1
|
Qi Y, Li Y, Cui J. Rapid-response nanofiber films against ammonia based on black wolfberry anthocyanins, polyvinyl alcohol and sodium alginate for intelligent packaging. Int J Biol Macromol 2024; 279:135390. [PMID: 39260654 DOI: 10.1016/j.ijbiomac.2024.135390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
To develop novel intelligent indicator films, the mixture of anthocyanin (BWA), polyvinyl alcohol (PVA) and sodium alginate (SA) were spun into PVA/SA/BWA nanofiber films with BWA concentration of 0 %, 5 %, 10 %, and 15 % (based on PVA and SA) via electrospinning technology. The results showed that the BWA was sensitive to pH and was controlled release from films. With increasing BWA concentration, the fiber diameter, tensile strength, and elongation at break gradually decreased, while water contact angle, thickness, moisture content, and antioxidant properties gradually increased. The electrospinning films exhibited high sensitivity to ammonia with rapid color changes in 1 s and excellent color reversibility and color stability within 21 d. The application for shrimp packaging showed that the colorimetric response of the films was closely related to the changes in pH, total volatile basic nitrogen (TVB-N), and total viable count (TVC) of shrimp. This suggests that the prepared films are promising in application for intelligent packaging.
Collapse
Affiliation(s)
- Yangyang Qi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yana Li
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jiaxue Cui
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Ndlovu SP, Motaung KSCM, Adeyemi SA, Ubanako P, Ngema L, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2380-2401. [PMID: 39037962 DOI: 10.1080/09205063.2024.2381375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thierry Y Fonkui
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Derek T Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
3
|
Kosik-Kozioł A, Nakielski P, Rybak D, Frączek W, Rinoldi C, Lanzi M, Grodzik M, Pierini F. Adhesive Antibacterial Moisturizing Nanostructured Skin Patch for Sustainable Development of Atopic Dermatitis Treatment in Humans. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32128-32146. [PMID: 38872576 DOI: 10.1021/acsami.4c06662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a "green" cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core-shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches' exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches' moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.
Collapse
Affiliation(s)
- Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Wiktoria Frączek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-777, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum University of Bologna, Bologna 40136, Italy
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-777, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
4
|
Singaravelu S, Madhan B, Abrahamse H, Dhilip Kumar SS. Multifunctional embelin- poly (3-hydroxybutyric acid) and sodium alginate-based core-shell electrospun nanofibrous mat for wound healing applications. Int J Biol Macromol 2024; 265:131128. [PMID: 38537856 DOI: 10.1016/j.ijbiomac.2024.131128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
In this study, coaxial electrospinning is employed to make core-shell fibers, which represents a major advance in biomaterial innovation. Fibers that combine a protective shell and a therapeutic agent-loaded core, herald a revolutionary era in tissue engineering and wound care. Besides supporting cell growth, these fibers also preserve sterility, which makes them ideal for advanced wound dressings. We used embelin as the basis for this study because of its natural antibacterial properties. Its effectiveness in inhibiting the growth of bacteria made it the ideal candidate for our research. We have synthesized core-shell nanofibers that contain Sodium Alginate (SAL) in a Poly (ethylene oxide) (PEO) shell and Embelin in a Poly (3-hydroxybutyric acid) (PHB) core, which exhibit the homogeneity and flawless structure required for biomedical applications. When using SAL-PEO and EMB-PHB solutions dissolved in 1,1,1,3,3,3 hexafluoro-2-propanol (HFIP), high consistency in results can be achieved. A biocompatibility study was conducted using NIH-3T3 fibroblasts, which demonstrated remarkable adhesion and proliferation, with over 95 % growth supporting both PHB + SAL-PEO and EMB-PHB + SAL-PEO fibers. In addition, the scaffold loaded with Embelin shows strong antibacterial activity and cytocompatibility. The combined activity demonstrates the potential of EMB-PHB + SAL-PEO fibers in wound healing, where tissue regeneration and preservation of sterility are crucial. The optimized concentration of Embelin within these scaffolds demonstrates robust antibacterial efficacy while exhibiting minimal toxicity, thus positioning them as highly promising candidates for a wide range of biological applications, including wound healing.
Collapse
Affiliation(s)
- Sivakumar Singaravelu
- Centre for Academic and Research Excellence (CARE), CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600 020, India; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence (CARE), CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600 020, India
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
5
|
Dadashpour M, Kalavi S, Gorgzadeh A, Nosrati R, Firouzi Amandi A, Mohammadikhah M, Rezai Seghin Sara M, Alizadeh E. Preparation and in vitro evaluation of cell adhesion and long-term proliferation of stem cells cultured on silibinin co-embedded PLGA/Collagen electrospun composite nanofibers. Exp Cell Res 2024; 435:113926. [PMID: 38228225 DOI: 10.1016/j.yexcr.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.
Collapse
Affiliation(s)
- Mehdi Dadashpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirsasan Gorgzadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Guilan, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Effat Alizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
7
|
Wang Y, Ding C, Zhao Y, Zhang J, Ding Q, Zhang S, Wang N, Yang J, Xi S, Zhao T, Zhao C, Liu W. Sodium alginate/poly(vinyl alcohol)/taxifolin nanofiber mat promoting diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora. Int J Biol Macromol 2023; 252:126530. [PMID: 37634780 DOI: 10.1016/j.ijbiomac.2023.126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Diabetes-related ulcers are still a therapeutic problem because of their susceptibility to infection, ongoing inflammation, and diminished vascularization. The design and development of novel dressings are clinically urgent for the treatment of chronic wounds due to diabetic ulcers. In this study, we made taxifolin (TAX) loaded sodium alginate (SA)/poly(vinyl alcohol) (PVA) nanofibers for the treatment of chronic wounds. The SA/PVA/TAX nanofibers that have been created are smooth and bead-free, with good thermal stability, hydrophilicity, and mechanical properties. The release profile indicated a sustained drug release, with a cumulative release rate of 64.6 ± 3.7 % at 24 h. In vitro experiments have shown that SA/PVA/TAX has good antibacterial activity, antioxidant activity, and biocompatibility. In vivo experiments have shown that SA/PVA/TAX exhibits desirable biochemical properties and is involved in the diabetic wound healing process by promoting cell proliferation (Ki67), angiogenesis (CD31, VEGFA), and alleviating inflammation (CD68). Western blotting experiments suggest that SA/PVA/TAX may promote diabetic wound healing by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway and upregulating the expression of VEGFA and PDGFA. The 16S rRNA sequencing results showed that SA/PVA/TAX increased the wound surface flora's diversity and reversed the skin microbiota's structural imbalance. Therefore, SA/PVA/TAX can promote diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora and has the potential to be an excellent wound dressing.
