1
|
Hodaei H, Esmaeili Z, Erfani Y, Esnaashari SS, Geravand M, Adabi M. Preparation of biocompatible Zein/Gelatin/Chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method. Sci Rep 2024; 14:23796. [PMID: 39394234 PMCID: PMC11470087 DOI: 10.1038/s41598-024-74865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Wound management is a critical aspect of healthcare, necessitating effective and innovative wound dressing materials. Many existing wound dressings lack effectiveness and exhibit limitations, including poor antimicrobial activity, toxicity, inadequate moisture regulation, and weak mechanical performance. The aim of this study is to develop a natural-based nanofibrous structure that possesses desirable characteristics for use as a wound dressing. The chemical analysis confirmed the successful creation of Zein (Ze) (25% w/v) /gelatin (Gel) (10% w/v) /chitosan (CS) (2% w/v) /Polyvinyl alcohol (PVA) (10% w/v) nanofibrous scaffolds loaded with vitamin E tocopheryl polyethylene glycol succinate (Vit E). The swelling percentages of nanofiber (NF), NF + Vit E, cross-linked nanofiber (CNF), and CNF + Vit E were 49%, 110%, 410%, and 676%, respectively; and the degradation rates of NF, NF + Vit E, CNF, and CNF + Vit E were 29.57 ± 5.06%, 33.78 ± 7.8%, 14.03 ± 7.52%, 43 ± 6.27%, respectively. The antibacterial properties demonstrated that CNF impregnated with antibiotics reduced Escherichia coli (E. coli) counts by approximately 27-28% and Staphylococcus aureus (S. aureus) counts by about 34-35% compared to negative control. In conclusion, cross-linked Ze/Gel/CS/PVA nanofibrous scaffolds loaded with Vit E have potential as suitable wound dressing materials because environmentally friendly materials contribute to sustainable wound care and controlled degradation ensures wound dressings breakdown harmlessly.
Collapse
Affiliation(s)
- Homa Hodaei
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahvash Geravand
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Akbarpour A, Rahimnejad M, Sadeghi-Aghbash M, Feizi F. Bioactive nanofibrous mats constructs: Separate efficacy of Lawsonia inermis and Scrophularia striata extracts in PVA/alginate matrices for enhanced wound healing. Int J Biol Macromol 2024; 277:134545. [PMID: 39116967 DOI: 10.1016/j.ijbiomac.2024.134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The study explores the use of electrospinning technology to create advanced wound dressing materials by integrating natural extracts from Lawsonia inermis (LI) and Scrophularia striata (SS) into nanofibrous matrices composed of Polyvinyl Alcohol (PVA) and Alginate (ALG). These macromolecular complexes aim to leverage the unique properties of the botanical extracts for wound healing purposes. The research assesses the physical, chemical, and mechanical attributes of the nanofibrous constructs as well as their antimicrobial activities and ability to promote wound repair. Evaluation of Cellular Viability and Cytotoxicity (MTT) tests showed high biocompatibility of the nanofibrous mats, with cell viability percentages of 92 % for LI-loaded mats and 89 % for SS-loaded mats. The antibacterial rate of extract-containing mats was 70 % higher than non-extract-containing mats. In vivo assessments on rat models with burn injuries demonstrated that mats containing LI and SS extracts substantially accelerate tissue regeneration and overall healing. Nanofibrous mats containing LI extract showed a 45 % faster wound healing process than the control, while those containing SS extract showed a 40 % improvement. Overall, the study highlights the potential of PVA/ALG nanofibrous mats augmented with LI and SS extracts as effective platforms for wound management, offering enhanced properties for superior healing outcomes.
Collapse
Affiliation(s)
- Ali Akbarpour
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
3
|
Xin J, Yang Z, Zhang S, Sun L, Wang X, Tang Y, Xiao Y, Huang H, Li W. Fast fabrication of "all-in-one" injectable hydrogels as antibiotic alternatives for enhanced bacterial inhibition and accelerating wound healing. J Nanobiotechnology 2024; 22:439. [PMID: 39061033 PMCID: PMC11282694 DOI: 10.1186/s12951-024-02657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Skin wound infection has become a notable medical threat. Herein, the polysaccharide-based injectable hydrogels with multifunctionality were developed by a simple and fast gelation process not only to inactivate bacteria but also to accelerate bacteria-infected wound healing. Sodium nitroprusside (SNP) loaded PCN-224 nanoparticles were introduced into the polymer matrix formed by the dynamic and reversible coordinate bonds between Ag+ with carboxyl and amino or hydroxyl groups on carboxymethyl chitosan (CMCS), hydrogen bonds and electrostatic interactions in the polymer to fabricate SNP@PCN@Gel hydrogels. SNP@PCN@Gel displayed interconnected porous structure, excellent self-healing capacity, low cytotoxicity, good blood compatibility, and robust antibacterial activity. SNP@PCN@Gel could produce reactive oxygen species (ROS) and NO along with Fe2+, and showed long-term sustained release of Ag+, thereby effectively killing bacteria by synergistic photothermal (hyperthermia), photodynamic (ROS), chemodynamic (Fenton reaction), gas (NO) and ion (Ag+ and -NH3+ in CMCS) therapy. Remarkably, the hydrogels significantly promoted granulation tissue formation, reepithelization, collagen deposition and angiogenesis as well as wound contraction in bacteria-infected wound healing. Taken together, the strategy represented a general method to engineer the unprecedented photoactivatable "all-in-one" hydrogels with enhanced antibacterial activity and paved a new way for development of antibiotic alternatives and wound dressing.
