1
|
Chaturvedi A, Gupta G, Kesharwani P, Shukla R. Revolutionizing periodontic care: Nano Dentistry's impact on inflammation management. J Drug Deliv Sci Technol 2024; 99:105922. [DOI: 10.1016/j.jddst.2024.105922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Ashique S, Hussain A, Khan T, Pal S, Rihan M, Farid A, Webster TJ, Hassan MZ, Asiri YI. Insights into Intra Periodontal Pocket Pathogenesis, Treatment, In Vitro-In Vivo Models, Products and Patents, Challenges and Opportunity. AAPS PharmSciTech 2024; 25:121. [PMID: 38816555 DOI: 10.1208/s12249-024-02842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Periodontal disease is a multifactorial pathogenic condition involving microbial infection, inflammation, and various systemic complications. Here, a systematic and comprehensive review discussing key-points such as the pros and cons of conventional methods, new advancements, challenges, patents and products, and future prospects is presented. A systematic review process was adopted here by using the following keywords: periodontal diseases, pathogenesis, models, patents, challenges, recent developments, and 3-D printing scaffolds. Search engines used were "google scholar", "web of science", "scopus", and "pubmed", along with textbooks published over the last few decades. A thorough study of the published data rendered an accurate and deep understanding of periodontal diseases, the gap of research so far, and future opportunities. Formulation scientists and doctors need to be interconnected for a better understanding of the disease to prescribe a quality product. Moreover, prime challenges (such as a lack of a vital testing model, scarcity of clinical and preclinical data, products allowing for high drug access to deeper tissue regions for prolonged residence, lack of an international monitoring body, lack of 4D or time controlled scaffolds, and lack of successful AI based tools) exist that must be addressed for designing new quality products. Generally, several products have been commercialized to treat periodontal diseases with certain limitations. Various strategic approaches have been attempted to target certain delivery regions, maximize residence time, improve efficacy, and reduce toxicity. Conclusively, the current review summarizes valuable information for researchers and healthcare professional to treat a wide range of periodontal diseases.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut, 250103, UP, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sejuti Pal
- School of Pharmacy, College of Health and Medicine, University of Tasmania, Churchill Ave, Sandybay, Hobart, TAS- 7005, Australia
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
| | - Thomas J Webster
- Division of Pre-college and Undergraduate Studies, Brown University, Providence, Rhode Island, 02912, USA.
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asiri, Saudi Arabia
| |
Collapse
|
3
|
Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH. A review of recent advances of cellulose-based intelligent-responsive hydrogels as vehicles for controllable drug delivery system. Int J Biol Macromol 2024; 264:130525. [PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
Collapse
Affiliation(s)
- Jingwei Gong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Leilei Hou
- Department of Catalytic Chemistry and Engineering, State key-laboratory of fine chemicals, Dalian University of Technology, Dalian 116034, People's Republic of China
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kuan Yong Ching
- University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia
| | - Nguyen Dai Hai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, Department of Biomaterials & Bioengineering, Ho Chi Minh City, Viet Nam
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Paul M, Pramanik SD, Sahoo RN, Dey YN, Nayak AK. Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: A review. Int J Biol Macromol 2023; 247:125808. [PMID: 37460072 DOI: 10.1016/j.ijbiomac.2023.125808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Dental caries, periodontal disease, and endodontic disease are major public health concerns worldwide due to their impact on individuals' quality of life. The present problem of dental disorders is the removal of the infection caused by numerous microbes, particularly, bacteria (both aerobes and anaerobes). The most effective method for treating and managing dental diseases appears to be the use of antibiotics or other antimicrobials, which are incorporated in some drug delivery systems. However, due to their insufficient bioavailability, poor availability for gastrointestinal absorption, and pharmacokinetics after administration via the oral route, many pharmaceutical medicines or natural bioactive substances have limited efficacy. During past few decades, a range of polysaccharide-based systems have been widely investigated for dental dug delivery. The polysaccharide-based carrier materials made of chitosan, alginate, dextran, cellulose and other polysaccharides have recently been spotlighted on the recent advancements in preventing, treating and managing dental diseases. The objective of the current review article is to present a brief comprehensive overview of the recent advancements in polysaccharide-based dental drug delivery systems for the delivery of different antimicrobial drugs.