Collapse
Affiliation(s)
- Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Yingchun Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jinping Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Xi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
8
|
Song J, Zhang S, Du L, Gao C, Xie L, Shi Y, Su L, Ma Y, Ren S. Synthesis, characterization and application of oligomeric proanthocyanidin-rich dual network hydrogels. Sci Rep 2023; 13:17754. [PMID: 37853007 PMCID: PMC10584812 DOI: 10.1038/s41598-023-42921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
A structurally dense hydrogel, with strong hydrogen bonding networks, was formed from poly(vinyl alcohol), sodium alginate, and oligomeric proanthocyanidins, using a combination of freeze-thaw cycles and calcium ion cross-linking. The structure of the hydrogel was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Mechanical testing and thermogravimetric analysis showed that incorporation of proanthocyanidins enhanced both the mechanical properties and the thermal stability of the hydrogel. The hydrogel was also demonstrated to have excellent ultraviolet resistance and antioxidant properties. The hydrogel was further shown that this hydrogel is also capable of generating electrochemical reactions, which strongly suggests that this hydrogel has exciting potential in many fields.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Shuyu Zhang
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Liuping Du
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Chong Gao
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Longyue Xie
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Yu Shi
- College of Engineering and Technology, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Ling Su
- Yantai Vocational College, Yantai City, People's Republic of China, 264670.
| | - Yanli Ma
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Shixue Ren
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040.
| |
Collapse
|
9
|
Shakibania S, Khakbiz M, Zahedi P. Investigation and multiscale modeling of PVA/SA coated poly lactic acid scaffold containing curcumin loaded layered double hydroxide nanohybrids. SOFT MATTER 2023; 19:3147-3161. [PMID: 37040198 DOI: 10.1039/d2sm01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Applying hydrophilic coatings on polymeric nanofibers combined with layered double hydroxide (LDH) not only enhances the efficiency of drug delivery systems but also increases cell adhesion. This work aimed to prepare poly(vinyl alcohol)/sodium alginate (PVA/SA) (2/1)-coated poly(lactic acid) (PLA) nanofibers containing curcumin-loaded layered double hydroxide (LDH) and to investigate their drug release and mechanical properties and their biocompatibility. The optimum PLA nanofibrous sample was considered to be that based on 3 wt% of curcumin-loaded LDH (PLA-3%LDH) with a drug encapsulation efficiency of ∼18% in which a minimum average nanofiber diameter of ∼476 nm along with a high tensile strength of 3.00 MPa were obtained. In the next step, a PVA/SA (2/1) layer was coated on the PLA-3%LDH; as a result, the hydrophilicity of the sample was improved and the elongation at break was decreased remarkably. In this regard the cell viability reached 80% for the coated PLA. Moreover, the formation of a layer of (PVA/SA) on the PLA nanofibers lowered the burst release and resulted in a more sustained drug release, which is a vital feature in dermal applications. A multiscale modeling method was applied for simulation of the mechanical properties of the composite scaffold and the results showed that this method can predict the data with 83% accuracy. The results of this study indicate that the formation of a layer of PVA/SA (2/1) has a significant effect on hydrophilicity and consequently improves cell adhesion and proliferation.
Collapse
Affiliation(s)
- Sara Shakibania
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395-1561, Iran.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | - Mehrdad Khakbiz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395-1561, Iran.
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| |
Collapse
|
10
|
Meng W, Zhang X, Zhang Y, Zhang X, Zhu W, Huang H, Han X, Liu Y, Xu C. Poly(vinyl alcohol)/sodium alginate polymer membranes as eco-friendly and biodegradable coatings for slow release fertilizers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3592-3601. [PMID: 36326723 DOI: 10.1002/jsfa.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The use of slow release fertilizers (SRFs) is an effective approach for reducing agriculture cost, environmental and ecological issues simultaneously. The present study provides a series of poly(vinyl alcohol) (PVA)/sodium alginate (SA) polymer membranes as eco-friendly and biodegradable coatings for SRFs. Moreover, polymer-coated urea (PCU) granules were fabricated through coating the urea granules with the resulting membranes. Our first interest was to fabricate three membranes (PS1, PS2, PS3) of different PVA/SA weight ratios (9:1, 8:2, 7:3) using glutaraldehyde as a crosslinking agent, and crosslink the PS3 membrane with a CaCl2 solution further to obtain the PC3 membrane. The chemical properties and morphologies of the membranes were characterized. Second, the nitrogen release behavior of the PCU granules was measured and calculated, respectively. RESULTS Crosslinking with glutaraldehyde made the PS1, PS2, PS3 membranes uniform and compact, whereas crosslinking with a CaCl2 solution formed an 'egg box' structure inside the PC3 membrane. PS3 membrane with the minimum PVA/SA weight ratio had the highest hydrophily (water uptake: 106.25%, water contact angle: 55.1o ), whereas PC3 membrane had the lowest hydrophily (water uptake: 21.57%, water contact angle: 67.3o ). The biodegradation ratios of the membranes were in the range 44-60% in 90 days, indicating that they had excellent biodegradability. The measured fractional release on the day 30 of the PCU granules ranged from 89.33% to 97.07%. The calculated nitrogen release behavior agreed well with the measured values. CONCLUSION The resulting eco-friendly and biodegradable PVA/SA membranes are alternative coatings for SRFs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Meng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Xu Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Xianglu Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Wending Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Handa Huang
- Hefei Lvnong Fertilizer Co., Ltd, Hefei, China
| | - Xiaozhao Han
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Yahua Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Chao Xu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
11
|
Taghe S, Mirzaeei S, Ahmadi A. Preparation and Evaluation of Nanofibrous and Film-Structured Ciprofloxacin Hydrochloride Inserts for Sustained Ocular Delivery: Pharmacokinetic Study in Rabbit’s Eye. Life (Basel) 2023; 13:life13040913. [PMID: 37109442 PMCID: PMC10141354 DOI: 10.3390/life13040913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Conventional anti-infective eye drops are the most common forms of drugs prescribed for the management of topical ocular infections. Despite their convenience, topical eye drops face multiple challenges, including limited bioavailability and repetitive administration. The present study aimed to prepare, evaluate, and compare film-structured and nanofibrous ocular inserts using biocompatible polymers of polyvinyl alcohol (PVA) and polycaprolactone (PCL) to achieve sustained ciprofloxacin Hydrochloride (CIP) delivery. The nanofibrous formulations were prepared by electrospinning and glutaraldehyde crosslinking while the film formulation was prepared by solvent casting. Nanofibrous inserts had mean diameters in the range 330–450 nm. Both film and nanofibrous inserts were strong, although the nanofibers had higher flexibility. In vitro antibacterial efficacy against Staphylococcus aureus and Escherichia coli was observed for all formulations and cell viability of more than 70% confirmed their non-toxicity. In vitro release studies showed prolonged release of 2 days for the film and 5 days for the nanofibers compared with a 10-h release of CIP from the eye drop. Pharmacokinetic studies of rabbits’ eyes showed 4.5–5-folds higher AUC for the nanofiber formulations compared with the eye drop. Thus, prolonged-release film-structured and nanofibrous inserts are suitable carriers for ocular delivery of CIP.