Collapse
Affiliation(s)
- Juan Xin
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhangyou Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lili Sun
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yang Tang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Honglin Huang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
4
|
Homer WJA, Lisnenko M, Hauzerova S, Heczkova B, Gardner AC, Kostakova EK, Topham PD, Jencova V, Theodosiou E. Thermally Stabilised Poly(vinyl alcohol) Nanofibrous Materials Produced by Scalable Electrospinning: Applications in Tissue Engineering. Polymers (Basel) 2024; 16:2079. [PMID: 39065397 PMCID: PMC11281220 DOI: 10.3390/polym16142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Electrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents. Despite the small differences in the PVA chemical structure, the changes in the material properties were substantial. The higher degree of hydrolysis resulted in non-woven supports with thinner fibres (285 ± 81 nm c.f. 399 ± 153 nm) that were mechanically stronger by 62% (±11%) and almost twice as more crystalline than those from 98% hydrolysed PVA. Although prolonged heat treatment (16 h) did not influence fibre morphology, it reduced the crystallinity and tensile strength for both sets of materials. All samples demonstrated a lack or very low degree of haemolysis (<5%), and there were no notable changes in their anticoagulant activity (≤3%). Thrombus formation, on the other hand, increased by 82% (±18%) for the 98% hydrolysed samples and by 71% (±10%) for the 99% hydrolysed samples, with heat treatment up to 16 h, as a direct consequence of the preservation of the fibrous morphology. 3T3 mouse fibroblasts showed the best proliferation on scaffolds that were thermally stabilised for 4 and 8 h. Overall these scaffolds show potential as 'greener' alternatives to other electrospun tissue engineering materials, especially in cases where they may be used as delivery vectors for heat tolerant additives.
Collapse
Affiliation(s)
- W. Joseph A. Homer
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Bohdana Heczkova
- Department of Haematology, Regional Hospital Liberec, 460 01 Liberec, Czech Republic;
| | - Adrian C. Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, UK;
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Eva K. Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Paul D. Topham
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Aston Advanced Materials Research Centre, Aston University, Birmingham B4 7ET, UK
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Eirini Theodosiou
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
5
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
6
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
7
|
Ashrafi B, Chehelcheraghi F, Rashidipour M, Hadavand S, Beiranvand B, Taherikalani M, Soroush S. Electrospun Nanofibrous Biocomposite of Royal Jelly/Chitosan/Polyvinyl Alcohol (RJ/CS/PVA) Gel as a Biological Dressing for P. aeruginosa-Infected Burn Wound. Appl Biochem Biotechnol 2024; 196:3162-3183. [PMID: 37632660 DOI: 10.1007/s12010-023-04701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Burn wounds are vulnerable to various infections due to damage to the tissue and changes in immune responses. Pseudomonas aeruginosa is a critical bacterium that can cause burn wound infections, which can be life-threatening and delay wound healing. Therefore, it is essential to develop an efficient strategy to prevent the spread of infection in burn wounds. The present study aims to investigate the effectiveness of electrospun nanofibers of royal jelly on a chitosan/polyvinyl alcohol polymer scaffold in repairing burn wounds infected with Pseudomonas aeruginosa. To achieve this, the researchers analyzed the morphology and physicochemical properties of the synthesized nanofibers using SEM, FTIR, BET, and TGA analyses. They also examined the antibacterial properties of the nanofibers using agar diffusion and spread plate techniques. In addition, hemolysis tests were carried out to assess biocompatibility. Finally, the ability of the nanofibers to repair burn wounds infected with Pseudomonas aeruginosa was evaluated using a laboratory mouse model. The study results showed that the synthesized nanofibers had desirable morphology and physicochemical properties and significant antibacterial effects in both in vitro and in vivo conditions. Also, loading RJ into the polymer scaffold significantly reduced erythrocyte lysis. The wound healing and contraction rates were significantly higher than the control groups, and tissue repair, re-epithelialization, and collagen synthesis occurred faster, preventing the spread of infection to deeper tissue areas. Based on these findings, the synthesized system has the potential to serve as a suitable substitute for some invasive treatments and chemical drugs to improve chronic wounds and manage infection control in burn injuries.
Collapse
Affiliation(s)
- Behnam Ashrafi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Anatomical Sciences, School of Medicine Lorestan, University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Samaneh Hadavand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behrouz Beiranvand
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Morovat Taherikalani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Setareh Soroush
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
8
|
Moghaddam A, Nejaddehbashi F, Orazizadeh M. Resveratrol-coated chitosan mats promote angiogenesis for enhanced wound healing in animal model. Artif Organs 2024. [PMID: 38778763 DOI: 10.1111/aor.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Growing incidences of chronic wounds recommend the development of optimal therapeutic wound dressings. Electrospun nanofibers have been considered to show potential wound healing properties when accompanied by other wound dressing materials. This study aimed to explore the potential role of Chitosan (CS) nanofibrous mats coated with resveratrol (RS) as an antioxidant and pro-angiogenic agent in rat models of skin wound healing. METHODS Electrospun chitosan/polyethylene oxide (PEO) nanofibers were prepared using electrospinning technology and coated by 0.05 and 0.1 mg.ml resveratrol named as (CS/RS 0.05) and (CS/RS 0.1), respectively. The scaffolds were characterized physiochemically such as in vitro release study, TGA, FTIR spectroscopy analysis, biodegradability, and human dermal fibroblast seeding assay. The scaffold was subsequently used in vivo as a skin substitute on a rat skin wound model. RESULTS In vitro tests revealed that all scaffolds promoted cell adhesion and proliferation. However, more cell viability was observed in CS/RS 0.1 scaffold. The biocompatibility of the scaffolds was validated by MTT assay, and the results did not show any toxic effects on human dermal fibroblasts. It was observed that RS-coated scaffolds had the ability to release RS in a controlled manner. In in vivo tests CS/RS 0.1 scaffold had the greatest impact on the healing process by improving the neodermis formation and modulated inflammation in wound granulation tissue. Histological analysis revealed enhanced vascular endothelial growth factor expression, epithelialization and increased depth of wound granulation tissue. CONCLUSIONS The RS-coated CS/PEO nanofibrous scaffold accelerates wound healing and may be useful as a dressing for cell transfer and clinical skin regeneration.
Collapse
Affiliation(s)
- Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Deus WFD, Lima CLS, Negreiros ALB, Luz PKD, Machado RDS, Silva GRFD. Nanocomposites used in the treatment of skin lesions: a scoping review. Rev Esc Enferm USP 2024; 58:e20230338. [PMID: 38743957 PMCID: PMC11110158 DOI: 10.1590/1980-220x-reeusp-2023-0338en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To map the nanocomposites used in the treatment of skin lesions. METHOD A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: "Which nanocomposites are used as a cover for the treatment of skin lesions?". Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF). RESULTS 21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance. CONCLUSION Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.