Collapse
Affiliation(s)
- Mousumi Paul
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute Technology-Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Yadu Nandan Dey
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, West Bengal, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
5
|
Suriyaamporn P, Sahatsapan N, Patrojanasophon P, Opanasopit P, Kumpugdee-Vollrath M, Ngawhirunpat T. Optimization of In Situ Gel-Forming Chlorhexidine-Encapsulated Polymeric Nanoparticles Using Design of Experiment for Periodontitis. AAPS PharmSciTech 2023; 24:161. [PMID: 37505346 DOI: 10.1208/s12249-023-02600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease of the gums caused by pathogenic microorganisms damaging and destroying periodontal tissues. Chlorhexidine digluconate (CHX) is a commonly used antimicrobial agent for the treatment of periodontitis. However, it has many drawbacks, such as toxicity due to the high dosage required, low prolonged release, and low adhesion in the periodontal pocket. The objective of this study was to develop and optimize CHX-encapsulated polymeric nanoparticles (NPs) loaded into in situ gel-forming (ISGF) using design of experiment (DoE) to improve the treatment of periodontitis and overcome these limitations. CHX-NPs were optimized from 0.046%w/v chitosan, 0.05%w/w gelatin, and 0.25%w/w CHX. After that, the optimized of CHX-NPs was loaded into a thermosensitive ISGF, which was a mixture of 15%w/v Poloxamer 407 and 1% hydroxypropyl methylcellulose (HPMC). The optimized CHX-NPs, loaded into ISGF, was evaluated by measuring gelling temperature and time, pH, viscosity, compatibility, in vitro drug release, antibacterial activity, cytotoxicity, and stability. The results showed that the size, PDI, and zeta potential of optimized CHX-NPs were 53.07±10.17 nm, 0.36±0.02, and 27.63±4.16 mV, respectively. Moreover, the optimized ISGF loading CHX-NPs showed a gelling temperature at 34.3±1.2°C within 120.00±17.32 s with a pH value of 4.06. The viscosity of the formulations at 4°C was 54.33±0.99 cP. The DSC and FTIR showed no interaction between ingredients. The optimal formulations showed a prolonged release of up to 7 days while providing potential antibacterial activity and were safe for normal gingival fibroblast cells. Moreover, the formulations had high stability at 4°C and 25°C for 3 months. In conclusion, the study achieved the successful development of ISGF loading CHX-NPs formulations for effectiveness use in periodontal treatment.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Nitjawan Sahatsapan
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Mont Kumpugdee-Vollrath
- Department of Pharmaceutical Technology, University of Applied Sciences (BHT), Luxemburger Street 10, 13353, Berlin, Germany
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
6
|
Kim J, Mondal H, Jin R, Yoon HJ, Kim HJ, Jee JP, Yoon KC. Cellulose Acetate Phthalate-Based pH-Responsive Cyclosporine A-Loaded Contact Lens for the Treatment of Dry Eye. Int J Mol Sci 2023; 24:ijms24032361. [PMID: 36768682 PMCID: PMC9916649 DOI: 10.3390/ijms24032361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cyclosporine A (CsA) as an eye drop is an effective treatment for dry eye. However, it has potential side effects and a short ocular residence time. To overcome these obstacles, we developed a cellulose acetate phthalate-based pH-responsive contact lens (CL) loaded with CsA (CsA-CL). The CsA was continuously released from the CsA-CL at physiological conditions (37 °C, pH 7.4) without an initial burst. CsA was well-contained in the selected storage condition (4 °C, pH 5.4) for as long as 90 days. In safety assays, cytotoxicity, ocular irritation, visible light transmittance, and oxygen permeability were in a normal range. CsA concentrations in the conjunctiva, cornea, and lens increased over time until 12 h. When comparing the therapeutic efficacy between the normal control, experimental dry eye (EDE), and treatment groups (CsA eye drop, naïve CL, and CsA-CL groups), the tear volume, TBUT, corneal fluorescein staining at 7 and 14 days, conjunctival goblet cell density, and corneal apoptotic cell counts at 14 days improved in all treatment groups compared to EDE, with a significantly better result in the CsA-CL group compared with other groups (all p < 0.05). The CsA-CL could be an effective, stable, and safe option for inflammatory dry eye.