Collapse
|
12
|
Wardhono EY, Pinem MP, Susilo S, Siom BJ, Sudrajad A, Pramono A, Meliana Y, Guénin E. Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach. Polymers (Basel) 2022; 14:polym14235216. [PMID: 36501610 PMCID: PMC9740446 DOI: 10.3390/polym14235216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The premise of this work is the modification of the properties of chitosan-based film for possible use in food packaging applications. The biofilm was prepared via thermal and mechanical treatment through blending polymers with chitosan using Polyvinyl Alcohol (PVA) and loading different types of chemical agents, i.e., citric acid (CA), succinic acid (SA), and tetraethoxysilane (TEOS). The modification was carried out under high-speed homogenization at elevated temperature to induce physical cross-linkage of chitosan polymer chains without a catalyst. The findings showed that PVA improved the chitosan films' Tensile strength (TS) and elongation at break (Eb). The presence of chemicals caused an increase in the film strength for all samples prepared, in which a 5% w/w of chemical in the optimum composition CS/PVA (75/25) provided the maximum strength, namely, 33.9 MPa, 44.0 MPa, and 41.9 MPa, for CA-5, SA-5, and TEOS-5, respectively. The chemical agents also increased the water contact angles for all tested films, indicating that they promoted hydrophobicity. The chemical structure analysis showed that, by incorporating three types of chemical agents into the CS/PVA blend films, no additional spectral bands were found, indicating that no covalent bonds were formed. The thermal properties showed enhancement in melting peak and degradation temperature of the blend films, compared to those without chemical agents at the optimum composition. The X-ray diffraction patterns exhibited that PVA led to an increasing crystallization tendency in the blend films. The morphological observation proved that no irregularities were detected in CS/PVA blend films, representing high compatibility with both polymers.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Correspondence: ; Tel.: +62-254-395-502
| | - Mekro Permana Pinem
- Laboratorium Polimer dan Komposit, Centre of Excellent, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Sidik Susilo
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Bintang Junita Siom
- Faculty of Chemical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agung Sudrajad
- Faculty of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Agus Pramono
- Faculty of Metallurgical Engineering, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman km 3, Cilegon 42435, Banten, Indonesia
| | - Yenny Meliana
- Research Center for Chemistry, National Research and Innovation Agency, BRIN, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| |
Collapse
|
13
|
Garkal A, Bangar P, Mehta T. Thin-film nanofibers for treatment of age-related macular degeneration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Liu M, Zhang S, Ye Y, Liu X, He J, Wei L, Zhang D, Zhou J, Cai J. Robust Electrospinning-Constructed Cellulose Acetate@Anthocyanin Ultrafine Fibers: Synthesis, Characterization, and Controlled Release Properties. Polymers (Basel) 2022; 14:polym14194036. [PMID: 36235984 PMCID: PMC9571753 DOI: 10.3390/polym14194036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthocyanin has attracted increasing attention due to its superior biological activity. However, the inherently poor stability of anthocyanin limits its practical applications. In this study, a fast and straightforward method was developed to improve the stability of anthocyanin. Cellulose acetate ultrafine fiber-loaded anthocyanin (CA@Anthocyanin UFs) was prepared by robust electrospinning, and the potential application of cellulose acetate ultrafine fibers (CA UFs) as a bioactive substance delivery system was comprehensively investigated. The experimental results showed that CA@Anthocyanin UFs had protective effects on anthocyanin against temperature, light, and pH. The results of the artificially simulated gastric fluid (pH = 2.0) indicated that the CA@Anthocyanin UFs had a controllable release influence on anthocyanin. A 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay suggested that the CA@Anthocyanin UFs still had an excellent antioxidant activity similar to anthocyanin. This work demonstrated the potential application of robust electrospinning-constructed cellulose acetate ultrafine fibers in bioactive substance delivery and controlled release systems, as well as its prospects in green packaging due to the nature of this environmentally friendly composite.
Collapse
Affiliation(s)
- Mingzhu Liu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shilei Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqing Liu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (J.H.); (J.C.)
| | - Lingfeng Wei
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Die Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (J.H.); (J.C.)
| |
Collapse
|
15
|
Electrospinning Drug-Loaded Alginate-Based Nanofibers towards Developing a Drug Release Rate Catalog. Polymers (Basel) 2022; 14:polym14142773. [PMID: 35890549 PMCID: PMC9320888 DOI: 10.3390/polym14142773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Electrospinning natural polymers represents a developing interest in the field of biomaterials. Electrospun nanofibers have been shown to facilitate tissue regeneration and emulate body tissue, making them ideal for modern biomedical applications. These water-soluble natural polymers including alginate, have also shown promise as drug delivery vehicles. However, many biopolymers including alginate are inherently charged, making the formation of nanofibers difficult. To better understand the potential of natural polymer-based fibers in drug delivery applications, fiber formulations and drug loading concentrations of alginate-based scaffolds were investigated. It was found electrospinning poly(vinyl alcohol) with alginate facilitated fiber formation while the co-polymer agarose showed minor improvement in terms of alginate electrospinnability. Once uniform fibers were formed, the antibiotic ciprofloxacin was added into the polymer electrospinning solution to yield drug-loaded nanofibers. These optimized parameters coupled with small molecule release rate data from the drug-loaded, alginate-based fibers have been used to establish a catalog of small molecule release profiles. In the future, this catalog will be further expanded to include drug release rate data from other innately charged natural polymer-based fibers such as chitosan. It is anticipated that the cataloged profiles can be applied in the further development of biomaterials used in drug delivery.