Collapse
Affiliation(s)
| | | | | | - Phellype Kayyaã da Luz
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Bom Jesus, Bom Jesus, PI, Brazil
| | - Raylane da Silva Machado
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Floriano, Floriano, PI, Brazil
| | | |
Collapse
|
10
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Botsula I, Sсhavikin J, Heinämäki J, Laidmäe I, Mazur M, Raal A, Koshovyi O, Kireyev I, Chebanov V. Application of nanofiber-based drug delivery systems in improving anxiolytic effect of new 1,2,3-triazolo-1,4-benzodiazepine derivatives. Eur J Pharm Sci 2024; 195:106712. [PMID: 38290611 DOI: 10.1016/j.ejps.2024.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Anxiety disorders are highly prevalent worldwide and can affect people of all ages, genders and backgrounds. Much efforts and resources have been directed at finding new anxiolytic agents and drug delivery systems (DDSs) especially for cancer patients to enhance targeted drug delivery, reduce drug adverse effects, and provide an analgesic effect. The aim of this study was (1) to design and develop novel nanofiber-based DDSs intended for the oral administration of new 1,2,3-triazolo-1,4-benzodiazepines derivatives, (2) to investigate the physical solid-state properties of such drug-loaded nanofibers, and (3) to gain knowledge of the anxiolytic activity of the present new benzodiazepines in rodents in vivo. The nanofibers loaded with 1,2,3-triazolo-1,4-benzodiazepine derivatives were prepared by means of electrospinning (ES). Field-emission scanning electron microscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used for the physicochemical characterization of nanofibers. The anxiolytic activity of new derivatives and drug-loaded nanofibers was studied with an elevated plus maze test and light-dark box test. New 1,2,3-triazolo-1,4-benzodiazepine derivatives showed a promising anxiolytic effect in mice with clear changes in behavioral reactions in both tests. The nanofiber-based DDS was found to be feasible in the oral delivery of the present benzodiazepine derivatives. The nanofibers generated by means of ES presented the diameter in a nanoscale, uniform fiber structure, capacity for drug loading, and the absence of defects. The present findings provide new insights in the drug treatment of anxiety disorders with new benzodiazepine derivatives.
Collapse
Affiliation(s)
| | - Johannes Sсhavikin
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maryna Mazur
- Division of Chemistry of Functional Materials, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Oleh Koshovyi
- National University of Pharmacy, Kharkiv, Ukraine; Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Igor Kireyev
- National University of Pharmacy, Kharkiv, Ukraine
| | - Valentyn Chebanov
- Division of Chemistry of Functional Materials, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Department of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
12
|
Ding Q, Liu X, Liu X, Chai G, Wang N, Ma S, Zhang L, Zhang S, Yang J, Wang Y, Shen L, Ding C, Liu W. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int J Biol Macromol 2024; 263:130226. [PMID: 38368971 DOI: 10.1016/j.ijbiomac.2024.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xuexia Liu
- Traditional Chinese Medicine Hospital of Wuzhou, Guangzhou 543099, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Yanjun Wang
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
13
|
Guo W, Ding X, Zhang H, Liu Z, Han Y, Wei Q, Okoro OV, Shavandi A, Nie L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024; 10:175. [PMID: 38534593 DOI: 10.3390/gels10030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The management of wound healing represents a significant clinical challenge due to the complicated processes involved. Chitosan has remarkable properties that effectively prevent certain microorganisms from entering the body and positively influence both red blood cell aggregation and platelet adhesion and aggregation in the bloodstream, resulting in a favorable hemostatic outcome. In recent years, chitosan-based hydrogels have been widely used as wound dressings due to their biodegradability, biocompatibility, safety, non-toxicity, bioadhesiveness, and soft texture resembling the extracellular matrix. This article first summarizes an overview of the main chemical modifications of chitosan for wound dressings and then reviews the desired properties of chitosan-based hydrogel dressings. The applications of chitosan-based hydrogels in wound healing, including burn wounds, surgical wounds, infected wounds, and diabetic wounds are then discussed. Finally, future prospects for chitosan-based hydrogels as wound dressings are discussed. It is anticipated that this review will form a basis for the development of a range of chitosan-based hydrogel dressings for clinical treatment.
Collapse
Affiliation(s)
- Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Han Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Yanting Han
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
14
|
Kenawy ER, El-Moaty MSA, Ghoneum M, Soliman HMA, El-Shanshory AA, Shendy S. Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Adv 2024; 14:4930-4945. [PMID: 38327812 PMCID: PMC10848241 DOI: 10.1039/d3ra08609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
This research examined the effectiveness of Biobran as a bioactive substance that could potentially improve wound healing. It also looked at how Biobran affects the properties of a nanofibrous scaffold made through coaxial electrospinning. This is the first study exploring the use of Biobran in this context and its interaction with nanofibrous scaffolds. The scaffolds were composed of poly(ε-caprolactone) (PCL) in the shell and various concentrations of Biobran blended with polyvinyl alcohol (PVA) in the core. The properties of the scaffolds were characterized by SEM, TEM, FTIR, XRD, TGA, DSC, stress-strain test, WCA, release test, MTT cytotoxicity assay, wound scratching assay, and the dye exclusion method using trypan blue. The scaffolds loaded with Biobran exhibited a more compact and smooth morphology compared with the scaffold without Biobran. The physical interaction and crystallinity of the polymers in the scaffolds were also affected by Biobran in a concentration-dependent manner. This positively influenced their tensile strength, elongation at break, thermal stability, and hydrophilicity. The porosity, water uptake capacity, and WVTR of the nanofibrous scaffolds are within the optimal ranges for wound healing. The release rate of Biobran, which revealed a biphasic release pattern, decreased with increasing Biobran concentration, resulting in controlled and sustained delivery of Biobran from the nanofiber scaffolds. The cell viability assays showed a dose-dependent effect of Biobran on WISH cells, which might be attributed to the positive effect of Biobran on the physicochemical properties of the nanofibrous scaffolds. These findings suggest that Biobran-loaded core/shell nanofiber scaffolds have a potential application in wound healing as an ideal multifunctional wound dressing.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohammed S A El-Moaty
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science 1731 E. 120th Street Los Angeles CA 90059 USA
- Department of Surgery, University of California Los Angeles Los Angeles CA 90095 USA
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - S Shendy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
15
|
Ding P, Ding X, Li J, Guo W, Okoro OV, Mirzaei M, Sun Y, Jiang G, Shavandi A, Nie L. Facile preparation of self-healing hydrogels based on chitosan and PVA with the incorporation of curcumin-loaded micelles for wound dressings. Biomed Mater 2024; 19:025021. [PMID: 38215487 DOI: 10.1088/1748-605x/ad1df9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
The increased demand for improved strategies for wound healing has, in recent years, motivated the development of multifunctional hydrogels with favorable bio-compatibility and antibacterial properties. To this regard, the current study presented the design of a novel self-healing composite hydrogel that could perform as wound dressing for the promotion of wound healing. The composite hydrogels were composed of polyvinyl alcohol (PVA), borax and chitosan functionalized with sialic acid (SA-CS) and curcumin loaded pluronic F127 micelles. The hydrogels were formed through the boronic ester bond formation between PVA, SA-CS and borax under physiological conditions and demonstrated adjustable mechanical properties, gelation kinetics and antibacterial properties. When incubating with NIH3T3 cells, the hydrogels also demonstrated good biocompatibility. These aspects offer a promising foundation for their prospective applications in developing clinical materials for wound healing.