Collapse
Affiliation(s)
- Jonghwa Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
- Correspondence: (J.-P.J.); (K.C.Y.); Tel.: +82-62-230-6364 (J.-P.J.); +82-62-220-6741 (K.C.Y.)
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
- Correspondence: (J.-P.J.); (K.C.Y.); Tel.: +82-62-230-6364 (J.-P.J.); +82-62-220-6741 (K.C.Y.)
| |
Collapse
|
7
|
Mengozzi A, Carli F, Pezzica S, Biancalana E, Gastaldelli A, Solini A. High exposure to phthalates is associated with HbA1 c worsening in type 2 diabetes subjects with and without edentulism: a prospective pilot study. Diabetol Metab Syndr 2022; 14:100. [PMID: 35858871 PMCID: PMC9301841 DOI: 10.1186/s13098-022-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phthalates exposure and complete edentulism are related to both low socioeconomic status. No study by far has verified if and to what extent these two conditions are related. We aimed to explore their potential association and interplay in the metabolic control and cardiovascular risk profile. METHODS In our small (n = 48) prospective pilot study twenty-four patients with type 2 diabetes (DnE) and twenty-four patients with type 2 diabetes and edentulism (DE) followed for 19 ± 2 months were treated according to best clinical standards. Phthalates' exposure was evaluated by urinary concentration of di-2-ethylhexylphthalate (DEHP), metabolites, i.e. mono 2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP) and mono 2-ethyl-5-hydroxyhexyl phthalate (MEHHP). RESULTS No association between phthalates and edentulism was found, nor did edentulism affect glucose control. Higher phthalates exposure was associated with a glycated haemoglobin worsening. This association was found for all the measured phthalates metabolites, both as a whole (DEHP; r = 0.33, p = 0.0209) and individually: MEHP (r = 0.41, p = 0.0033), MEHHP (r = 0.32, p = 0.028), MEOHP (r = 0.28, p = 0.0386). CONCLUSIONS Phthalates are not associated with edentulism but predict the worsening of glucose control in subjects with type 2 diabetes. These findings might prove relevant in identifying novel biomarkers of cardiometabolic risk. Further studies are needed to validate our results and estimate the true potential of phthalates in terms of risk assessment.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Samantha Pezzica
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Combined Release of Antiseptic and Antibiotic Drugs from Visible Light Polymerized Biodegradable Nanocomposite Hydrogels for Periodontitis Treatment. Pharmaceutics 2022; 14:pharmaceutics14050957. [PMID: 35631542 PMCID: PMC9146496 DOI: 10.3390/pharmaceutics14050957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
The in situ application of the combination of different types of drugs revolutionized the area of periodontal therapy. The purpose of this study was to develop nanocomposite hydrogel (NCHG) as a pH-sensitive drug delivery system. To achieve local applicability of the NCHG in dental practice, routinely used blue-light photopolymerization was chosen for preparation. The setting time was 60 s, which resulted in stable hydrogel structures. Universal Britton–Robinson buffer solutions were used to investigate the effect of pH in the range 4–12 on the release of drugs that can be used in the periodontal pocket. Metronidazole was released from the NCHGs within 12 h, but chlorhexidine showed a much longer elution time with strong pH dependence, which lasted more than 7 days as it was corroborated by the bactericidal effect. The biocompatibility of the NCHGs was proven by Alamar-blue test and the effectiveness of drug release in the acidic medium was also demonstrated. This fast photo-polymerizable NCHG can help to establish a locally applicable combined drug delivery system which can be loaded with the required amount of medicines and can reduce the side effects of the systemic use of drugs that have to be used in high doses to reach an ideal concentration locally.