Collapse
|
16
|
Tahami SR, Nemati NH, Keshvari H, Khorasani MT. In vitro and in vivo evaluation of nanofibre mats containing Calendula officinalis extract as a wound dressing. J Wound Care 2022; 31:598-611. [PMID: 35797256 DOI: 10.12968/jowc.2022.31.7.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study aims to create Calendula officinalis-loaded nanofibre-based wound dressing materials to enhance the wound healing process. Calendula officinalis is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic. It is also used in the prevention of acute dermatitis, and in the treatment of gastrointestinal ulcers, wounds and burns. METHOD Electrospinning is an effective method for creating nano- and microfibres for biomedical applications. Calendula officinalis (CA) of various concentrations 5%, 10% and 15%)-loaded polyvinyl alcohol (PVA)/sodium alginate (SAlg) nanofibre mats were successfully produced via blend electrospinning. Nanofibre mats were evaluated using: scanning electron microscopy (SEM); Fourier transform infrared spectroscopy (FTIR) analysis; gel content; water vapour transmission rate (WVTR); swelling ratio; in vitro drug release studies; viability evaluation (cell culture and MTT assay); and an in vivo study using male Wistar rats. Rats were divided into three groups (n=3). In each group, rats were inflicted with five full-thickness wounds on the back and were treated with sterile gauze (control), PVA/SAlg nanofibre dressing (CA-free control), PVA/SAlg/CA5%, PVA/SAlg/CA10%, and PVA/SAlg/CA15% nanofibre dressing. RESULTS Results showed that the obtained fibres were smooth with no surface aggregates, indicating complete incorporation of Calendula officinalis. The release of Calendula officinalis from loaded PVA/SAlg fibre mats in the first four hours was burst released and then was constant. PVA/SAlg and PVA/SAlg/CA nanofibres were not toxic to L929 mouse fibroblasts and supported cell attachment and proliferation. The results of the in vivo study showed that the PVA/SAlg/CA10% nanofibre dressing had a higher full-thickness wound healing closure rate compared with the control group on days seven, 14 and 21 after treatment. CONCLUSION The results of this evaluation showed that PVA/SAlg/CA nanofibrous mats could be a candidate as an effective wound dressing; however, the percentage of CA in this compound needs further investigation.
Collapse
Affiliation(s)
- Seyed Rasoul Tahami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
17
|
Bibi S, Mir S, Rehman W, Menaa F, Gul A, Alaryani FSS, Alqahtani AM, Haq S, Abdellatif MH. Synthesis and In Vitro/Ex Vivo Characterizations of Ceftriazone-Loaded Sodium Alginate/Poly(Vinyl Alcohol) Clay Reinforced Nanocomposites: Possible Applications in Wound Healing. MATERIALS 2022; 15:ma15113885. [PMID: 35683183 PMCID: PMC9182010 DOI: 10.3390/ma15113885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
(1) Background: Nanocomposite films are widely applied in the pharmaceutical industry (e.g., nanodrug delivery systems—NDDS). Indeed, these nanomaterials can be produced at a large industrial scale and display valuable properties (e.g., antibacterial, renewability, biodegradability, bioavailability, safety, tissue-specific targeting, and biocompatibility), which can enhance the activity of conventional marketed drugs. (2) Aim: To fabricate and investigate the in vitro properties of the antibiotic ceftriaxone sodium (CTX) once encapsulated into sodium alginate (SA)/poly(vinyl alcohol)PVA-clay reinforced nanocomposite films. (3) Methods: Different ratios of the polymers (i.e., SA, PVA) and CTX drug were used for the synthesis of nanocomposite films by solvent casting technique. Montmorillonite (MMT), modified organically, was added as a nanofiller to increase their thermal and mechanical strength. The prepared samples were physically characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electronic microscopy (SEM), and energy-dispersive X-ray analysis (EDX). The physicochemical behavior (i.e., swelling, erosion, dissolution/drug release behavior and rat skin permeation) was also assessed. Comparisons were made with the currently marketed free CTX dosage form. (4) Results: TGA of the nanoformulation showed increased thermostability. XRD revealed its semi-crystalline nature. SEM depicted a homogeneous drug-loaded SA/PVA nanocomposite with an average size ranging between 300 and 500 nm. EDX confirmed the elemental composition and uniform distribution of mixing components. The water entrapment efficiency study showed that the highest swelling and erosion ratio is encountered with the nanoformulations S100(3) and S100D15(3). Ex vivo permeation revealed a bi-step discharge mode with an early burst liberation chased by continued drug discharge of devised nanoparticles (NPs). The dissolution studies of the drug-loaded polymer nanocomposites elicited sustained pH-dependent drug release. The cumulative drug release was the highest (90.93%) with S100D15(3). (5) Conclusion: S100D15(3) was the finest formulation. To the best of our knowledge, we also pioneered the use of solvent casting for the preparation of such nanoformulations. Polymers and reinforcing agent, concentrations and pH were rate-deterring features for the preparation of the optimized formulation. Thus, CTX-loaded SA/PVA-MMT reinforced nanocomposite appeared as a promising nanodrug delivery system (NDDS) based on its in vitro physicochemical properties.
Collapse
Affiliation(s)
- Shabana Bibi
- Department of Chemistry, Hazara University, Mansehra 21220, Pakistan;
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad 22060, Pakistan;
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21220, Pakistan;
- Correspondence: (W.R.); (F.M.)
| | - Farid Menaa
- Departments of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
- Correspondence: (W.R.); (F.M.)
| | - Alia Gul
- Department of Botany, Hazara University, Mansehra 21220, Pakistan;
| | | | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan;
| | - Magda H. Abdellatif
- Department of Chemistry, College of Sciences, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
18
|
Zhao YT, Zhang K, Zeng J, Yin H, Zheng W, Li R, Ding A, Chen S, Liu Y, Wu W, Jing Z. Immobilization on magnetic PVA/SA@Fe3O4 hydrogel beads enhances the activity and stability of neutral protease. Enzyme Microb Technol 2022; 157:110017. [DOI: 10.1016/j.enzmictec.2022.110017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/03/2022]
|
19
|
Parın FN, Ullah S, Yıldırım K, Hashmi M, Kim IS. Fabrication and Characterization of Electrospun Folic Acid/Hybrid Fibers: In Vitro Controlled Release Study and Cytocompatibility Assays. Polymers (Basel) 2021; 13:3594. [PMID: 34685351 PMCID: PMC8537833 DOI: 10.3390/polym13203594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The fabrication of skin-care products with therapeutic properties has been significant for human health trends. In this study, we developed efficient hydrophilic composite nanofibers (NFs) loaded with the folic acid (FA) by electrospinning and electrospraying processes for tissue engineering or wound healing cosmetic applications. The morphological, chemical and thermal characteristics, in vitro release properties, and cytocompatibility of the resulting composite fibers with the same amount of folic acid were analyzed. The SEM micrographs indicate that the obtained nanofibers were in the nanometer range, with an average fiber diameter of 75-270 nm and a good porosity ratio (34-55%). The TGA curves show that FA inhibits the degradation of the polymer and acts as an antioxidant at high temperatures. More physical interaction between FA and matrices has been shown to occur in the electrospray process than in the electrospinning process. A UV-Vis in vitro study of FA-loaded electrospun fibers for 8 h in artificial acidic (pH 5.44) and alkaline (pH 8.04) sweat solutions exhibited a rapid release of FA-loaded electrospun fibers, showing the effect of polymer matrix-FA interactions and fabrication processes on their release from the nanofibers. PVA-CHi/FA webs have the highest release value, with 95.2% in alkaline media. In acidic media, the highest release (92%) occurred on the PVA-Gel-CHi/sFA sample, and this followed first-order and Korsmeyer-Peppas kinetic models. Further, the L929 cytocompatibility assay results pointed out that all NFs (with/without FA) generated had no cell toxicity; on the contrary, the FA in the fibers facilitates cell growth. Therefore, the nanofibers are a potential candidate material in skin-care and tissue engineering applications.