Collapse
Affiliation(s)
- Peng Ding
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xiaoyue Ding
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Jingyu Li
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Wei Guo
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Yanfang Sun
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Guohua Jiang
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, People's Republic of China
| |
Collapse
|
16
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
17
|
Davydova GA, Chaikov LL, Melnik NN, Gainutdinov RV, Selezneva II, Perevedentseva EV, Mahamadiev MT, Proskurin VA, Yakovsky DS, Mohan AG, Rau JV. Polysaccharide Composite Alginate-Pectin Hydrogels as a Basis for Developing Wound Healing Materials. Polymers (Basel) 2024; 16:287. [PMID: 38276695 PMCID: PMC10819040 DOI: 10.3390/polym16020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This article presents materials that highlight the bioengineering potential of polymeric systems of natural origin based on biodegradable polysaccharides, with applications in creating modern products for localized wound healing. Exploring the unique biological and physicochemical properties of polysaccharides offers a promising avenue for the atraumatic, controlled restoration of damaged tissues in extensive wounds. The study focused on alginate, pectin, and a hydrogel composed of their mixture in a 1:1 ratio. Atomic force microscopy data revealed that the two-component gel exhibits greater cohesion and is characterized by the presence of filament-like elements. The dynamic light scattering method indicated that this structural change results in a reduction in the damping of acoustic modes in the gel mixture compared to the component gels. Raman spectroscopy research on these gels revealed the emergence of new bonds between the components' molecules, contributing to the observed effects. The biocompatibility of the gels was evaluated using dental pulp stem cells, demonstrating that all the gels exhibit biocompatibility.
Collapse
Affiliation(s)
- Galina A. Davydova
- Federal State Institution of Science Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences (ITEB RAS), Institutskaya St., 3, Pushchino 142290, Moscow Region, Russia; (G.A.D.); (I.I.S.)
| | - Leonid L. Chaikov
- Federal State Budgetary Institution of Science P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Prospekt, 53, GSP-1, Moscow 119991, Russia; (L.L.C.); (N.N.M.); (E.V.P.); (M.T.M.)
| | - Nikolay N. Melnik
- Federal State Budgetary Institution of Science P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Prospekt, 53, GSP-1, Moscow 119991, Russia; (L.L.C.); (N.N.M.); (E.V.P.); (M.T.M.)
| | - Radmir V. Gainutdinov
- Federal Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Leninsky Prospekt, 59, Moscow 119333, Russia;
| | - Irina I. Selezneva
- Federal State Institution of Science Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences (ITEB RAS), Institutskaya St., 3, Pushchino 142290, Moscow Region, Russia; (G.A.D.); (I.I.S.)
| | - Elena V. Perevedentseva
- Federal State Budgetary Institution of Science P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Prospekt, 53, GSP-1, Moscow 119991, Russia; (L.L.C.); (N.N.M.); (E.V.P.); (M.T.M.)
| | - Muhriddin T. Mahamadiev
- Federal State Budgetary Institution of Science P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Prospekt, 53, GSP-1, Moscow 119991, Russia; (L.L.C.); (N.N.M.); (E.V.P.); (M.T.M.)
| | - Vadim A. Proskurin
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, Nauki Ave. 3, Pushchino 142290, Moscow Region, Russia;
| | - Daniel S. Yakovsky
- Department of Biotechnology, Institute of Natural Science, Federal State Budgetary Educational Institution of Higher Education “Tula State University”, Lenin Ave. 92, 9th Academic Building, Tula 300012, Russia;
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania;
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, 410169 Oradea, Romania
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, Moscow 119048, Russia
| |
Collapse
|
18
|
Dong D, Lv X, Jiang Q, Zhang J, Gu Z, Yu W, Han Z, Wang N, Hou W, Cheng Z. Multifunctional electrospun polycaprolactone/chitosan/hEGF/lidocaine nanofibers for the treatment of 2 stage pressure ulcers. Int J Biol Macromol 2024; 256:128533. [PMID: 38042313 DOI: 10.1016/j.ijbiomac.2023.128533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
In this study, a multifunctional nanofiber dressing that can promote antibacterial, analgesic and healing was prepared by electrospinning technology. Hydrophobic polycaprolactone (PCL)/chitosan (CS)/lidocaine hydrochloride (LID) and epidermal growth factor (EGF) were used as scaffold materials and dissolved in trifluoroacetic acid to prepare spinning solution. The morphology of PCEL dressing was observed by scanning electron microscopy. The fiber structure was dense and the average diameter was 297.0 nm. The water absorption capacity test and water contact angle measurement showed that the fiber had good water absorption and hydrophilicity (1302 %, 139.258°). Drug release was 84 % within 60 h. In the results of antibacterial experiment, the dressing showed certain antibacterial properties. The results of cell experiments show that the dressing can promote cell proliferation. In addition, coagulation experiments showed that the dressing could quickly coagulate the blood within 4 min. In addition, PCEL dressing promoted collagen deposition and vascularization through animal models of pressure sores. Therefore, multifunctional dressing can be used as an ideal auxiliary means for the treatment of pressure sores, and it is a promising alternative to chronic wound healing.
