1
|
Wang D, Mei Z, Zhao T, Tian H, Peng Z, Kang X, Zhang Y, Qi X. The roles of plant-derived nanovesicles in malignant tumours: A bibliometric analysis. Int J Biol Macromol 2025; 305:141112. [PMID: 39971079 DOI: 10.1016/j.ijbiomac.2025.141112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Malignant tumours remain one of the most intractable health problems worldwide. Recently, plant-derived nanovesicles (PDNVs) have emerged as a promising tool in the treatment of malignant tumours, leveraging their high biosafety and potential mechanisms such as cancer-selective apoptosis induction and cell cycle arrest. This paper presents a systematic review of the research progress of nanovesicles in malignant tumours, with a focus on plant-derived vesicles (PDVs) and their potential applications in cancer treatment, based on bibliometric analysis. In this review, the research on PDNVs in malignant tumours was identified and analysed through various countries/institutions, authors, references and research hotspots. Furthermore, we summarized the diverse biological functions and applications of PDNVs sourced from various origins in malignant tumours, both when acting independently and as carriers. Lastly, we provide an outlook on the potential applications of PDNVs in malignant tumours. The purpose of this paper is to summarize the research progress of the role of PDNVs in malignant tumours, and to provide new ideas and clues for overcoming the difficulties of tumour treatment.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zaihui Peng
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025; 7:934-962. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
3
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
4
|
He J, Fu L, Shen Y, Teng Y, Huang Y, Ding X, Xu D, Cui H, Zhu M, Xie J, Su Y, Li T, Huang W, Mou X, Bian Q, Fan Y. Polygonum multiflorum Extracellular Vesicle-Like Nanovesicle for Skin Photoaging Therapy. Biomater Res 2024; 28:0098. [PMID: 39703536 PMCID: PMC11658808 DOI: 10.34133/bmr.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 12/21/2024] Open
Abstract
Ultraviolet (UV) irradiation leads to the degradation of the extracellular matrix and collagen, thereby accelerating skin aging and imposing substantial psychological burden on patients. Current anti-aging strategies are limited and often associated with high costs or strong side effects. Plant-derived extracellular vesicle-like nanovesicles, with advantages such as natural availability and cost-effectiveness, show potential in anti-aging interventions. This study extracted extracellular vesicle-like nanovesicle from Polygonum multiflorum (PMELNVs) and systematically investigated their composition and metabolic pathways, further examining their efficacy and underlying mechanisms in combating photoaging. Results revealed the excellent antioxidative properties of PMELNVs, alleviating UV-induced oxidative stress, inhibiting matrix metalloproteinase production, reducing extracellular matrix degradation, promoting collagen synthesis, and ultimately exerting anti-photoaging effects. Additionally, safety assessments demonstrated favorable biocompatibility of PMELNVs. This study provides novel evidence supporting PMELNVs' ability to resist photoaging by reducing oxidative stress and enhancing collagen expression, thereby offering potential as a new natural therapeutic agent against skin photoaging and promising a safer and more effective local anti-aging strategy.
Collapse
Affiliation(s)
- Junjia He
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yeyu Shen
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaoxia Ding
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Danfeng Xu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hong Cui
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Mingang Zhu
- Department of Dermatology, the First People’s Hospital of Jiashan, Jiaxing, Zhejiang 314100, China
| | - Jiahao Xie
- The Second Clinical Medical College,
Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Yue Su
- The Second Clinical Medical College,
Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Ting Li
- College of Bioengineering,
Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weitao Huang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qiong Bian
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
5
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
7
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
8
|
Wiklander OPB, Mamand DR, Mohammad DK, Zheng W, Jawad Wiklander R, Sych T, Zickler AM, Liang X, Sharma H, Lavado A, Bost J, Roudi S, Corso G, Lennaárd AJ, Abedi-Valugerdi M, Mäger I, Alici E, Sezgin E, Nordin JZ, Gupta D, Görgens A, El Andaloussi S. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat Biomed Eng 2024; 8:1453-1468. [PMID: 38769158 PMCID: PMC11584392 DOI: 10.1038/s41551-024-01214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden.
| | - Doste R Mamand
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
| | - Dara K Mohammad
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Iraq
| | - Wenyi Zheng
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Antje M Zickler
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Xiuming Liang
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | | | | | - Jeremy Bost
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Samantha Roudi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Giulia Corso
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Angus J Lennaárd
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Manuchehr Abedi-Valugerdi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joel Z Nordin
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM), Karolinska University Hospital, Stockholm, Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - André Görgens
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Unit for Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden.
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
9
|
Yang BL, Long YY, Lei Q, Gao F, Ren WX, Cao YL, Wu D, Xu LY, Qu J, Li H, Yu YL, Zhang AY, Wang S, Wang HX, Chen ZC, Li QB. Lethal pulmonary thromboembolism in mice induced by intravenous human umbilical cord mesenchymal stem cell-derived large extracellular vesicles in a dose- and tissue factor-dependent manner. Acta Pharmacol Sin 2024; 45:2300-2312. [PMID: 38914677 PMCID: PMC11489411 DOI: 10.1038/s41401-024-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 μg/g body weight) in 100 μL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 μg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.
