. General comet assay procedures for ex vivo and in vivo epithelium samples are also described.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.R.C.); (R.D.A.)
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.R.C.); (R.D.A.)
| | - Raquel Da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (J.R.C.); (R.D.A.)
| | - Carlos Martins-Gomes
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Selma B. Souto
- Department of Endocrinology of Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
40
|
Nanopharmaceutics: Part II-Production Scales and Clinically Compliant Production Methods. NANOMATERIALS 2020; 10:nano10030455. [PMID: 32143286 PMCID: PMC7153617 DOI: 10.3390/nano10030455] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 01/13/2023]
Abstract
Due the implementation of nanotechnologies in the pharmaceutical industry over the last few decades, new type of cutting-edge formulations-nanopharmaceutics-have been proposed. These comprise pharmaceutical products at the nanoscale, developed from different types of materials with the purpose to, e.g., overcome solubility problems of poorly water-soluble drugs, the pharmacokinetic and pharmacodynamic profiles of known drugs but also of new biomolecules, to modify the release profile of loaded compounds, or to decrease the risk of toxicity by providing site-specific delivery reducing the systemic distribution and thus adverse side effects. To succeed with the development of a nanopharmaceutical formulation, it is first necessary to analyze the type of drug which is to be encapsulated, select the type matrix to load it (e.g., polymers, lipids, polysaccharides, proteins, metals), followed by the production procedure. Together these elements have to be compatible with the administration route. To be launched onto the market, the selected production method has to be scaled-up, and quality assurance implemented for the product to reach clinical trials, during which in vivo performance is evaluated. Regulatory issues concerning nanopharmaceutics still require expertise for harmonizing legislation and a clear understanding of clinically compliant production methods. The first part of this study addressing "Nanopharmaceutics: Part I-Clinical trials legislation and Good Manufacturing Practices (GMP) of nanotherapeutics in the EU" has been published in Pharmaceutics. This second part complements the study with the discussion about the production scales and clinically compliant production methods of nanopharmaceutics.
Collapse
|
41
|
Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051594] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin aging is described as dermatologic changes either naturally occurring over the course of years or as the result of the exposure to environmental factors (e.g., chemical products, pollution, infrared and ultraviolet radiations). The production of collagen and elastin, the main structural proteins responsible for skin strength and elasticity, is reduced during aging, while their role in skin rejuvenation can trigger a wrinkle reversing effect. Elasticity loss, wrinkles, dry skin, and thinning are some of the signs that can be associated with skin aging. To overcome skin aging, many strategies using natural and synthetic ingredients are being developed aiming to reduce the signs of aging and/or to treat age-related skin problems (e.g., spots, hyper- or hypopigmentation). Among the different approaches in tissue regeneration, the use of nanomaterials loaded with cosmeceuticals (e.g., phytochemicals, vitamins, hyaluronic acid, and growth factors) has become an interesting alternative. Based on their bioactivities and using different nanoformulations as efficient delivery systems, several cosmeceutical and pharmaceutical products are now available on the market aiming to mitigate the signs of aged skin. This manuscript discusses the state of the art of nanomaterials commonly used for topical administration of active ingredients formulated in nanopharmaceuticals and nanocosmeceuticals for skin anti-aging.
Collapse
|
42
|
Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. Molecules 2020; 25:molecules25030685. [PMID: 32041134 PMCID: PMC7038118 DOI: 10.3390/molecules25030685] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Essential oils are odorant liquid oily products consisting of a complex mixture of volatile compounds obtained from a plant raw material. They have been increasingly proven to act as potential natural agents in the treatment of several human conditions, including diabetes mellitus (DM). DM is a metabolic disorder characterized by chronic hyperglycemia closely related to carbohydrate, protein and fat metabolism disturbances. In order to explore novel approaches for the management of DM our group proposes the encapsulation of sucupira essential oil, obtained from the fruits of the Brazilian plants of the genus Pterodon, in nanostructured lipid carriers (NLCs), a second generation of lipid nanoparticles which act as new controlled drug delivery system (DDS). Encapsulation was performed by hot high-pressure homogenization (HPH) technique and the samples were then analyzed by dynamic light scattering (DLS) for mean average size and polydispersity index (PI) and by electrophoretic light scattering (ELS) for zeta potential (ZP), immediately after production and after 24 h of storage at 4 °C. An optimal sucupira-loaded NLC was found to consist of 0.5% (m/V) sucupira oil, 4.5% (m/V) of Kollivax® GMS II and 1.425% (m/V) of TPGS (formulation no. 6) characterized by a mean particle size ranging from 148.1 ± 0.9815 nm (0 h) to 159.3 ± 9.539 nm (at 24 h), a PI from 0.274 ± 0.029 (0 h) to 0.305 ± 0.028 (24 h) and a ZP from −0.00236 ± 0.147 mV (at 0 h) to 0.125 ± 0.162 (at 24 h). The encapsulation efficiency and loading capacity were 99.98% and 9.6%, respectively. The optimized formulation followed a modified release profile fitting the first order kinetics, over a period of 8 h. In vitro cytotoxicity studies were performed against Caco-2 cell lines, for which the cell viability above 90% confirmed the non-cytotoxic profile of both blank and sucupira oil-loaded NLC.