Collapse
Affiliation(s)
- Fatma Nur Parın
- Faculty of Engineering and Nature Science, Department of Polymer Materials Engineering, Mimar Sinan Campus, Bursa Technical University, Bursa 16310, Turkey;
| | - Sana Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| | - Kenan Yıldırım
- Faculty of Engineering and Nature Science, Department of Polymer Materials Engineering, Mimar Sinan Campus, Bursa Technical University, Bursa 16310, Turkey;
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Japan; (S.U.); (M.H.)
| |
Collapse
|
20
|
Khan MUA, Yaqoob Z, Ansari MNM, Razak SIA, Raza MA, Sajjad A, Haider S, Busra FM. Chitosan/Poly Vinyl Alcohol/Graphene Oxide Based pH-Responsive Composite Hydrogel Films: Drug Release, Anti-Microbial and Cell Viability Studies. Polymers (Basel) 2021; 13:3124. [PMID: 34578025 PMCID: PMC8471615 DOI: 10.3390/polym13183124] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
The composite hydrogels were produced using the solution casting method due to the non-toxic and biocompatible nature of chitosan (CS)/polyvinyl alcohol (PVA). The best composition was chosen and crosslinked with tetraethyl orthosilicate (TEOS), after which different amounts of graphene oxide (GO) were added to develop composite hydrogels. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle was used to analyze the hydrogels. The samples were also evaluated for swelling abilities in various mediums. The drug release profile was studied in phosphate-buffered saline (PBS) at a pH of 7.4. To predict the mechanism of drug release, the data were fitted into kinetic models. Finally, antibacterial activity and cell viability data were obtained. FTIR studies revealed the successful synthesis of CS/PVA hydrogels and GO/CS/PVA in hydrogel composite. SEM showed no phase separation of the polymers, whereas AFM showed a decrease in surface roughness with an increase in GO content. 100 µL of crosslinker was the critical concentration at which the sample displayed excellent swelling and preserved its structure. Both the crosslinked and composite hydrogel showed good swelling. The most acceptable mechanism of drug release is diffusion-controlled, and it obeys Fick's law of diffusion for drug released. The best fitting of the zero-order, Hixson-Crowell and Higuchi models supported our assumption. The GO/CS/PVA hydrogel composite showed better antibacterial and cell viability behaviors. They can be better biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia;
- Institute for Personalized Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
- Nanoscience and Technology Department (NS & TD), National Center for Physics, Islamabad 44000, Pakistan
| | - Zahida Yaqoob
- Institute of Metallurgy and Materials Engineering, Faculty of Chemical and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan; (Z.Y.); (M.A.R.)
| | | | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Mohsin Ali Raza
- Institute of Metallurgy and Materials Engineering, Faculty of Chemical and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan; (Z.Y.); (M.A.R.)
| | - Amna Sajjad
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Fauzi Mh Busra
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
21
|
Electrospun Nanofibers of Polycaprolactone/Collagen as a Sustained-Release Drug Delivery System for Artemisinin. Pharmaceutics 2021; 13:pharmaceutics13081228. [PMID: 34452189 PMCID: PMC8402154 DOI: 10.3390/pharmaceutics13081228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
The application of artemisinin (ART) in the treatment of malaria has been restricted to a certain degree due to its inherent limitations, such as short half-life, poor solubility, limited bioavailability, and re-crystallization. Electrospun nanofibers loaded with ART provide an excellent solution to these limitations and yield sustained drug release as well as inhibition of drug re-crystallization. In this study, ART-loaded polycaprolactone (PCL)/collagen (Col) nanofibers with different proportions of polymers were prepared. ART-loaded PCL/Col nanofibers were characterized, and further ART anti-crystallization and release behaviors were studied. SEM was used to observe the morphology of PCL/Col nanofibers. X-ray diffraction (XRD) was used to characterize the physical state of ART in ART-loaded PCL/Col nanofibers. Fourier transform infrared spectroscopy (FTIR), water contact angle measurement, weight loss, degree of swelling, and drug release experiments can verify the differences in performance of ART-loaded PCL/Col nanofibers due to different polymer ratios. The release curve was analyzed by kinetics, showing sustained release for up to 48 h, and followed the Fickian release mechanism, which was shown by the diffusion index value obtained from the Korsmeyer-Peppas equation.
Collapse
|
22
|
Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187:755-768. [PMID: 34358597 DOI: 10.1016/j.ijbiomac.2021.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023]
Abstract
Among several types of carbohydrate polymers blend PVA hydrogel membranes used for biomedical applications in particular wound dressings; electrospun nanofibrous membranes have gained increased interest because of their extraordinary features e.g. huge surface area to volume ratio, high porosity, adequate permeability, excellent wound-exudates absorption capacity, architecture similarity with skin ECM and sustained release-profile over long time. In this study, modern perspectives of synthesized/developed electrospun nanofibrous hydrogel membranes based popular carbohydrate polymers blend PVA which recently have been employed for versatile biomedical applications particularly wound dressings, were discussed intensively and compared in detail with traditional fabricated membranes based films, as well. Clinically relevant and advantages of electrospun nanofibrous membranes were discussed in terms of their biocompatibility and easily fabrication and functionalization in different biomedical applications.
Collapse
Affiliation(s)
- Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Yasmein Hussein
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - El-Refaie S Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| |
Collapse
|
23
|
Sa’adon S, Ansari MNM, Razak SIA, Anand JS, Nayan NHM, Ismail AE, Khan MUA, Haider A. Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers (Basel) 2021; 13:polym13152459. [PMID: 34372062 PMCID: PMC8347342 DOI: 10.3390/polym13152459] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this study is to prepare a dual layer polyvinyl (PVA) patch using a combination of electrospinning techniques and cryogelation (freeze-thaw process) then subsequently to investigate the effect of freeze-thaw cycles, nanofiber thickness, and diclofenac sodium (DS) loading on the physicochemical and mechanical properties and formulation of dual layer PVA patches composed of electrospun PVA nanofibers and PVA cryogel. After the successful preparation of the dual layer PVA patch, the prepared patch was subjected to investigation to assess the effect of freeze-thaw cycles, nanofiber thickness and percentages of DS loading on the morphology, physiochemical and mechanical properties. Various spectroscopic techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), water contact angle, and tensile tests were used to evaluate the physicochemical and mechanical properties of prepared dual layer PVA patches. The morphological structures of the dual layer PVA patch demonstrated the effectiveness of both techniques. The effect of freeze-thaw cycles, nanofiber thickness, and DS percentage loading on the crystallinity of a dual layer PVA patch was investigated using XRD analysis. The presence of a distinct DS peak in the FTIR spectrum indicates the compatibility of DS in a dual layer PVA patch through in-situ loading. All prepared patches were considered highly hydrophilic because the data obtained was less than 90°. The increasing saturation of DS within the PVA matrix increases the tensile strength of prepared patches, however decreased its elasticity. Evidently, the increasing of electrospun PVA nanofibers thickness, freeze-thaw cycles, and the DS saturation has improved the physicochemical and mechanical properties of the DS medicated dual layer PVA patches, making them a promising biomaterial for transdermal drug delivery applications.