Collapse
Affiliation(s)
- Bian-Lei Yang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yao-Ying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Lei
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Gao
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wen-Xiang Ren
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Lin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liu-Yue Xu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Li Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Yuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhi-Chao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiu-Bai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
10
|
Xu Y, Bei Z, Li M, Qiu K, Ren J, Chu B, Zhao Y, Qian Z. Biomaterials for non-invasive trans-tympanic drug delivery: requirements, recent advances and perspectives. J Mater Chem B 2024; 12:7787-7813. [PMID: 39044544 DOI: 10.1039/d4tb00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Various non-invasive delivery systems have recently been developed as an alternative to conventional injections. Local transdermal administration represents the most attractive method due to the low systemic side effects, excellent ease of administration, and persistent drug release. The tympanic membrane (TM), a major barrier between the outer and middle ear, has a similar structure of the stratum corneum compared to the surface of the skin. After several attempts, non-invasive trans-tympanic drug delivery has been regarded as a promising option in the treatment of middle and inner ear diseases. The round window membrane (RWM) was a possible non-invasive delivery approach from the middle to inner ear. The improved permeability of nanocarriers crossing the RWM is a current hotspot in therapeutics for inner ear diseases. In this review, we include the latest studies exploring non-invasive trans-tympanic delivery to treat middle and inner ear diseases. Both passive and active delivery systems are described. A summary of the benefits and disadvantages of various delivery systems in clinical practice and production procedures is introduced. Finally, future possible approaches for its effective application as a non-invasive middle and inner ear drug delivery system are characterised.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Muttiah B, Muhammad Fuad ND, Jaafar F, Abdullah NAH. Extracellular Vesicles in Ovarian Cancer: From Chemoresistance Mediators to Therapeutic Vectors. Biomedicines 2024; 12:1806. [PMID: 39200270 PMCID: PMC11351885 DOI: 10.3390/biomedicines12081806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches. Key resistance mechanisms include drug efflux, apoptosis disruption, enhanced DNA repair, cancer stem cells, immune evasion, and the complex tumor microenvironment. Cancer-associated fibroblasts and extracellular vesicles play crucial roles in modulating the tumor microenvironment and facilitating chemoresistance. EVs, naturally occurring nanovesicles, emerge as promising drug carriers due to their low toxicity, high biocompatibility, and inherent targeting capabilities. They have shown potential in delivering chemotherapeutics like doxorubicin, cisplatin, and paclitaxel, as well as natural compounds such as curcumin and berry anthocyanidins, enhancing therapeutic efficacy while reducing systemic toxicity in OC models. However, challenges such as low production yields, heterogeneity, rapid clearance, and inefficient drug loading methods need to be addressed for clinical application. Ongoing research aims to optimize EV production, loading efficiency, and targeting, paving the way for novel and more effective therapeutic strategies in OC treatment. Overcoming these obstacles is crucial to unlocking the full potential of EV-based therapies and improving outcomes for OC patients.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Dina Muhammad Fuad
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Monash University, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
12
|
Chen Y, Tang S, Cai F, Wan Y. Strategies for Small Extracellular Vesicle-Based Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0421. [PMID: 39040921 PMCID: PMC11260559 DOI: 10.34133/research.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed vesicles released by cells. EVs encapsulate proteins and nucleic acids of their parental cell and efficiently deliver the cargo to recipient cells. These vesicles act as mediators of intercellular communication and thus play a crucial role in various physiological and pathological processes. Moreover, EVs hold promise for clinical use. They have been explored as drug delivery vehicles, therapeutic agents, and targets for disease diagnosis. In the landscape of cancer research, while strides have been made in EV-focused cancer physiopathology, liquid biopsy, and drug delivery, the exploration of EVs as immunotherapeutic agents may not have seen substantial progress to date. Despite promising findings reported in cell and animal studies, the clinical translation of EV-based cancer immunotherapeutics encounters challenges. Here, we review the existing strategies used in EV-based cancer immunotherapy, aiming to propel the development of this emerging yet crucial field.
Collapse
Affiliation(s)
- Yundi Chen
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| |
Collapse
|
13
|
Heidarpour M, Krockenberger M, Bennett P. Review of exosomes and their potential for veterinary medicine. Res Vet Sci 2024; 168:105141. [PMID: 38218063 DOI: 10.1016/j.rvsc.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Small extracellular vesicles called exosomes are released by almost all cell types and play a crucial role in both healthy and pathological circumstances. Exosomes, found in biological fluids (including plasma, urine, milk, semen, saliva, abdominal fluid and cervical vaginal fluid) and ranging in size from 50 to 150 nm, are critical for intercellular communication. Analysis of exosomal cargos, including micro RNAs (miRNAs), proteins and lipids, has been proposed as valuable diagnostic and prognostic biomarkers of disease. Exosomes can also be used as novel, cell-free, treatment strategies. In this review, we discuss the role, significance and application of exosomes and their cargos in diseases of animals.
Collapse
Affiliation(s)
- Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, PO Box 91775-1793, Mashhad, Iran; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
14
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
15
|
Goudarzi F, Jajarmi V, Shojaee S, Mohebali M, Keshavarz H. Formulation and evaluation of atovaquone-loaded macrophage-derived exosomes against Toxoplasma gondii: in vitro and in vivo assessment. Microbiol Spectr 2024; 12:e0308023. [PMID: 38014940 PMCID: PMC10782982 DOI: 10.1128/spectrum.03080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study is the first of its kind that suggests exosomes as a nano-carrier loaded with atovaquone (ATQ), which could be considered as a new strategy for improving the effectiveness of ATQ against acute and chronic phases of Toxoplasma gondii.
Collapse
Affiliation(s)
- Fatemeh Goudarzi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yuan S, Ma T, Zhang YN, Wang N, Baloch Z, Ma K. Novel drug delivery strategies for antidepressant active ingredients from natural medicinal plants: the state of the art. J Nanobiotechnology 2023; 21:391. [PMID: 37884969 PMCID: PMC10604811 DOI: 10.1186/s12951-023-02159-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Depression is a severe mental disorder among public health issues. Researchers in the field of mental health and clinical psychiatrists have long been faced with difficulties in slow treatment cycles, high recurrence rates, and lagging efficacy. These obstacles have forced us to seek more advanced and effective treatments. Research has shown that novel drug delivery strategies for natural medicinal plants can effectively improve the utilization efficiency of the active molecules in these plants and therefore improve their efficacy. Currently, with the development of treatment technologies and the constant updating of novel drug delivery strategies, the addition of natural medicinal antidepressant therapy has given new significance to the study of depression treatment against the background of novel drug delivery systems. Based on this, this review comprehensively evaluates and analyses the research progress in novel drug delivery systems, including nanodrug delivery technology, in intervention research strategies for neurological diseases from the perspective of natural medicines for depression treatment. This provided a new theoretical foundation for the development and application of novel drug delivery strategies and drug delivery technologies in basic and clinical drug research fields.