Collapse
Affiliation(s)
- Dongxing Dong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Xiaoli Lv
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China.
| | - Qiushi Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, People's Republic of China
| | - Jingjing Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Zhengyi Gu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Weimin Yu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Zhaolian Han
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Wenli Hou
- Department of Cadre Ward, the First Hospital of Jilin University, 71 Xinmin Street, Chaoyang, Changchun 130021, People's Republic of China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| |
Collapse
|
19
|
Sharifi M, Sadati SA, Bahrami SH, Haramshahi SMA. Modeling and optimization of poly(lactic acid)/poly(ℇ-caprolactone)/Nigella sativa extract nanofibers production for skin wounds healing by artificial neural network and response surface methodology models. Int J Biol Macromol 2023; 253:127227. [PMID: 37865369 DOI: 10.1016/j.ijbiomac.2023.127227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/23/2023]
Abstract
Electrospun fibrous scaffolds have great potential for the effective treatment of wounds. Novel blend scaffolds were fabricated from poly(ℇ- caprolactone) (PCL)/poly (lactic acid) (PLA) with Nigella sativa (NS) extract in different concentrations of 10 %, 15 %, 20 %, and 25 % by one nozzle electrospinning. RSM and ANN models were used to determine optimal nanofiber. The results showed that the ANN model had average goodness values of almost 1.992 which was higher than the RSM model with an amount of 1.823. The best sample was determined with the combination of parameters such as PLA/PCL (70:29) concentration, voltage 17 kV, and flow rate 0.2 ml/h in diameter of nanofiber 410 nm by Genetic Algorithm (GA) model with cost value 0.0216 that was lower than cost value (0.0927) of ANN model. The effect of NS extract on nanofibers properties showed that loading high concentrations of NS extract in PLA/PCL polymer solutions caused a decrease in nanofibers diameter, hydrophilicity, and tensile strength. Overall, PLA/PCL/NS 25 % nanofiber was selected as an optimal web with an average diameter of 370 ± 68 nm with a young modulus 5.94 MPa. This scaffold also exhibited the highest antibacterial activity, cell attachment, and cell viability based on the MTT assay.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Ameneh Sadati
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - S Mohammad Amin Haramshahi
- Department of Tissue Engineering, Cellular and Molecular Research of Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Hwang PA, Chen HY, Chang JS, Hsu FY. Electrospun nanofiber composite mat based on ulvan for wound dressing applications. Int J Biol Macromol 2023; 253:126646. [PMID: 37659492 DOI: 10.1016/j.ijbiomac.2023.126646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Wound dressings can be used to create a temporary healing environment and expedite the wound healing process. Ulvan (ULV) is a sulfated polysaccharide with potent antiviral and anti-inflammatory activities. Polycaprolactone (PCL) is a hydrophobic biodegradable polyester that exhibits slow degradation, strong mechanical strength, and excellent biocompatibility. Electrospun nanofiber matrices mimic the microstructure of the extracellular matrix, allowing them to promote cell proliferation and differentiation. Therefore, the primary objective of this study was to fabricate a polycaprolactone-ulvan fibrous composite mat (PCL-ULV) using the electrospinning technique and to investigate its physical and chemical properties. To assess the characteristics of PCL-ULV, scanning electron microscopy (SEM) was utilized to examine its morphology and diameter distribution. Fourier transform infrared (FTIR) spectroscopy, calcofluor white staining, and monosaccharide analysis were employed to analyze the components of PCL-ULV. Additionally, the water contact angle was measured to evaluate the hydrophilicity. Furthermore, the proliferation and morphology of and gene expression in NIH3T3 fibroblasts on PCL-ULV were assessed. The results showed that the average PCL-ULV fiber diameter was significantly smaller than that of the PCL fibers. The water contact angle measurements indicated that PCL-ULV exhibited better hydrophilicity than the PCL mat. FTIR, calcofluor white staining, and monosaccharide analyses demonstrated that ULV could be successfully coelectrospun with PCL. NIH3T3 fibroblasts cultured on PCL and PCL-ULV showed different cellular behaviors. On PCL-ULV, cell adhesion, proliferation, and stretching were greater than those on PCL. Moreover, the behavior of NIH3T3 fibroblasts on PCL and PCL-ULV differed, as the cells on PCL-ULV exhibited higher proliferation and more stretching. Furthermore, NIH3T3 fibroblasts cultured on ULV-PCL showed higher α-SMA and MMP-9 gene expression and a lower ratio of TIMP-1/MMP-9 than those cultured on PCL. Notably, scarless wounds display lower TIMP/MMP expression ratios than scarring wounds. Thus, the fibrous composite mat PCL-ULV shows potential as a wound dressing for scarless wound healing.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Hsin-Yu Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Jui-Sheng Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Taiwan
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
21
|
Xie L, Liu R, Li J, Li Y, He J, Zhang M, Yang H. A multifunctional and self-adaptive double-layer hydrogel dressing based on chitosan for deep wound repair. Int J Biol Macromol 2023; 253:127033. [PMID: 37742896 DOI: 10.1016/j.ijbiomac.2023.127033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Hydrogel wound dressing for irregular shape and deep wound repair is a research hotspot. Herein, a multifunctional and self-adaptive double-layer hydrogel was constructed, which was comprised of chitosan-based inner layer hydrogel and gellan gum-based outer layer hydrogel. Various properties of inner layer hydrogel were systematically investigated, including injectability, shape-adaptability, solid-liquid phase transition, biocompatibility, hemostasis, antibacterial performance and anti-inflammatory. Thanks to the phase-transition from solid to liquid at body temperature, inner layer hydrogel exhibited stronger adaptability to fill irregular and deep wounds, in which chitosan was liquefied and its therapeutic effect was maximized. Outer layer hydrogel was fabricated by calcium ions and gellan gum, whose certain mechanical strength could provide protection and a moister environment for wounds. Because of these characteristics, double-layer hydrogel markedly promoted skin tissue regeneration and wound closure and thereby possessed potential clinical application prospect as wound dressing for deep wounds.