Collapse
Affiliation(s)
- Shafizah Sa’adon
- BioInspired Device and Tissue Engineering Research Group, Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (S.S.); (M.U.A.K.)
| | - Mohamed Nainar Mohamed Ansari
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
- Correspondence: (M.N.M.A.); (S.I.A.R.); Tel.: +60-17-4815680 (S.I.A.R.)
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (S.S.); (M.U.A.K.)
- Correspondence: (M.N.M.A.); (S.I.A.R.); Tel.: +60-17-4815680 (S.I.A.R.)
| | - Joseph Sahaya Anand
- Sustainable and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Malacca 76100, Malacca, Malaysia;
| | - Nadirul Hasraf Mat Nayan
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Al Emran Ismail
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (S.S.); (M.U.A.K.)
- Institute of Personalized Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU),1954 Huashan Road, Shanghai 200030, China
- National Center for Physics, Nanoscience and Technology Department (NS & TD), Islamabad 44000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| |
Collapse
|
24
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
25
|
Sharma D, Satapathy BK. Understanding release kinetics and collapse proof suture retention response of curcumin loaded electrospun mats based on aliphatic polyesters and their blends. J Mech Behav Biomed Mater 2021; 120:104556. [PMID: 34000581 DOI: 10.1016/j.jmbbm.2021.104556] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
The paper aims at designing and fabrication of PLA/PCL blended suture resistant electrospun mats (EMs) encapsulating non-toxic curcumin and optimization of its release behavior, to facilitate its sustained release at the targeted areas, without complexation with any chemical and/or synthetic drug. The release of curcumin from PLA/PCL blended EMs followed a diffusion-controlled mechanism, as evident from the agreement of the experimental release data with Peppas- Korsmeyer, Higuchi, and Kopcha model. The curcumin embedded EMs have effectively rendered a release confirming to a new generalized logarithmic model. PLA/PCL blended EMs have proved to be an excellent carrier system, exhibiting enhanced cumulative curcumin release with an increase in curcumin loading. The evaluation of structural and viscoelastic properties of the fabricated EMs showed an increase in modulus and strength, along with a subsequent decrease in elongation, with an increase in curcumin content. Suture-induced cooperative collapse dynamics the EMs have been found to be a three-stage process involving stable, stable-unstable, and fast-unstable structural failure corresponding to network realignment, lateral pullout/fracture of fibers, and divergent tearing along the crack path. The viscoelastic responses showed a prominent shift in glass transition temperature (Tg) of the PCL phase indicating the development of curcumin-induced microstructural changes attributed to the H-bonding interaction with polymer segments of PLA/PCL-based EMs. Our study demonstrates, functionally efficient designing of PLA/PCL-based curcumin-loaded biodegradable EMs with sustained retention of tunable mechanical properties and hydrophobicity, irrespective of the extent of (in-vitro) curcumin release.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
26
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
27
|
Sharma D, Satapathy BK. Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1182-1202. [PMID: 33765899 DOI: 10.1080/09205063.2021.1909414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrophilic polyvinyl alcohol (PVA) based electrospun nanofibrous mats (ENMs) are recently being used for the designing and fabrication of active wound dressing materials. Thus, in this study an inclusion complex (IC) of curcumin (CUR) and β-cyclodextrin (β-CD) was optimally incorporated in electrospun PVA nanofibers, to obtain uniform bead-free nanofibers with minimum average diameter and variation using Taguchi's design of experiments (DOE). The optimum level parameters were ascertained using Taguchi's methodology, to obtain IC loaded PVA based bead-free ENMs, by varying IC (∼20, ∼40, and ∼60 wt.%) loading, applied voltage, solution concentration, and N, N-dimethylformamide (DMF) content in the electrospinning solution mixture. Validation experiments revealed a good agreement between the predicted and experimental values of fiber diameter, diameter-variation, and bead-numbers. Analysis of variance (ANOVA) showed a major influence of IC loading on the average fiber diameter and the number of bead defects, for IC-loaded PVA based ENMs. However, the DMF content of the solvent mixture significantly influenced the diameter variations of ENMs. The surface morphologies of ENMs were analyzed using Scanning Electron Microscopy (SEM) whereas the microstructural aspects were studied by Wide-Angle X-ray Diffraction (WAXD) and Fourier transform infrared (FT-IR) spectroscopy. The thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) whereas the mechanical properties were measured by using uniaxial tensile testing and dynamic mechanical analysis (DMA). The variation in properties of IC loaded PVA based ENMs were correlated with neat PVA based ENMs fabricated using a similar set of optimized electrospinning process parameters. The study conceptually demonstrated the optimal designing of structurally-engineered hydrophilic IC loaded PVA based ENMs by using the Taguchi approach based on orthogonal DOE as potential drug release substrates.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
28
|
Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02400-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
30
|
Mwiiri FK, Daniels R. Influence of PVA Molecular Weight and Concentration on Electrospinnability of Birch Bark Extract-Loaded Nanofibrous Scaffolds Intended for Enhanced Wound Healing. Molecules 2020; 25:molecules25204799. [PMID: 33086645 PMCID: PMC7587550 DOI: 10.3390/molecules25204799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Triterpenes from the outer bark of birch (TE) are known for various pharmacological effects including enhanced wound healing. Apart from an already authorized oleogel, electrospun nanofiber mats containing these triterpenes in a polyvinyl alcohol (PVA) matrix appear to be an advantageous application form. The effects of PVA molecular weight and concentration on the fiber morphology have been investigated. Three different molecular weights of PVA ranging from 67 to 186 kDa were used. The concentration of PVA was varied from 5 to 20 wt%. Polymer solutions were blended with colloidal dispersions of birch bark extract at a weight ratio of 60:40 (wt.%). The estimated viscosity of polymer solutions was directly linked to their concentration and molecular weight. In addition, both pure and blended solutions showed viscoelastic properties with a dominant viscous response in the bulk. Fiber morphology was confirmed using scanning electron microscopy (SEM). Both polymer concentration and molecular weight were found to be significant factors affecting the diameter of the fibers. Fiber diameter increased with a higher molecular weight and polymer concentration as more uniform fibers were obtained using PVA of higher molecular weight (146-186 kDa). In vitro drug release and ex vivo permeation studies indicated a faster drug release of betulin from electrospun scaffolds with lower PVA molecular weight. Our research suggests that the fabricated TE-loaded PVA electrospun dressings represent potential delivery systems of TE for wound care applications.