Collapse
Affiliation(s)
- Shun Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ting Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ya-Nan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Ning Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, People's Republic of China
| | - Ke Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, No 4655, University Road, Changqing District, Jinan, 250355, Shandong, China.
| |
Collapse
|
17
|
Levy D, Abadchi SN, Shababi N, Ravari MR, Pirolli NH, Bergeron C, Obiorah A, Mokhtari‐Esbuie F, Gheshlaghi S, Abraham JM, Smith IM, Powsner EH, Solomon TJ, Harmon JW, Jay SM. Induced Pluripotent Stem Cell-Derived Extracellular Vesicles Promote Wound Repair in a Diabetic Mouse Model via an Anti-Inflammatory Immunomodulatory Mechanism. Adv Healthc Mater 2023; 12:e2300879. [PMID: 37335811 PMCID: PMC10592465 DOI: 10.1002/adhm.202300879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been explored in clinical trials for treatment of diseases with complex pathophysiologies. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, it is initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, it is found that their vascularization bioactivity is similar and their anti-inflammatory bioactivity is superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial is employed. In this in vivo model, iPSC EVs more effectively mediate inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | | | - Niloufar Shababi
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | | | - Nicholas H. Pirolli
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Cade Bergeron
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Angel Obiorah
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | | | - Shayan Gheshlaghi
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - John M. Abraham
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Ian M. Smith
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Emily H. Powsner
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Talia J. Solomon
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - John W. Harmon
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Steven M. Jay
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkMD20742USA
| |
Collapse
|
18
|
Ma Y, Brocchini S, Williams GR. Extracellular vesicle-embedded materials. J Control Release 2023; 361:280-296. [PMID: 37536545 DOI: 10.1016/j.jconrel.2023.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles released by cells. EVs are emerging as a promising class of therapeutic entity that could be adapted in formulation due to their lack of immunogenicity and targeting capabilities. EVs have been shown to have similar regenerative and therapeutic effects to their parental cells and also have potential in disease diagnosis. To improve the therapeutic potential of EVs, researchers have developed various strategies for modifying them, including genetic engineering and chemical modifications which have been examined to confer target specificity and prevent rapid clearance after systematic injection. Formulation efforts have focused on utilising hydrogel and nano-formulation strategies to increase the persistence of EV localisation in a specific tissue or organ. Researchers have also used biomaterials or bioscaffolds to deliver EVs directly to disease sites and prolong EV release and exposure. This review provides an in-depth examination of the material design of EV delivery systems, highlighting the impact of the material properties on the molecular interactions and the maintenance of EV stability and function. The various characteristics of materials designed to regulate the stability, release rate and biodistribution of EVs are described. Other aspects of material design, including modification methods to improve the targeting of EVs, are also discussed. This review aims to offer an understanding of the strategies for designing EV delivery systems, and how they can be formulated to make the transition from laboratory research to clinical use.
Collapse
Affiliation(s)
- Yingchang Ma
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
19
|
Kumar P, Mehta D, Bissler JJ. Physiologically Based Pharmacokinetic Modeling of Extracellular Vesicles. BIOLOGY 2023; 12:1178. [PMID: 37759578 PMCID: PMC10525702 DOI: 10.3390/biology12091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane bound-cell-derived structures that are a key player in intercellular communication and facilitate numerous cellular functions such as tumor growth, metastasis, immunosuppression, and angiogenesis. They can be used as a drug delivery platform because they can protect drugs from degradation and target specific cells or tissues. With the advancement in the technologies and methods in EV research, EV-therapeutics are one of the fast-growing domains in the human health sector. Therapeutic translation of EVs in clinics requires assessing the quality, safety, and efficacy of the EVs, in which pharmacokinetics is very crucial. We report here the application of physiologically based pharmacokinetic (PBPK) modeling as a principal tool for the prediction of absorption, distribution, metabolism, and excretion of EVs. To create a PBPK model of EVs, researchers would need to gather data on the size, shape, and composition of the EVs, as well as the physiological processes that affect their behavior in the body. The PBPK model would then be used to predict the pharmacokinetics of drugs delivered via EVs, such as the rate at which the drug is absorbed and distributed throughout the body, the rate at which it is metabolized and eliminated, and the maximum concentration of the drug in the body. This information can be used to optimize the design of EV-based drug delivery systems, including the size and composition of the EVs, the route of administration, and the dose of the drug. There has not been any dedicated review article that describes the PBPK modeling of EV. This review provides an overview of the absorption, distribution, metabolism, and excretion (ADME) phenomena of EVs. In addition, we will briefly describe the different computer-based modeling approaches that may help in the future of EV-based therapeutic research.
Collapse
Affiliation(s)
- Prashant Kumar
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Darshan Mehta
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
| | - John J. Bissler
- Department of Pediatrics, Division of Pediatrics Nephrology, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| |
Collapse
|
20
|
Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, Chu XR, Li XK, Wang ZG, Ji JS. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res 2023; 10:36. [PMID: 37587531 PMCID: PMC10433599 DOI: 10.1186/s40779-023-00472-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.