Collapse
|
9
|
Zhang Y, Jiang R, Lei L, Yang Y, Hu T. Drug delivery systems for oral disease applications. J Appl Oral Sci 2022; 30:e20210349. [PMID: 35262595 PMCID: PMC8908861 DOI: 10.1590/1678-7757-2021-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
There are many restrictions on topical medications for the oral cavity. Various factors affect the topical application of drugs in the oral cavity, an open and complex environment. The complex physical and chemical environment of the oral cavity, such as saliva and food, will influence the effect of free drugs. Therefore, drug delivery systems have served as supporting structures or as carriers loading active ingredients, such as antimicrobial agents and growth factors (GFs), to promote antibacterial properties, tissue regeneration, and engineering for drug diffusion. These drug delivery systems are considered in the prevention and treatment of dental caries, periodontal disease, periapical disease, the delivery of anesthetic drugs, etc. These carrier materials are designed in different ways for clinical application, including nanoparticles, hydrogels, nanofibers, films, and scaffolds. This review aimed to summarize the advantages and disadvantages of different carrier materials. We discuss synthesis methods and their application scope to provide new perspectives for the development and preparation of more favorable and effective local oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Ruining Jiang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Lei Lei
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yingming Yang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tao Hu
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
10
|
Yadalam PK, Kalaivani V, Fageeh HI, Ibraheem W, Al-Ahmari MM, Khan SS, Ahmed ZH, Abdulkarim HH, Baeshen HA, Balaji TM, Bhandi S, Raj AT, Patil S. Future Drug Targets in Periodontal Personalised Medicine-A Narrative Review. J Pers Med 2022; 12:371. [PMID: 35330371 PMCID: PMC8955099 DOI: 10.3390/jpm12030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal disease is an infection-driven inflammatory disease characterized by the destruction of tooth-supporting tissues. The establishment of chronic inflammation will result in progressive destruction of bone and soft tissue changes. Severe periodontitis can lead to tooth loss. The disease has complex pathogenesis with an interplay between genetic, environmental, and host factors and pathogens. Effective management consists of plaque control and non-surgical interventions, along with adjuvant strategies to control inflammation and disrupt the pathogenic subgingival biofilms. Recent studies have examined novel approaches for managing periodontal diseases such as modulating microbial signaling mechanisms, tissue engineering, and molecular targeting of host inflammatory substances. Mounting evidence suggests the need to integrate omics-based approaches with traditional therapy to address the disease. This article discusses the various evolving and future drug targets, including proteomics, gene therapeutics, vaccines, and nanotechnology in personalized periodontal medicine for the effective management of periodontal diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, India;
| | - V. Kalaivani
- Department of Periodontics, SRM Kattankulathur Dental College & Hospital, SRM Nagar, Chennai 603203, India;
| | - Hammam Ibrahim Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Wael Ibraheem
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Manea Musa. Al-Ahmari
- Department of Periodontics and Community Medical Science, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham H. Abdulkarim
- Advanced Periodontal and Dental Implant Care, Missouri School of Dentistry and Oral Health, A. T. Still University, St. Louis, MO 63104, USA;
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
11
|
Carvalho JPF, Silva ACQ, Silvestre AJD, Freire CSR, Vilela C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2744. [PMID: 34685185 PMCID: PMC8537411 DOI: 10.3390/nano11102744] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022]
Abstract
Cellulose, the most abundant natural polymer, is a versatile polysaccharide that is being exploited to manufacture innovative blends, composites, and hybrid materials in the form of membranes, films, coatings, hydrogels, and foams, as well as particles at the micro and nano scales. The application fields of cellulose micro and nanoparticles run the gamut from medicine, biology, and environment to electronics and energy. In fact, the number of studies dealing with sphere-shaped micro and nanoparticles based exclusively on cellulose (or its derivatives) or cellulose in combination with other molecules and macromolecules has been steadily increasing in the last five years. Hence, there is a clear need for an up-to-date narrative that gathers the latest advances on this research topic. So, the aim of this review is to portray some of the most recent and relevant developments on the use of cellulose to produce spherical micro- and nano-sized particles. An attempt was made to illustrate the present state of affairs in terms of the go-to strategies (e.g., emulsification processes, nanoprecipitation, microfluidics, and other assembly approaches) for the generation of sphere-shaped particles of cellulose and derivatives thereof. A concise description of the application fields of these cellulose-based spherical micro and nanoparticles is also presented.