Collapse
Affiliation(s)
| | - Rolf Daniels
- Correspondence: ; Tel.: +49-7071-297-2462; Fax: +49-7071-295-531
| |
Collapse
|
31
|
Qin J, Feng P, Wang Y, Du X, Song B. Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46719-46732. [PMID: 32945656 DOI: 10.1021/acsami.0c13594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. Owing to its different contraction gradient amplitudes along the thickness direction and the unique physical property of the nanofibrous material, the prepared actuator exhibits excellent shape deformation performance, including superfast response (less than 150 ms), controllable deformation directions, multiple actuation models, multiple dimensional deformation (0D-3D, 1D-3D, 2D-3D, and 3D-3D), large bending curvature (25.3 cm-1), and a repeatability rate of at least 1000. The actuation performance of the nanofibrous actuator is superior to the currently reported actuators. The nanofibers are integrated into layer-by-layer and side-by-side structures to achieve competitive and independent actuation, respectively. The outstanding shape-changing properties of the nanofibrous actuator result in the construction of practical intelligent devices for applications such as amphibious movement, intelligent protection, and cargo transportation. The nanofibrous actuator designed herein exhibits tremendous potential in soft robotics, sensors, and biomedicine.
Collapse
Affiliation(s)
- Juanrong Qin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Yaru Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Xiaolong Du
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
| |
Collapse
|
32
|
Wang S, Ma Q, Wang R, Zhu Q, Yang L, Zhang Z. Preparation of sodium alginate-poly (vinyl alcohol) blend beads for base-triggered release of dinotefuran in Spodoptera litera midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110935. [PMID: 32800218 DOI: 10.1016/j.ecoenv.2020.110935] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the ability of dual crosslinked interpenetrating polymer network (IPN) blend beads (DIN:SA/PVA-beads), composed of sodium alginate (SA) and poly (vinyl alcohol) (PVA), as a base-triggered carrier for the controlled release of dinotefuran (DIN) in Spodoptera litera midgut. The blend beads were characterized for morphology, encapsulation efficiency, swelling degree, and in vitro release of the blend beads were characterized. The results revealed that the double-crosslinked gel beads had a tightly interpenetrating network structure and exhibited a satisfactory embedding effect for DIN. The maximum of the DIN loading capacity was approximately 1.01%, with a high encapsulation efficiency of 83.19%. The triggered release of DIN from the blend beads was studied in deionized water (pH 3.0-11.0) via high-performance liquid chromatography (HPLC); it was found that the release rate was higher in alkaline pH conditions than in acidic and neutral conditions. An in vivo dynamics and degradation study also demonstrated that the excellent release characteristics of DIN:SA/PVA-beads in the midgut of S. litera. This study provides a promising controlled-release form of dinotefuran that is more effective and can be used for the targeted control of pests with alkaline midgut.
Collapse
Affiliation(s)
- Shiying Wang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Qianli Ma
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ruifei Wang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Qizhan Zhu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Liupeng Yang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, Mohd Yusof AH, Haider S, Shakir I, Aftab S. Novel functional antimicrobial and biocompatible arabinoxylan/guar gum hydrogel for skin wound dressing applications. J Tissue Eng Regen Med 2020; 14:1488-1501. [DOI: 10.1002/term.3115] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Polymer Engineering and Technology University of the Punjab Lahore Pakistan
- Department of Metallurgy and Materials Engineering, CEET University of the Punjab Lahore Pakistan
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Mohsin Ali Raza
- Department of Metallurgy and Materials Engineering, CEET University of the Punjab Lahore Pakistan
| | - Saiful Izwan Abd Razak
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
- Centre for Advanced Composite Materials Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Adnan Haider
- Department of Biological Sciences National University of Medical Sciences Rawalpindi Punjab Pakistan
| | - Saqlain A. Shah
- Nanotechnology and Biomaterials Lab, Physics Department Forman Christian College University Lahore Pakistan
| | - Abdul Halim Mohd Yusof
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering King Saud University Riyadh Saudi Arabia
| | - Imran Shakir
- Sustainable Energy Technologies (SET) Center, College of Engineering King Saud University Riyadh Saudi Arabia
| | - Saira Aftab
- School of Biological Sciences University of the Punjab Lahore Pakistan
| |
Collapse
|
34
|
Mwiiri FK, Brandner JM, Daniels R. Electrospun Bioactive Wound Dressing Containing Colloidal Dispersions of Birch Bark Dry Extract. Pharmaceutics 2020; 12:pharmaceutics12080770. [PMID: 32823875 PMCID: PMC7463733 DOI: 10.3390/pharmaceutics12080770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Novel birch bark dry extract (TE)-loaded polyvinyl alcohol (PVA) fiber mats intended for wound therapy were developed through an electrospinning process. Colloidal dispersions containing TE as the active substance were prepared by the high-pressure homogenization (HPH) technique using hydrogenated phospholipids as stabilizer. Subsequently, the colloidal dispersions were blended with aqueous PVA solutions in the ratio of 60:40 (wt.%) and electrospun to form the nanofiber mats. Fiber morphology examined using scanning electron microscopy (SEM) indicated that fibers were uniform and achieved diameters in the size range of 300–1586 nm. Confocal Raman spectral imaging gave good evidence that triterpenes were encapsulated within the electrospun mats. In vitro drug release and ex vivo permeation studies indicated that the electrospun nanofibers showed a sustained release of betulin, the main component of birch bark dry extract, making the examined dressings highly applicable for several wound care applications. Ex vivo wound healing studies proved that electrospun fiber mats containing TE accelerated wound healing significantly more than TE oleogel, which was comparable to an authorized product that consists of TE and sunflower oil and has proved to enhance wound healing. Therefore, our results conclude that the developed TE-PVA-based dressings show promising potential for wound therapy, an area where effective remedy is needed.
Collapse
Affiliation(s)
- Francis Kamau Mwiiri
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany;
| | - Johanna M. Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany;
- Correspondence: ; Tel.: +49-7071-297-2462; Fax: +49-7071-295-531
| |
Collapse
|
35
|
Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics 2020; 12:pharmaceutics12060552. [PMID: 32545836 PMCID: PMC7357065 DOI: 10.3390/pharmaceutics12060552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Resveratrol is a naturally occurring polyphenol compound which has been shown to possess antioxidant and anti-inflammatory properties. However, its pharmaceutical applications are limited by its poor water solubility. In this study, we used electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPBCD) loaded with resveratrol. We used X-ray diffractometry to analyze crystalline structure, Fourier transform infrared spectroscopy to determine intermolecular hydrogen bonding, antioxidant assays to measure antioxidant activity, and Franz diffusion cells to evaluate skin penetration. Our results showed that the aqueous solubility of resveratrol nanofibers was greatly improved (by more than 20,000-fold) compared to the pure compound. Analysis of physicochemical properties demonstrated that following nanofiber formation, resveratrol was converted from a crystalline to amorphous structure, and resveratrol formed new intermolecular bonds with PVP and HPBCD. Moreover, resveratrol nanofibers showed good antioxidant activity. In addition, the skin penetration ability of resveratrol in the nanofiber formulation was greater than that of pure resveratrol. Furthermore, resveratrol nanofibers suppressed particulate matter (PM)-induced expression of inflammatory proteins (COX-2 and MMP-9) in HaCaT keratinocytes. Therefore, resveratrol-loaded nanofibers can effectively improve the solubility and physicochemical properties of resveratrol, and may have potential applications as an antioxidant and anti-inflammatory formulation for topical skin application.