Collapse
Affiliation(s)
- Jia-Yi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ling-Feng Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Shi-Ji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Xu-Ran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Medicine II, Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
- Pulmonary and Critical Care, Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
21
|
Zhuo Y, Ai K, He K, Wu B, Peng J, Xiang J, Zhang G, Jiao Z, Zhou R, Zhang H. Global Research Trends of Exosomes in the Central Nervous System: A Bibliometric and Visualized Analysis. Neurospine 2023; 20:507-524. [PMID: 37401069 PMCID: PMC10323342 DOI: 10.14245/ns.2244988.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE Exosomes in the central nervous system (CNS) have become an attractive area of research with great value. However, few bibliometric analysis has been conducted. The study aimed to visualize the scientific trends and research hotspots of exosomes in the CNS by bibliometric analysis. METHODS All potential articles and reviews on exosomes in the CNS published in English from 2001 to 2021 were extracted from the Web of Science Core Collection. The visualization knowledge maps of critical indicators, including countries/regions, institutions, authors, journals, references, and keywords, were generated by CiteSpace and VOSviewer software. Besides, each domain's quantitative and qualitative analysis was also considered. RESULTS A total of 2,629 papers were included. The number of exosomes-related publications and citations regarding CNS increased yearly. These publications came from 2,813 institutions in 77 countries/regions, led by the United States and China. Harvard University was the most influential institution, while the National Institutes of Health was the most critical funding source. We identified 14,468 authors, among which Kapogiannis D had the most significant number of articles and the highest H-index, while Théry C was the most frequently co-cited. The cluster analysis of keywords generated 13 clusters. In summary, the topic of biogenesis, biomarker, and drug delivery will serve as hotspots in future research. CONCLUSION Exosomes-related CNS research has gained considerable attention in the past 20 years. The sources and biological functions of exosomes and their promising role in diagnosing and treating CNS diseases are considered hotspots in this field. The clinical translation of the results from exosomes-related CNS research will be of great importance in the future.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Ke He
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Boyu Wu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaying Peng
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Xiang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Guanlin Zhang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Ziyuan Jiao
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Ruixuan Zhou
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Zhang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
22
|
Levy D, Abadchi SN, Shababi N, Ravari MR, Pirolli NH, Bergeron C, Obiorah A, Mokhtari-Esbuie F, Gheshlaghi S, Abraham JM, Smith IM, Powsner E, Solomon T, Harmon JW, Jay SM. Induced pluripotent stem cell-derived extracellular vesicles promote wound repair in a diabetic mouse model via an anti-inflammatory immunomodulatory mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533334. [PMID: 36993554 PMCID: PMC10055496 DOI: 10.1101/2023.03.19.533334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been widely explored in clinical trials for treatment of diseases with complex pathophysiology. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, we initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, we found that their vascularization bioactivity was similar and their anti-inflammatory bioactivity was superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, we employed a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial. In this in vivo model, iPSC EVs more effectively mediated inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | - Niloufar Shababi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Mohsen Rouhani Ravari
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Nicholas H. Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Cade Bergeron
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Angel Obiorah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Farzad Mokhtari-Esbuie
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Shayan Gheshlaghi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - John M. Abraham
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Ian M. Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Emily Powsner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Talia Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - John W. Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
23
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
24
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
25
|
Biagiotti S, Abbas F, Montanari M, Barattini C, Rossi L, Magnani M, Papa S, Canonico B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023; 15:365. [PMID: 36839687 PMCID: PMC9961903 DOI: 10.3390/pharmaceutics15020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The article is divided into several sections, focusing on extracellular vesicles' (EVs) nature, features, commonly employed methodologies and strategies for their isolation/preparation, and their characterization/visualization. This work aims to give an overview of advances in EVs' extensive nanomedical-drug delivery applications. Furthermore, considerations for EVs translation to clinical application are summarized here, before focusing the review on a special kind of extracellular vesicles, the ones derived from red blood cells (RBCEVs). Generally, employing EVs as drug carriers means managing entities with advantageous properties over synthetic vehicles or nanoparticles. Besides the fact that certain EVs also reveal intrinsic therapeutic characteristics, in regenerative medicine, EVs nanosize, lipidomic and proteomic profiles enable them to pass biologic barriers and display cell/tissue tropisms; indeed, EVs engineering can further optimize their organ targeting. In the second part of the review, we focus our attention on RBCEVs. First, we describe the biogenesis and composition of those naturally produced by red blood cells (RBCs) under physiological and pathological conditions. Afterwards, we discuss the current procedures to isolate and/or produce RBCEVs in the lab and to load a specific cargo for therapeutic exploitation. Finally, we disclose the most recent applications of RBCEVs at the in vitro and preclinical research level and their potential industrial exploitation. In conclusion, RBCEVs can be, in the near future, a very promising and versatile platform for several clinical applications and pharmaceutical exploitations.
Collapse
Affiliation(s)
- Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Faiza Abbas
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
- AcZon s.r.l., 40050 Monte San Pietro, BO, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| |
Collapse
|
26
|
Wang Y, Zhang Y, Li Z, Wei S, Chi X, Yan X, Lv H, Zhao L, Zhao L. Combination of size-exclusion chromatography and ion exchange adsorption for improving the proteomic analysis of plasma-derived extracellular vesicles. Proteomics 2023; 23:e2200364. [PMID: 36624553 DOI: 10.1002/pmic.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane vesicles released by live cells that carry a variety of biomolecules, including nucleic acids, lipids, and proteins. Recently, proteins in plasma-derived EVs have emerged as novel biomarkers with essential functions in the diagnosis and prognosis of human diseases. However, the current methods of isolating EVs from plasma often lead to coisolated impurities in biological fluids. Therefore, before performing any research protocol, the process of extracting EVs from plasma for proteomic analysis must be optimized. In this study, two EV isolation strategies, size exclusion chromatography (SEC) and SEC combined with ion exchange adsorption (SEC + IEA), were compared in terms of the purity and quantity of protein in EVs. Our results demonstrated that, compared to single-step SEC, SEC combined with IEA could produce plasma-derived EVs with a higher purity by decreasing the abundance of lipoprotein. Additionally, with MS analysis, we demonstrated that the combination approach maintained the stability and improved the purity of EVs in many plasma samples. Furthermore, by combining SEC with IEA, more cancer-associated proteins were detected in the plasma of various cancer samples.