Collapse
Affiliation(s)
- Li Xie
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China.
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying Li
- Clinical Medical College, Chengdu University, Chengdu, China
| | - Jinfeng He
- Clinical Medical College, Chengdu University, Chengdu, China
| | - Mengyuan Zhang
- Clinical Medical College, Chengdu University, Chengdu, China
| | - Haijin Yang
- Clinical Medical College, Chengdu University, Chengdu, China
| |
Collapse
|
22
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Rational Design of Multifunctional Hydrogels for Wound Repair. J Funct Biomater 2023; 14:553. [PMID: 37998122 PMCID: PMC10672203 DOI: 10.3390/jfb14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
23
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Siddiqui SA, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan MKI, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Crit Rev Food Sci Nutr 2023; 63:12530-12551. [PMID: 35916765 DOI: 10.1080/10408398.2022.2103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Biswas
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Tatiana Gusinskaia
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Filipp Lavrentev
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Jaspin Stephen
- Centre of Excellence in Nonthermal Processing, NIFTEM-Thanjavur, Tamil Nadu, India
| | | |
Collapse
|
25
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
26
|
Chen L, Nabil A, Fujisawa N, Oe E, Li K, Ebara M. A facile, flexible, and multifunctional thermo-chemotherapy system for customized treatment of drug-resistant breast cancer. J Control Release 2023; 363:550-561. [PMID: 37804880 DOI: 10.1016/j.jconrel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Anticancer drug resistance invariably emerges and poses a significant barrier to curative therapy for various breast cancers. This results in a lack of satisfactory therapeutic medicine for cancer treatment. Herein, a universal vector system for drug-resistance breast cancer was designed to meet the needs of reversed multidrug resistance, thermo-chemotherapy, and long-term drug release behavior. The vector system comprises polycaprolactone (PCL) nanofiber mesh and magnetic nanoparticles (MNPs). PCL has excellent biocompatibility and electrospinning performance. In this study, MNPs were tailored to be thermogenic in response to an alternating magnetic field (AMF). PCL nanofiber can deliver various chemotherapy drugs, and suitable MNPs encapsulated in the nanofiber can generate hyperthermia and synergistic effect with those chemotherapy drugs. Therefore, a more personalized treatment system can be developed for different breast malignancies. In addition, the PCL nanofiber mesh (NFM) enables sustained release of the drugs for up two months, avoiding the burden on patients caused by repeated administration. Through model drugs doxorubicin (DOX) and chemosensitizers curcumin (CUR), we systematically verified the therapeutic effect of DOX-resistance breast cancer and inhibition of tumor generation in vivo. These findings represent a multifaceted platform of importance for validating strategic reversed MDR in pursuit of promoted thermo-chemotherapeutic outcomes. More importantly, the low cost and excellent safety and efficacy of this nanofiber mesh demonstrate that this can be customized multi-function vector system may be a promising candidate for refractory cancer therapy in clinical.
Collapse
Affiliation(s)
- Lili Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nanami Fujisawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Emiho Oe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kai Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Department of Materials Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan.
| |
Collapse
|
27
|
Guo X, Xiu F, Bera H, Abbasi YF, Chen Y, Si L, Liu P, Zhao C, Tang X, Feng Y, Cun D, Zhao X, Yang M. 20(R)-ginsenoside Rg3-loaded polyurethane/marine polysaccharide based nanofiber dressings improved burn wound healing potentials. Carbohydr Polym 2023; 317:121085. [PMID: 37364955 DOI: 10.1016/j.carbpol.2023.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The management of deep burn injuries is extremely challenging, ascribed to their delayed wound healing rate, susceptibility for bacterial infections, pain, and increased risk of hypertrophic scarring. In our current investigation, a series of composite nanofiber dressings (NFDs) based on polyurethane (PU) and marine polysaccharides (i.e., hydroxypropyl trimethyl ammonium chloride chitosan, HACC and sodium alginate, SA) were accomplished by electrospinning and freeze-drying protocols. The 20(R)-ginsenoside Rg3 (Rg3) was further loaded into these NFDs to inhibit the formation of excessive wound scars. The PU/HACC/SA/Rg3 dressings showed a sandwich-like structure. The Rg3 was encapsulated in the middle layers of these NFDs and slowly released over 30 days. The PU/HACC/SA and PU/HACC/SA/Rg3 composite dressings demonstrated superior wound healing potentials over other NFDs. These dressings also displayed favorable cytocompatibility with keratinocytes and fibroblasts and could dramatically accelerate epidermal wound closure rate following 21 days of the treatment of a deep burn wound animal model. Interestingly, the PU/HACC/SA/Rg3 obviously reduced the excessive scar formation, with a collagen type I/III ratio closer to the normal skin. Overall, this study represented PU/HACC/SA/Rg3 as a promising multifunctional wound dressing, which promoted the regeneration of burn skins and attenuated scar formation.