Collapse
|
36
|
Rashtchian M, Hivechi A, Bahrami SH, Milan PB, Simorgh S. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr Polym 2020; 233:115873. [DOI: 10.1016/j.carbpol.2020.115873] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/31/2023]
|
37
|
Controlled Release of 5‐Fluorouracil from Alginate Hydrogels by Cold HMDSO−Plasma Surface Engineering. ChemistrySelect 2020. [DOI: 10.1002/slct.201904449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Spizzirri UG. Functional Polymers for Controlled Drug Release. Pharmaceutics 2020; 12:E135. [PMID: 32033469 PMCID: PMC7076493 DOI: 10.3390/pharmaceutics12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
In the last decade, the pharmaceutical application of hydrophilic materials has emerged as one of the most significant trends in the biomedical and pharmaceutical areas [...].
Collapse
Affiliation(s)
- Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende (CS), Italy
| |
Collapse
|
39
|
Chiu HI, Ayub AD, Mat Yusuf SNA, Yahaya N, Abd Kadir E, Lim V. Docetaxel-Loaded Disulfide Cross-Linked Nanoparticles Derived from Thiolated Sodium Alginate for Colon Cancer Drug Delivery. Pharmaceutics 2020; 12:E38. [PMID: 31906511 PMCID: PMC7023491 DOI: 10.3390/pharmaceutics12010038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, fluorescein-labelled wheat germ agglutinin (fWGA)-conjugated disulfide cross-linked sodium alginate nanoparticles were developed to specifically target docetaxel (DTX) to colon cancer cells. Different amounts of 3-mercaptopropionic acid (MPA) were covalently attached to sodium alginate to form thiolated sodium alginate (MPA1-5). These polymers were then self-assembled and air-oxidised to form disulfide cross-linked nanoparticles (MP1-5) under sonication. DTX was successfully loaded into the resulting MP1-5 to form DTX-loaded nanoparticles (DMP1-5). DMP2 had the highest loading efficiency (17.8%), thus was chosen for fWGA surface conjugation to form fWGA-conjugated nanoparticles (fDMP2) with a conjugation efficiency of 14.1%. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses showed spherical nanoparticles, and an in vitro drug release study recorded a cumulative drug release of 48.6%. Dynamic light scattering (DLS) analysis revealed a mean diameter (MD) of 289 nm with a polydispersity index (PDI) of 0.3 and a zeta potential of -2.2 mV for fDMP2. HT-29 human colon cancer cells treated with fDMP2 showed lower viability than that of L929 mouse fibroblast cells. These results indicate that fDMP2 was efficiently taken up by HT-29 cells (29.9%). Fluorescence and confocal imaging analyses also showed possible internalisation of nanoparticles by HT-29 cells. In conclusion, fDMP2 shows promise as a DTX carrier for colon cancer drug delivery.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; (H.I.C.); (A.D.A.); (S.N.A.M.Y.); (N.Y.); (E.A.K.)
| | - Asila Dinie Ayub
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; (H.I.C.); (A.D.A.); (S.N.A.M.Y.); (N.Y.); (E.A.K.)
| | - Siti Nur Aishah Mat Yusuf
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; (H.I.C.); (A.D.A.); (S.N.A.M.Y.); (N.Y.); (E.A.K.)
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, UniCITI Alam Campus, 02100 Padang Besar, Perlis 02600, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; (H.I.C.); (A.D.A.); (S.N.A.M.Y.); (N.Y.); (E.A.K.)
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Erazuliana Abd Kadir
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; (H.I.C.); (A.D.A.); (S.N.A.M.Y.); (N.Y.); (E.A.K.)
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia; (H.I.C.); (A.D.A.); (S.N.A.M.Y.); (N.Y.); (E.A.K.)
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, St Lucia 4072, Australia
| |
Collapse
|
40
|
Minnelli C, Laudadio E, Galeazzi R, Barucca G, Notarstefano V, Cantarini M, Armeni T, Mobbili G. Encapsulation of a Neutral Molecule into a Cationic Clay Material: Structural Insight and Cytotoxicity of Resveratrol/Layered Double Hydroxide/BSA Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E33. [PMID: 31877789 PMCID: PMC7022748 DOI: 10.3390/nano10010033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023]
Abstract
Resveratrol (RES) is a stilbenoid polyphenol with interesting antitumor activity compromised by its poor solubility and bioavailability; thus, new approaches are necessary to improve its therapeutic effectiveness. In the present study, bovine serum albumin coated layered double hydroxide (LDH-BSA) was employed to encapsulate RES in order to overcome the above-mentioned usage limits. To evaluate the feasibility of neutral RES complexation with cationic LDH, we carried out molecular dynamics simulation in order to predict its structure and stability. In the supramolecular complex formed with LDH, RES disposes itself in the interlamellar region of LDH where it is stabilized by intermolecular interactions. The physico-chemical characteristics of the resulting nanocomplexes were studied by X-ray powder diffraction, transmission electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy. The encapsulation efficiency and drug release studies were also performed. The combined experimental and computational approach were highly effective in giving insight into the interaction mode of the neutral RES with the charged LDH. Finally, the nanohybrid's anticancer ability was evaluated in human lung cancer cell line (A549) resulting in higher activity with respect to bare RES. Overall, the results showed that the nanocomposites are suitable for biomedical applications as delivery agents of RES.
Collapse
Affiliation(s)
- Cristina Minnelli
- Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (E.L.); (R.G.); (V.N.); (M.C.)
| | - Emiliano Laudadio
- Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (E.L.); (R.G.); (V.N.); (M.C.)
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (E.L.); (R.G.); (V.N.); (M.C.)
| | - Gianni Barucca
- Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente e Urbanistica (SIMAU), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy;
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (E.L.); (R.G.); (V.N.); (M.C.)
| | - Mattia Cantarini
- Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (E.L.); (R.G.); (V.N.); (M.C.)
| | - Tatiana Armeni
- Dipartimento Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy;
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (E.L.); (R.G.); (V.N.); (M.C.)
| |
Collapse
|