Collapse
Affiliation(s)
- Yaojie Wang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Ying Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Zhi Li
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Sisi Wei
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Xiuping Chi
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Xi Yan
- Clinical Laboratory, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Huilai Lv
- Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Libo Zhao
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Lianmei Zhao
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
27
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
28
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
A novel surface functionalization platform to prime extracellular vesicles for targeted therapy and diagnostic imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102607. [PMID: 36167305 DOI: 10.1016/j.nano.2022.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), nanovesicles released by cells to effectively exchange biological information, are gaining interest as drug delivery system. Yet, analogously to liposomes, they show short blood circulation times and accumulation in the liver and the spleen. For tissue specific delivery, EV surfaces will thus have to be functionalized. We present a novel platform for flexible modification of EVs with target-specific ligands based on the avidin-biotin system. Genetic engineering of donor cells with a glycosylphosphatidylinositol-anchored avidin (GPI-Av) construct allows the isolation of EVs displaying avidin on their surface, functionalized with any biotinylated ligand. For proof of concept, GPI-Av EVs were modified with i) a biotinylated antibody or ii) de novo designed and synthesized biotinylated ligands binding carbonic anhydrase IX (CAIX), a membrane associated enzyme overexpressed in cancer. Functionalized EVs showed specific binding and uptake by CAIX-expressing cells, demonstrating the power of the system to prepare EVs for cell-specific drug delivery.
Collapse
|
30
|
Németh K, Kazsoki A, Visnovitz T, Pinke B, Mészáros L, Buzás EI, Zelkó R. Nanofiber formation as a promising technology for preservation and easy storage of extracellular vesicles. Sci Rep 2022; 12:22012. [PMID: 36539440 PMCID: PMC9768167 DOI: 10.1038/s41598-022-25916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived, membrane-enclosed particles with the potential for a wide range of future therapeutic applications. However, EVs have almost always been administered by direct injection, likely hindering their efficacy because of rapid clearance from the injection site. The present study aimed to incorporate medium-sized extracellular vesicles (mEVs) into fast-dissolving electrospun polyvinylpyrrolidone-based nanofibers to explore the storage-dependent structure-activity relationship of the resulting nanofibrous formulations. Aqueous polyvinylpyrrolidone-based precursor solutions were selected for the electrospinning process. The presence of EVs in the electrospun samples was confirmed by transmission electron microscopy, flow cytometry, and confocal laser scanning microscope. The results indicate that the fibrous structure of the samples was preserved until the end of the 12-week storage period. Furthermore, regardless of the storage temperature (4 °C or room temperature), nanofibers and nanofiber-associated EVs were present throughout the experimental period. Incorporating EVs into a stable solid polymeric delivery base could preserve their stability; meanwhile, according to the characteristics of the polymer, their targeted and controlled release can be achieved.
Collapse
Affiliation(s)
- Krisztina Németh
- grid.11804.3c0000 0001 0942 9821Department of Genetics Cell and Immunobiology, Semmelweis University, Nagyvárad Square 4, Budapest, 1089 Hungary ,ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Adrienn Kazsoki
- grid.11804.3c0000 0001 0942 9821University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, Budapest, 1092 Hungary
| | - Tamás Visnovitz
- grid.11804.3c0000 0001 0942 9821Department of Genetics Cell and Immunobiology, Semmelweis University, Nagyvárad Square 4, Budapest, 1089 Hungary ,grid.5591.80000 0001 2294 6276Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117 Hungary
| | - Balázs Pinke
- grid.6759.d0000 0001 2180 0451Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111 Hungary
| | - László Mészáros
- grid.6759.d0000 0001 2180 0451Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111 Hungary ,ELKH-BME Research Group for Composite Science and Technology, Műegyetem Rkp. 3, Budapest, 1111 Hungary
| | - Edit I. Buzás
- grid.11804.3c0000 0001 0942 9821Department of Genetics Cell and Immunobiology, Semmelweis University, Nagyvárad Square 4, Budapest, 1089 Hungary ,ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary ,HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Romána Zelkó
- grid.11804.3c0000 0001 0942 9821University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, Budapest, 1092 Hungary
| |
Collapse
|
31
|
Komlakh K, Aghamiri SH, Farshadmoghadam H. The role and therapeutic applications of exosomes in multiple sclerosis disease. Clin Exp Pharmacol Physiol 2022; 49:1249-1256. [PMID: 35918850 DOI: 10.1111/1440-1681.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
Abstract
A range of the central nervous system (CNS) and immune cells are affected by multiple sclerosis (MS), a complex autoimmune disease of the CNS. Chronic neuroinflammation, demyelination, and neuronal death are all features of MS, but the disease's molecular mechanisms are unknown. Exosomes are small, membrane-bound extracellular vesicles with a crucial role in cell communication. They are stable in biological fluids and emerge from the cell membrane during endocytic internalization. It might be possible to recognize better the mechanisms involved in the development and progress of illnesses by understanding the variety of exosomal contents and their associated targets, like neurologic disorders. In this review, we sought to bring together important data on the biology of exosomes in MS and highlight discoveries on these nanoparticles' prognostic, diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Khalil Komlakh
- Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Aghamiri
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Farshadmoghadam
- Department of Pediatrics, Children Growth Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
32
|
Focus on organoids: cooperation and interconnection with extracellular vesicles - Is this the future of in vitro modeling? Semin Cancer Biol 2022; 86:367-381. [PMID: 34896267 DOI: 10.1016/j.semcancer.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023]
Abstract
Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.