Collapse
Affiliation(s)
| | | | | | | | - Carla Vilela
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (A.J.D.S.); (C.S.R.F.)
| |
Collapse
|
12
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|
13
|
d’Avanzo N, Bruno MC, Giudice A, Mancuso A, Gaetano FD, Cristiano MC, Paolino D, Fresta M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021; 26:1643. [PMID: 33804244 PMCID: PMC7999474 DOI: 10.3390/molecules26061643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.
Collapse
Affiliation(s)
- Nicola d’Avanzo
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, I-66100 Chieti, Italy
| | - Maria Chiara Bruno
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Amerigo Giudice
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Antonia Mancuso
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| |
Collapse
|
14
|
Vasiliu S, Racovita S, Gugoasa IA, Lungan MA, Popa M, Desbrieres J. The Benefits of Smart Nanoparticles in Dental Applications. Int J Mol Sci 2021; 22:2585. [PMID: 33806682 PMCID: PMC7961614 DOI: 10.3390/ijms22052585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Dentistry, as a branch of medicine, has undergone continuous evolution over time. The scientific world has focused its attention on the development of new methods and materials with improved properties that meet the needs of patients. For this purpose, the replacement of so-called "passive" dental materials that do not interact with the oral environment with "smart/intelligent" materials that have the capability to change their shape, color, or size in response to an externally stimulus, such as the temperature, pH, light, moisture, stress, electric or magnetic fields, and chemical compounds, has received much attention in recent years. A strong trend in dental applications is to apply nanotechnology and smart nanomaterials such as nanoclays, nanofibers, nanocomposites, nanobubbles, nanocapsules, solid-lipid nanoparticles, nanospheres, metallic nanoparticles, nanotubes, and nanocrystals. Among the nanomaterials, the smart nanoparticles present several advantages compared to other materials, creating the possibility to use them in various dental applications, including preventive dentistry, endodontics, restoration, and periodontal diseases. This review is focused on the recent developments and dental applications (drug delivery systems and restoration materials) of smart nanoparticles.
Collapse
Affiliation(s)
- Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania;
| | - Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania;
| | - Ionela Aurica Gugoasa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (I.A.G.); (M.P.)
| | | | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (I.A.G.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2, av. President Angot, 64053 Pau CEDEX 09, France
| |
Collapse
|
15
|
Budai-Szűcs M, Ruggeri M, Faccendini A, Léber A, Rossi S, Varga G, Bonferoni MC, Vályi P, Burián K, Csányi E, Sandri G, Ferrari F. Electrospun Scaffolds in Periodontal Wound Healing. Polymers (Basel) 2021; 13:307. [PMID: 33478155 PMCID: PMC7835852 DOI: 10.3390/polym13020307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is a set of inflammatory conditions affecting the tissues surrounding the teeth predominantly sustained by bacterial infections. The aim of the work was the design and the development of scaffolds based on biopolymers to be inserted in the periodontal pocket to restore tissue integrity and to treat bacterial infections. Nanofibrous scaffolds were prepared by means of electrospinning. Gelatin was considered as base component and was associated to low and high molecular weight chitosans and alginate. The scaffolds were characterized by chemico-physical properties (morphology, solid state-FTIR and differential scanning calorimetry (DSC)-surface zeta potential and contact angle), and mechanical properties. Moreover, preclinical properties (cytocompatibility, fibroblast and osteoblast adhesion and proliferation and antimicrobial properties) were assessed. All the scaffolds were based on cylindrical and smooth nanofibers and preserved their nanofibrous structure upon hydration independently of their composition. They possessed a high degree of hydrophilicity and negative zeta potentials in a physiological environment, suitable surface properties to enhance cell adhesion and proliferation and to inhibit bacteria attachment. The scaffold based on gelatin and low molecular weight chitosan proved to be effective in vitro to support both fibroblasts and osteoblasts adhesion and proliferation and to impair the proliferation of Streptococcus mutans and Aggregatibacter actinomycetemcomitans, both pathogens involved in periodontitis.
Collapse
Affiliation(s)
- Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Attila Léber
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Gábor Varga
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Péter Vályi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (M.B.-S.); (A.L.); (E.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (A.F.); (S.R.); (M.C.B.); (F.F.)
| |
Collapse
|
16
|
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020; 15:8673-8696. [PMID: 33192061 PMCID: PMC7654520 DOI: 10.2147/ijn.s231477] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanomaterials have become a prominent area of research in the field of drug delivery. Their application in nanomedicine can improve bioavailability, pharmacokinetics, and, therefore, the effectiveness of various therapeutics or contrast agents. There are many studies for developing new polymeric nanocarriers; however, their clinical application is somewhat limited. In this review, we present new complex and multifunctional polymeric nanocarriers as promising and innovative diagnostic or therapeutic systems. Their multifunctionality, resulting from the unique chemical and biological properties of the polymers used, ensures better delivery, and a controlled, sequential release of many different therapeutics to the diseased tissue. We present a brief introduction of the classical formulation techniques and describe examples of multifunctional nanocarriers, whose biological assessment has been carried out at least in vitro. Most of them, however, also underwent evaluation in vivo on animal models. Selected polymeric nanocarriers were grouped depending on their medical application: anti-cancer drug nanocarriers, nanomaterials delivering compounds for cancer immunotherapy or regenerative medicine, components of vaccines nanomaterials used for topical application, and lifestyle diseases, ie, diabetes.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
17
|
Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics (Basel) 2020; 5:biomimetics5030036. [PMID: 32731584 PMCID: PMC7559021 DOI: 10.3390/biomimetics5030036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Mucins are glycoproteins present in all mucosal surfaces and in secretions such as saliva. Mucins are involved in the mucoadhesion of nanodevices carrying bioactive molecules to their target sites in vivo. Oil-in-water nanocapsules (NCs) have been synthesised for carrying N,N'-(di-m-methylphenyl)urea (DMTU), a quorum-sensing inhibitor, to the oral cavity. DMTU-loaded NCs constitute an alternative for the treatment of plaque (bacterial biofilm). In this work, the stability of the NCs after their interaction with mucin is analysed. Mucin type III from Sigma-Aldrich has been used as the mucin model. Mucin and NCs were characterised by the multi-detection asymmetrical flow field-flow fractionation technique (AF4). Dynamic light scattering (DLS) and ζ-potential analyses were carried out to characterise the interaction between mucin and NCs. According to the results, loading DMTU changes the conformation of the NC. It was also found that the synergistic interaction between mucin and NCs was favoured within a specific range of the mucin:NC ratio within the first 24 h. Studies on the release of DMTU in vitro and the microbial activity of such NCs are ongoing in our lab.
Collapse
|