Collapse
Affiliation(s)
- Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China; Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, 713206, India
| | - Yasir Faraz Abbasi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chunwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
28
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
29
|
Bernal RAO, Olekhnovich RO, Uspenskaya MV. Influence of Thermal Treatment and Acetic Acid Concentration on the Electroactive Properties of Chitosan/PVA-Based Micro- and Nanofibers. Polymers (Basel) 2023; 15:3719. [PMID: 37765573 PMCID: PMC10534511 DOI: 10.3390/polym15183719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This study presents, for the first time, a comprehensive investigation of the influence of pre- and post-fabrication parameters for the electroactive properties of electrospun chitosan/PVA-based micro- and nanofibers. Chitosan/PVA fibers were fabricated using electrospinning, characterized, and tested as electroactive materials. Solutions with different acetic acid contents (50, 60, 70, and 80 v/v%) were used, and the rheological properties of the solutions were analyzed. Characterization techniques, such as rheology, conductivity, optical microscopy, a thermogravimetric analysis, differential scanning calorimetry, a tensile test, and FT-IR spectroscopy, were utilized. Fiber mats from the various solutions were thermally treated, and their electroactive behavior was examined under a constant electric potential (10 V) at different pHs (2-13). The results showed that fibers electrospun from 80% acetic acid had a lower electroactive response and dissolved quickly. However, thermal treatment improved the stability and electroactive response of all fiber samples, particularly the ones spun with 80% acetic acid, which exhibited a significant increase in speed displacement from 0 cm-1 (non-thermally treated) to 1.372 cm-1 (thermally treated) at a pH of 3. This study sheds light on the influence of pre- and post-fabrication parameters on the electroactive properties of chitosan/PVA fibers, offering valuable insights for the development of electroactive materials in various applications.
Collapse
|
30
|
Faglie A, Emerine R, Chou SF. Effects of Poloxamers as Excipients on the Physicomechanical Properties, Cellular Biocompatibility, and In Vitro Drug Release of Electrospun Polycaprolactone (PCL) Fibers. Polymers (Basel) 2023; 15:2997. [PMID: 37514386 PMCID: PMC10383550 DOI: 10.3390/polym15142997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Electrospun microfibers are emerging as one of the advanced wound dressing materials for acute and/or chronic wounds, especially with their ability to carry drugs and excipients at a high loading while being able to deliver them in a controlled manner. Various attempts were made to include excipients in electrospun microfibers as wound dressing materials, and one of them is poloxamer, an amphiphilic polymer that exhibits wound debridement characteristics. In this study, we formulated two types of poloxamers (i.e., P188 and P338) at 30% (w/w) loading into electrospun polycaprolactone (PCL) fibers to evaluate their physicomechanical properties, biocompatibility, and in vitro drug release of a model drug. Our findings showed that the incorporation of poloxamers in the PCL solutions during electrospinning resulted in a greater "whipping" process for a larger fiber deposition area. These fibers were mechanically stiffer and stronger, but less ductile as compared to the PCL control fibers. The incorporation of poloxamers into electrospun PCL fibers reduced the surface hydrophobicity of fibers according to our water contact angle studies and in vitro degradation studies. The fibers' mechanical properties returned to those of the PCL control groups after "dumping" the poloxamers. Moreover, poloxamer-loaded PCL fibers accelerated the in vitro release of the model drug due to surface wettability. These poloxamer-loaded PCL fibers were biocompatible, as validated by MTT assays using A549 cells. Overall, we demonstrated the ability to achieve a high loading of poloxamers in electrospun fibers for wound dressing applications. This work provided the basic scientific understanding of materials science and bioengineering with an emphasis on the engineering applications of advanced wound dressings.
Collapse
Affiliation(s)
- Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Rachel Emerine
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
31
|
Latiyan S, Kumar TSS, Doble M, Kennedy JF. Perspectives of nanofibrous wound dressings based on glucans and galactans - A review. Int J Biol Macromol 2023:125358. [PMID: 37330091 DOI: 10.1016/j.ijbiomac.2023.125358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Wound healing is a complex and dynamic process that needs an appropriate environment to overcome infection and inflammation to progress well. Wounds lead to morbidity, mortality, and a significant economic burden, often due to the non-availability of suitable treatments. Hence, this field has lured the attention of researchers and pharmaceutical industries for decades. As a result, the global wound care market is expected to be 27.8 billion USD by 2026 from 19.3 billion USD in 2021, at a compound annual growth rate (CAGR) of 7.6 %. Wound dressings have emerged as an effective treatment to maintain moisture, protect from pathogens, and impede wound healing. However, synthetic polymer-based dressings fail to comprehensively address optimal and quick regeneration requirements. Natural polymers like glucan and galactan-based carbohydrate dressings have received much attention due to their inherent biocompatibility, biodegradability, inexpensiveness, and natural abundance. Also, nanofibrous mesh supports better proliferation and migration of fibroblasts because of their large surface area and similarity to the extracellular matrix (ECM). Thus, nanostructured dressings derived from glucans and galactans (i.e., chitosan, agar/agarose, pullulan, curdlan, carrageenan, etc.) can overcome the limitations associated with traditional wound dressings. However, they require further development pertaining to the wireless determination of wound bed status and its clinical assessment. The present review intends to provide insight into such carbohydrate-based nanofibrous dressings and their prospects, along with some clinical case studies.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - John F Kennedy
- Chembiotech Labs, Institute of Science and Technology, Kyrewood House, Tenbury Wells WR158FF, UK
| |
Collapse
|
32
|
Fang Z, Lin T, Fan S, Qiu X, Zhong Z, Yang G, Yang J, Zhang G, Feng Y, Ai F, Shi Q, Wan W. Antibacterial, injectable, and adhesive hydrogel promotes skin healing. Front Bioeng Biotechnol 2023; 11:1180073. [PMID: 37334269 PMCID: PMC10272432 DOI: 10.3389/fbioe.2023.1180073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
With the development of material science, hydrogels with antibacterial and wound healing properties are becoming common. However, injectable hydrogels with simple synthetic methods, low cost, inherent antibacterial properties, and inherent promoting fibroblast growth are rare. In this paper, a novel injectable hydrogel wound dressing based on carboxymethyl chitosan (CMCS) and polyethylenimine (PEI) was discovered and constructed. Since CMCS is rich in -OH and -COOH and PEI is rich in -NH2, the two can interact through strong hydrogen bonds, and it is theoretically feasible to form a gel. By changing their ratio, a series of hydrogels can be obtained by stirring and mixing with 5 wt% CMCS aqueous solution and 5 wt% PEI aqueous solution at volume ratios of 7:3, 5:5, and 3:7. Characterized by morphology, swelling rate, adhesion, rheological properties, antibacterial properties, in vitro biocompatibility, and in vivo animal experiments, the hydrogel has good injectability, biocompatibility, antibacterial (Staphylococcus aureus: 56.7 × 107 CFU/mL in the blank group and 2.5 × 107 CFU/mL in the 5/5 CPH group; Escherichia coli: 66.0 × 107 CFU/mL in the blank group and 8.5 × 107 CFU/mL in the 5/5 CPH group), and certain adhesion (0.71 kPa in the 5/5 CPH group) properties which can promote wound healing (wound healing reached 98.02% within 14 days in the 5/5 CPH group) and repair of cells with broad application prospects.