Collapse
|
33
|
Pozzobon M, D’Agostino S, Roubelakis MG, Cargnoni A, Gramignoli R, Wolbank S, Gindraux F, Bollini S, Kerdjoudj H, Fenelon M, Di Pietro R, Basile M, Borutinskaitė V, Piva R, Schoeberlein A, Eissner G, Giebel B, Ponsaerts P. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front Bioeng Biotechnol 2022; 10:961987. [PMID: 36263355 PMCID: PMC9574482 DOI: 10.3389/fbioe.2022.961987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Stefania D’Agostino
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maria G. Roubelakis
- Laboratory of Biology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA Trauma Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et plastique, CHU Besançon, Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, University Bourgogne Franche-Comté, Besançon, France
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Halima Kerdjoudj
- University of Reims Champagne Ardenne, EA 4691 BIOS “Biomatériaux et Inflammation en Site Osseux”, UFR d’Odontologie, Reims, France
| | | | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guenther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
34
|
Ozkocak DC, Phan TK, Poon IKH. Translating extracellular vesicle packaging into therapeutic applications. Front Immunol 2022; 13:946422. [PMID: 36045692 PMCID: PMC9420853 DOI: 10.3389/fimmu.2022.946422] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells in various (patho)physiological conditions. EVs can transfer effector molecules and elicit potent responses in recipient cells, making them attractive therapeutic agents and drug delivery platforms. In contrast to their tremendous potential, only a few EV-based therapies and drug delivery have been approved for clinical use, which is largely attributed to limited therapeutic loading technologies and efficiency. As EV cargo has major influence on their functionality, understanding and translating the biology underlying the packaging and transferring of biomolecule cargos (e.g. miRNAs, pathogen antigens, small molecule drugs) into EVs is key in harnessing their therapeutic potential. In this review, through recent insights into EVs’ content packaging, we discuss different mechanisms utilized by EVs during cargo packaging, and how one might therapeutically exploit this process. Apart from the well-characterized EVs like exosomes and microvesicles, we also cover the less-studied and other EV subtypes like apoptotic bodies, large oncosomes, bacterial outer membrane vesicles, and migrasomes to highlight therapeutically-diverse opportunities of EV armoury.
Collapse
|
35
|
Kang SJ, Kim SE, Seo MJ, Kim E, Rhee WJ. Suppression of inflammatory responses in macrophages by onion-derived extracellular vesicles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
37
|
Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022; 10:943009. [PMID: 35873037 PMCID: PMC9301085 DOI: 10.3389/fchem.2022.943009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The alarming mortality and morbidity rate of myocardial infarction (MI) is becoming an important impetus in the development of early diagnosis and appropriate therapeutic approaches, which are critical for saving patients' lives and improving post-infarction prognosis. Despite several advances that have been made in the treatment of MI, current strategies are still far from satisfactory. Nanomaterials devote considerable contribution to tackling the drawbacks of conventional therapy of MI by improving the homeostasis in the cardiac microenvironment via targeting, immune modulation, and repairment. This review emphasizes the strategies of nanomaterials-based MI treatment, including cardiac targeting drug delivery, immune-modulation strategy, antioxidants and antiapoptosis strategy, nanomaterials-mediated stem cell therapy, and cardiac tissue engineering. Furthermore, nanomaterials-based diagnosis strategies for MI was presented in term of nanomaterials-based immunoassay and nano-enhanced cardiac imaging. Taken together, although nanomaterials-based strategies for the therapeutics and diagnosis of MI are both promising and challenging, such a strategy still explores the immense potential in the development of the next generation of MI treatment.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boxuan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wujiao Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Thome AD, Thonhoff JR, Zhao W, Faridar A, Wang J, Beers DR, Appel SH. Extracellular Vesicles Derived From Ex Vivo Expanded Regulatory T Cells Modulate In Vitro and In Vivo Inflammation. Front Immunol 2022; 13:875825. [PMID: 35812435 PMCID: PMC9258040 DOI: 10.3389/fimmu.2022.875825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vehicles (EVs) are efficient biomarkers of disease and participate in disease pathogenesis; however, their use as clinical therapies to modify disease outcomes remains to be determined. Cell-based immune therapies, including regulatory T cells (Tregs), are currently being clinically evaluated for their usefulness in suppressing pro-inflammatory processes. The present study demonstrates that ex vivo expanded Tregs generate a large pool of EVs that express Treg-associated markers and suppress pro-inflammatory responses in vitro and in vivo. Intravenous injection of Treg EVs into an LPS-induced mouse model of inflammation reduced peripheral pro-inflammatory transcripts and increased anti-inflammatory transcripts in myeloid cells as well as Tregs. Intranasal administration of enriched Treg EVs in this model also reduced pro-inflammatory transcripts and the associated neuroinflammatory responses. In a mouse model of amyotrophic lateral sclerosis, intranasal administration of enriched Treg EVs slowed disease progression, increased survival, and modulated inflammation within the diseased spinal cord. These findings support the therapeutic potential of expanded Treg EVs to suppress pro-inflammatory responses in human disease.
Collapse
Affiliation(s)
- Aaron D Thome
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jason R Thonhoff
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Weihua Zhao
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Alireza Faridar
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jinghong Wang
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - David R Beers
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Stanley H Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
39
|
Sanmartin MC, Borzone FR, Giorello MB, Yannarelli G, Chasseing NA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Biological Carriers for Drug Delivery in Cancer Therapy. Front Bioeng Biotechnol 2022; 10:882545. [PMID: 35497332 PMCID: PMC9046597 DOI: 10.3389/fbioe.2022.882545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide, with 10.0 million cancer deaths in 2020. Despite advances in targeted therapies, some pharmacological drawbacks associated with anticancer chemo and immunotherapeutic agents include high toxicities, low bioavailability, and drug resistance. In recent years, extracellular vesicles emerged as a new promising platform for drug delivery, with the advantage of their inherent biocompatibility and specific targeting compared to artificial nanocarriers, such as liposomes. Particularly, mesenchymal stem/stromal cells were proposed as a source of extracellular vesicles for cancer therapy because of their intrinsic properties: high in vitro self-renewal and proliferation, regenerative and immunomodulatory capacities, and secretion of extracellular vesicles that mediate most of their paracrine functions. Moreover, extracellular vesicles are static and safer in comparison with mesenchymal stem/stromal cells, which can undergo genetic/epigenetic or phenotypic changes after their administration to patients. In this review, we summarize currently reported information regarding mesenchymal stem/stromal cell-derived extracellular vesicles, their proper isolation and purification techniques - from either naive or engineered mesenchymal stem/stromal cells - for their application in cancer therapy, as well as available downstream modification methods to improve their therapeutic properties. Additionally, we discuss the challenges associated with extracellular vesicles for cancer therapy, and we review some preclinical and clinical data available in the literature.