Collapse
|
43
|
Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020:61-74. [DOI: 10.1007/978-3-030-43855-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019; 24:E4209. [PMID: 31756981 PMCID: PMC6930606 DOI: 10.3390/molecules24234209] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus, an incurable metabolic disease, is characterized by changes in the homeostasis of blood sugar levels, being the subcutaneous injection of insulin the first line treatment. This administration route is however associated with limited patient's compliance, due to the risk of pain, discomfort and local infection. Nanoparticles have been proposed as insulin carriers to make possible the administration of the peptide via friendlier pathways without the need of injection, i.e., via oral or nasal routes. Nanoparticles stand for particles in the nanometer range that can be obtained from different materials (e.g., polysaccharides, synthetic polymers, lipid) and are commonly used with the aim to improve the physicochemical stability of the loaded drug and thereby its bioavailability. This review discusses the use of different types of nanoparticles (e.g., polymeric and lipid nanoparticles, liposomes, dendrimers, niosomes, micelles, nanoemulsions and also drug nanosuspensions) for improved delivery of different oral hypoglycemic agents in comparison to conventional therapies.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Joana R. Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Patricia Severino
- Tiradentes Institute, University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju-SE 49010-390, Brazil;
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (T.N.P.); (L.Y.Z.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Angelo A. Izzo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
45
|
Jose S, Cinu TA, Sebastian R, Shoja MH, Aleykutty NA, Durazzo A, Lucarini M, Santini A, Souto EB. Transferrin-Conjugated Docetaxel-PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle. Polymers (Basel) 2019; 11:polym11111905. [PMID: 31752417 PMCID: PMC6918445 DOI: 10.3390/polym11111905] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Targeted drug delivery systems are commonly used to improve the therapeutic index of anti-cancer drugs by increasing their selectivity and reducing systemic distribution and toxicity. Ligand-conjugated nanoparticles (NPs) can be effectively applied for active chemotherapeutic targeting to overexpressed receptors of tumor cells. In this study, transferrin (Tf) was successfully conjugated with poly-l-lactic-co-glycolic acid (PLGA) using ethylene diamine confirmed by NMR, for the loading of docetaxel trihydrate (DCT) into PLGA nanoparticles (NPs). The DCT-loaded Tf-conjugated PLGA NPs were produced by an emulsion-solvent evaporation technique, and a 32 full factorial design was used to optimize the nanoparticle formulations. The DCT-loaded Tf-conjugated PLGA NPs were characterized by FTIR spectroscopy, differential scanning calorimetry, powder X-ray diffraction (PXRD), TEM, particle size, and zeta potential analysis. In vitro release kinetics confirmed that release of DCT from the designed formulations followed a zero-order kinetics and a diffusion controlled non-Fickian release profile. The DCT-loaded Tf-conjugated PLGA NPs were evaluated in vitro in MCF-7 cells for bioactivity assessment. Cytotoxicity studies confirmed that the Tf-conjugated PLGA NPs were more active than the non-conjugated counterparts. Cell uptake studies re-confirmed the ligand-mediated active targeting of the formulated NPs. From the cell cycle analysis, the anti-cancer activity of DCT-loaded Tf-conjugated PLGA NPs was shown to occur by arresting the G2/M phase.
Collapse
Affiliation(s)
- Sajan Jose
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686631, India; (T.A.C.); (R.S.)
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (S.J.); (A.S.); (E.B.S.); Tel.: +91-9447600750 (S.J.); +39-081-253-9317 (A.S.); +351-239-488-400 (E.B.S.)
| | - Thomas A. Cinu
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686631, India; (T.A.C.); (R.S.)
| | - Rosmy Sebastian
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686631, India; (T.A.C.); (R.S.)
| | - M. H. Shoja
- College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India;
| | | | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (S.J.); (A.S.); (E.B.S.); Tel.: +91-9447600750 (S.J.); +39-081-253-9317 (A.S.); +351-239-488-400 (E.B.S.)
| | - Eliana B. Souto
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Correspondence: (S.J.); (A.S.); (E.B.S.); Tel.: +91-9447600750 (S.J.); +39-081-253-9317 (A.S.); +351-239-488-400 (E.B.S.)