Collapse
Affiliation(s)
- María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Nik Mohamed Kamal NNS, Shahidan WNS. Salivary Exosomes: From Waste to Promising Periodontitis Treatment. Front Physiol 2022; 12:798682. [PMID: 35069258 PMCID: PMC8766748 DOI: 10.3389/fphys.2021.798682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that causes tooth loss by destroying the supporting components of the teeth. In most cases, it is difficult to diagnose early and results in severe phases of the disease. Given their endogenous origins, exosomes, which are rich in peptides, lipids, and nucleic acids, have emerged as a cell-free therapeutic approach with low immunogenicity and increased safety. Because the constituents of exosomes can be reprogrammed depending on disease states, exosomes are increasingly being evaluated to act as potential diagnostic biomarkers for dental disease, including periodontitis. Exosomes also have been demonstrated to be involved in inflammatory signal transmission and periodontitis progression in vitro, indicating that they could be used as therapeutic targets for periodontal regeneration. Nevertheless, a review on the involvement of salivary exosomes in periodontitis in impacting the successful diagnosis and treatment of periodontitis is still lacking in the literature. Thus, this review is intended to scrutinize recent advancements of salivary exosomes in periodontitis treatment. We summarize recent research reports on the emerging roles and characteristics of salivary exosomes, emphasizing the different expressions and changed biological roles of exosomes in periodontitis.
Collapse
|
41
|
González-González A, García-Sánchez D, Alfonso-Fernández A, Haider KH, Rodríguez-Rey JC, Pérez-Campo FM. Regenerative Medicine Applied to the Treatment of Musculoskeletal Pathologies. HANDBOOK OF STEM CELL THERAPY 2022:1123-1158. [DOI: 10.1007/978-981-19-2655-6_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021; 6:4321-4332. [PMID: 33997509 PMCID: PMC8105599 DOI: 10.1016/j.bioactmat.2021.04.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 02/08/2023] Open
Abstract
There are extensive studies on the applications of extracellular vesicles (EVs) produced in cell culture for therapeutic drug development. However, large quantities of EVs are needed for in vivo applications, which requires high production costs and time. Thus, the development of new EV sources is essential to facilitate their use. Accordingly, plant-derived exosome-like nanovesicles are an emerging alternative for culture-derived EVs. Until now, however, few studies have explored their biological functions and uses. Therefore, it is necessary to elucidate biological activities of plant-derived exosome-like nanovesicles and harness vesicles for biomedical applications. Herein, cabbage and red cabbage were used as nanovesicle sources owing to their easy cultivation. First, an efficient method for nanovesicle isolation from cabbage (Cabex) and red cabbage (Rabex) was developed. Furthermore, isolated nanovesicles were characterized, and their biological functions were assessed. Both Cabex and Rabex promoted mammalian cell proliferation and, interestingly, suppressed inflammation in immune cells and apoptosis in human keratinocytes and fibroblasts. Finally, therapeutic drugs were encapsulated in Cabex or Rabex and successfully delivered to human cells, demonstrating the potential of these vesicles as alternative drug delivery vehicles. Overall, the current results provide strong evidence for the wide application of Cabex and Rabex as novel therapeutic biomaterials.
Collapse
Affiliation(s)
- Jae Young You
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University Incheon 22012, Republic of Korea
| |
Collapse
|
44
|
Nimitrungtawee N, Inmutto N, Chattipakorn SC, Chattipakorn N. Extracellular vesicles as a new hope for diagnosis and therapeutic intervention for hepatocellular carcinoma. Cancer Med 2021; 10:8253-8271. [PMID: 34708589 PMCID: PMC8633266 DOI: 10.1002/cam4.4370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer with a high mortality rate. Early diagnosis and treatment before tumor progression into an advanced stage is ideal. The current diagnosis of HCC is mainly based on imaging modalities such as ultrasound, computed tomography, and magnetic resonance imaging. These methods have some limitations including diagnosis in the case of very small tumors with atypical imaging patterns. Extracellular vesicles (EVs) are nanosized vesicles which have been shown to act as an important vector for cell-to-cell communication. In the past decade, EVs have been investigated with regard to their roles in HCC formation. Since these EVs contain biomolecular cargo such as nucleic acid, lipids, and proteins, it has been proposed that they could be a potential source of tumor biomarkers and a vector for therapeutic cargo. In this review, reports on the roles of HCC-derived EVs in tumorigenesis, and clinical investigations using circulating EVs as a biomarker for HCC and their potential diagnostic roles have been comprehensively summarized and discussed. In addition, findings from in vitro and in vivo reports investigating the potential roles of EVs as therapeutic interventions are also presented. These findings regarding the potential benefits of EVs will encourage further investigations and may allow us to devise novel strategies using EVs in the early diagnosis as well as for treatment of HCC in the future.