| |
Collapse
|
46
|
Ismail R, Bocsik A, Katona G, Gróf I, Deli MA, Csóka I. Encapsulation in Polymeric Nanoparticles Enhances the Enzymatic Stability and the Permeability of the GLP-1 Analog, Liraglutide, Across a Culture Model of Intestinal Permeability. Pharmaceutics 2019; 11:pharmaceutics11110599. [PMID: 31726699 PMCID: PMC6920980 DOI: 10.3390/pharmaceutics11110599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/19/2022] Open
Abstract
The potential of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to overcome the intestinal barrier that limits oral liraglutide delivery was evaluated. Liraglutide-loaded PLGA NPs were prepared by the double emulsion solvent evaporation method. In vitro release kinetics and enzymatic degradation studies were conducted, mimicking the gastrointestinal environment. The permeability of liraglutide solution, liraglutide-loaded PLGA NPs, and liraglutide in the presence of the absorption enhancer PN159 peptide was tested on the Caco-2 cell model. Liraglutide release from PLGA NPs showed a biphasic release pattern with a burst effect of less than 15%. The PLGA nanosystem protected the encapsulated liraglutide from the conditions simulating the gastric environment. The permeability of liraglutide encapsulated in PLGA NPs was 1.5-fold higher (24 × 10−6 cm/s) across Caco-2 cells as compared to liraglutide solution. PLGA NPs were as effective at elevating liraglutide penetration as the tight junction-opening PN159 peptide. No morphological changes were seen in the intercellular junctions of Caco-2 cells after treatment with liraglutide-PLGA NPs, confirming the lack of a paracellular component in the transport mechanism. PLGA NPs, by protecting liraglutide from enzyme degradation and enhancing its permeability across intestinal epithelium, hold great potential as carriers for oral GLP-1 analog delivery.
Collapse
Affiliation(s)
- Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.I.); (G.K.)
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre H-6726 Szeged, Hungary; (A.B.); (I.G.); (M.A.D.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.I.); (G.K.)
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre H-6726 Szeged, Hungary; (A.B.); (I.G.); (M.A.D.)
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre H-6726 Szeged, Hungary; (A.B.); (I.G.); (M.A.D.)
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (R.I.); (G.K.)
- Correspondence: ; Tel.: +36-62-546116
| |
Collapse
|
47
|
Souto EB, Dias-Ferreira J, Oliveira J, Sanchez-Lopez E, Lopez-Machado A, Espina M, Garcia ML, Souto SB, Martins-Gomes C, Silva AM. Trends in Atopic Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems. Int J Mol Sci 2019; 20:ijms20225659. [PMID: 31726723 PMCID: PMC6888057 DOI: 10.3390/ijms20225659] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by robust burning and eczematous lacerations in diverse portions of the body. AD affects about 20% of both offspring and adults worldwide. The pathophysiology of AD combines environmental, hereditary, and immunological aspects, together with skin barrier dysfunction. The procedures used to prevent the disease are the everyday usage of creams to support the restoration of the epidermal barrier. The classical treatments include the use of topical corticosteroids as a first-line therapy, but also calcineurin inhibitors, antihistamines, antibiotics, phototherapy, and also immunosuppressant drugs in severe cases of AD. Topical drug delivery to deeper skin layers is a difficult task due to the skin anatomic barrier, which limits deeper penetration of drugs. Groundbreaking drug delivery systems, based on nanoparticles (NPs), have received much attention due to their ability to improve solubility, bioavailability, diffusion, targeting to specific types of cells, and limiting the secondary effects of the drugs employed in the treatment of AD. Even so, additional studies are still required to recognize the toxicological characteristics and long-term safety of NPs. This review discusses the current classical pharmacotherapy of AD against new nanoparticle skin delivery systems and their toxicologic risks.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-239-488-400
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
| | - Jéssica Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
| | - Elena Sanchez-Lopez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Ana Lopez-Machado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Maria L. Garcia
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
48
|
Soft Cationic Nanoparticles for Drug Delivery: Production and Cytotoxicity of Solid Lipid Nanoparticles (SLNs). APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204438] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The surface properties of nanoparticles have decisive influence on their interaction with biological barriers (i.e., living cells), being the concentration and type of surfactant factors to have into account. As a result of different molecular structure, charge, and degree of lipophilicity, different surfactants may interact differently with the cell membrane exhibiting different degrees of cytotoxicity. In this work, the cytotoxicity of two cationic solid lipid nanoparticles (SLNs), differing in the cationic lipids used as surfactants CTAB (cetyltrimethylammonium bromide) or DDAB (dimethyldioctadecylammonium bromide), referred as CTAB-SLNs and DDAB-SLNs, respectively, was assessed against five different human cell lines (Caco-2, HepG2, MCF-7, SV-80, and Y-79). Results showed that the cationic lipids used in SLN production highly influenced the cytotoxic profile of the particles, with CTAB-SLNs being highly cytotoxic even at low concentrations (IC50 < 10 µg/mL, expressed as CTAB amount). DDAB-SLNs produced much lower cytotoxicity, even at longer exposure time (IC50 from 284.06 ± 17.01 µg/mL (SV-80) to 869.88 ± 62.45 µg/mL (MCF-7), at 48 h). To the best of our knowledge, this is the first report that compares the cytotoxic profile of CTAB-SLNs and DDAB-SLNs based on the concentration and time of exposure, using different cell lines. In conclusion, the choice of the right surfactant for biological applications influences the biocompatibility of the nanoparticles. Regardless the type of drug delivery system, not only the cytotoxicity of the drug-loaded nanoparticles should be assessed, but also the blank (non-loaded) nanoparticles as their surface properties play a decisive role both in vitro and in vivo.
Collapse
|