Collapse
Affiliation(s)
- Natthaphong Nimitrungtawee
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Nakarin Inmutto
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
45
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
46
|
The therapeutic triad of extracellular vesicles: As drug targets, as drugs, and as drug carriers. Biochem Pharmacol 2021; 192:114714. [PMID: 34332957 DOI: 10.1016/j.bcp.2021.114714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Rapidly growing interest in the study of extracellular vesicles (EVs) has led to the accumulation of evidence on their critical roles in various pathologies, as well as opportunities to design novel therapeutic EV-based applications. Efficiently exploiting the constantly expanding knowledge of the biology and function of EVs requires a deep understanding of the various possible strategies of using EVs for therapeutic purposes. Accordingly, in the present work, we have narrowed the broad therapeutic potential of EVs and consider the similarities and differences of various strategies as we articulate three major aspects (i.e., a triad) of their therapeutic uses: (i) EVs as drug targets, whereby we discuss therapeutic targeting of disease-promoting EVs; (ii) EVs as drugs, whereby we consider the natural medicinal properties of EVs and the available options for their optimization; and (iii) EVs as drug carriers, whereby we highlight the advantages of EVs as vehicles for efficacious drug delivery of natural compounds. Finally, after conducting a comprehensive review of the latest literature on each of these aspects, we outline opportunities, limitations, and potential solutions.
Collapse
|
47
|
Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F, Forterre P, Shen Y, Krupovic M. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. THE ISME JOURNAL 2021; 15:2892-2905. [PMID: 33903726 PMCID: PMC8443754 DOI: 10.1038/s41396-021-00984-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Membrane-bound extracellular vesicles (EVs), secreted by cells from all three domains of life, transport various molecules and act as agents of intercellular communication in diverse environments. Here we demonstrate that EVs produced by a hyperthermophilic and acidophilic archaeon Sulfolobus islandicus carry not only a diverse proteome, enriched in membrane proteins, but also chromosomal and plasmid DNA, and can transfer this DNA to recipient cells. Furthermore, we show that EVs can support the heterotrophic growth of Sulfolobus in minimal medium, implicating EVs in carbon and nitrogen fluxes in extreme environments. Finally, our results indicate that, similar to eukaryotes, production of EVs in S. islandicus depends on the archaeal ESCRT machinery. We find that all components of the ESCRT apparatus are encapsidated into EVs. Using synchronized S. islandicus cultures, we show that EV production is linked to cell division and appears to be triggered by increased expression of ESCRT proteins during this cell cycle phase. Using a CRISPR-based knockdown system, we show that archaeal ESCRT-III and AAA+ ATPase Vps4 are required for EV production, whereas archaea-specific component CdvA appears to be dispensable. In particular, the active EV production appears to coincide with the expression patterns of ESCRT-III-1 and ESCRT-III-2, rather than ESCRT-III, suggesting a prime role of these proteins in EV budding. Collectively, our results suggest that ESCRT-mediated EV biogenesis has deep evolutionary roots, likely predating the divergence of eukaryotes and archaea, and that EVs play an important role in horizontal gene transfer and nutrient cycling in extreme environments.
Collapse
Affiliation(s)
- Junfeng Liu
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China ,grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | | | - Pierre-Henri Commere
- grid.428999.70000 0001 2353 6535Institut Pasteur, Flow Cytometry Platform, Paris, France
| | - Yunfeng Yang
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fan Zhou
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Patrick Forterre
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Yulong Shen
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mart Krupovic
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Bray ER, Oropallo AR, Grande DA, Kirsner RS, Badiavas EV. Extracellular Vesicles as Therapeutic Tools for the Treatment of Chronic Wounds. Pharmaceutics 2021; 13:1543. [PMID: 34683836 PMCID: PMC8541217 DOI: 10.3390/pharmaceutics13101543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds develop when the orderly process of cutaneous wound healing is delayed or disrupted. Development of a chronic wound is associated with significant morbidity and financial burden to the individual and health-care system. Therefore, new therapeutic modalities are needed to address this serious condition. Mesenchymal stem cells (MSCs) promote skin repair, but their clinical use has been limited due to technical challenges. Extracellular vesicles (EVs) are particles released by cells that carry bioactive molecules (lipids, proteins, and nucleic acids) and regulate intercellular communication. EVs (exosomes, microvesicles, and apoptotic bodies) mediate key therapeutic effects of MSCs. In this review we examine the experimental data establishing a role for EVs in wound healing. Then, we explore techniques for designing EVs to function as a targeted drug delivery system and how EVs can be incorporated into biomaterials to produce a personalized wound dressing. Finally, we discuss the status of clinically deploying EVs as a therapeutic agent in wound care.
Collapse
Affiliation(s)
- Eric R. Bray
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alisha R. Oropallo
- Comprehensive Wound Healing Center and Hyperbarics, Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, NY 11549, USA; (A.R.O.); (D.A.G.)
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Daniel A. Grande
- Comprehensive Wound Healing Center and Hyperbarics, Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, NY 11549, USA; (A.R.O.); (D.A.G.)
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Orthopedic Surgery, Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY 11040, USA
| | - Robert S. Kirsner
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
| | - Evangelos V. Badiavas
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
49
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
50
|
Role of Exosomal MicroRNAs and Their Crosstalk with Oxidative Stress in the Pathogenesis of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6301433. [PMID: 34336108 PMCID: PMC8315851 DOI: 10.1155/2021/6301433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Osteoporosis (OP) is an aging-related disease involving permanent bone tissue atrophy. Most patients with OP show high levels of oxidative stress (OS), which destroys the microstructure of bone tissue and promotes disease progression. Exosomes (exos) help in the delivery of microRNAs (miRNAs) and allow intercellular communication. In OP, exosomal miRNAs modulate several physiological processes, including the OS response. In the present review, we aim to describe how exosomal miRNAs and OS contribute to OP. We first summarize the relationship of OS with OP and then detail the features of exos along with the functions of exo-related miRNAs. Further, we explore the interplay between exosomal miRNAs and OS in OP and summarize the functional role of exos in OP. Finally, we identify the advantages of exo-based miRNA delivery in treatment strategies for OP. Our review seeks to improve the current understanding of the mechanism underlying OP pathogenesis and lay the foundation for the development of novel theranostic approaches for OP.
Collapse
|