Collapse
Affiliation(s)
- Zilong Fang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, China
| | - Shuai Fan
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Xing Qiu
- Department of Orthopedic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ziqing Zhong
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Ganghua Yang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianqiu Yang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Guoqing Zhang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Feng
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China
| | - Qingming Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenbing Wan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar Drugs 2023; 21:338. [PMID: 37367663 DOI: 10.3390/md21060338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs' structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Victoria S Cañedo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
34
|
Huang SM, Liu SM, Tseng HY, Chen WC. Development and In Vitro Analysis of Layer-by-Layer Assembled Membranes for Potential Wound Dressing: Electrospun Curcumin/Gelatin as Middle Layer and Gentamicin/Polyvinyl Alcohol as Outer Layers. MEMBRANES 2023; 13:564. [PMID: 37367768 PMCID: PMC10304541 DOI: 10.3390/membranes13060564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Nanofibrous membranes made of hydrogels have high specific surface areas and are suitable as drug carriers. Multilayer membranes fabricated by continuous electrospinning could delay drug release by increasing diffusion pathways, which is beneficial for long-term wound care. In this experiment, polyvinyl alcohol (PVA) and gelatin were used as membrane substrates, and a sandwich PVA/gelatin/PVA structure of layer-by-layer membranes was prepared by electrospinning under different drug loading concentrations and spinning times. The outer layers on both sides were citric-acid-crosslinked PVA membranes loaded with gentamicin as an electrospinning solution, and the middle layer was a curcumin-loaded gelatin membrane for the study of release behavior, antibacterial activity, and biocompatibility. According to the in vitro release results, the multilayer membrane could release curcumin slowly; the release amount was about 55% less than that of the single layer within 4 days. Most of the prepared membranes showed no significant degradation during immersion, and the phosphonate-buffered saline absorption rate of the multilayer membrane was about five to six times its weight. The results of the antibacterial test showed that the multilayer membrane loaded with gentamicin had a good inhibitory effect on Staphylococcus aureus and Escherichia coli. In addition, the layer-by-layer assembled membrane was non-cytotoxic but detrimental to cell attachment at all gentamicin-carrying concentrations. This feature could be used as a wound dressing to reduce secondary damage to the wound when changing the dressing. This multilayer wound dressing could be applied to wounds in the future to reduce the risk of bacterial infection and help wounds heal.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Hua-Yi Tseng
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
35
|
Lin Z, Chen H, Li S, Li X, Wang J, Xu S. Electrospun Food Polysaccharides Loaded with Bioactive Compounds: Fabrication, Release, and Applications. Polymers (Basel) 2023; 15:polym15102318. [PMID: 37242893 DOI: 10.3390/polym15102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Food polysaccharides are well acclaimed in the field of delivery systems due to their natural safety, biocompatibility with the human body, and capability of incorporating/releasing various bioactive compounds. Electrospinning, a straightforward atomization technique that has been attracting researchers worldwide, is also versatile for coupling food polysaccharides and bioactive compounds. In this review, several popular food polysaccharides including starch, cyclodextrin, chitosan, alginate, and hyaluronic acid are selected to discuss their basic characteristics, electrospinning conditions, bioactive compound release characteristics, and more. Data revealed that the selected polysaccharides are capable of releasing bioactive compounds from as rapidly as 5 s to as prolonged as 15 days. In addition, a series of frequently studied physical/chemical/biomedical applications utilizing electrospun food polysaccharides with bioactive compounds are also selected and discussed. These promising applications include but are not limited to active packaging with 4-log reduction against E. coli, L. innocua, and S. aureus; removal of 95% of particulate matter (PM) 2.5 and volatile organic compounds (VOCs); heavy metal ion removal; increasing enzyme heat/pH stability; wound healing acceleration and enhanced blood coagulation, etc. The broad potentials of electrospun food polysaccharides loaded with bioactive compounds are demonstrated in this review.
Collapse
Affiliation(s)
- Zhenyu Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengmei Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaolu Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
36
|
Olvera Bernal RA, Olekhnovich RO, Uspenskaya MV. Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators. Polymers (Basel) 2023; 15:polym15092037. [PMID: 37177184 PMCID: PMC10181017 DOI: 10.3390/polym15092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan/PVA nanofibrous electroresponsive soft actuators were successfully obtained using an electrospinning process, which showed fast speed displacement under an acidic environment. Chitosan/PVA nanofibers were prepared and characterized, and their electroactive response was tested. Chitosan/PVA nanofibers were electrospun from a chitosan/PVA solution at different chitosan contents (2.5, 3, 3.5, and 4 wt.%). Nanofibers samples were characterized using Fourier transform infrared analyses, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), optical microscopy, and tensile test. The electroactive behavior of the nanofiber hydrogels was tested under different HCl pH (2-6) under a constant voltage (10 V). The electroactive response test showed a dependence between the nanofiber's chitosan content and pH with the bending speed displacement, reaching a maximum speed displacement of 1.86 mm-1 in a pH 3 sample with a chitosan content of 4 wt.%. The results of the electroactive response were further supported by the determination of the proportion of free amine groups, though deconvoluting the FTIR spectra in the range of 3000-3700 cm-1. Deconvolution results showed that the proportion of free amine increased as the chitosan content was higher, being 3.6% and 4.59% for nanofibers with chitosan content of 2.5 and 4 wt.%, respectively.
Collapse
|
37
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Rajora AD, Bal T. Evaluation of cashew gum-polyvinyl alcohol (CG-PVA) electrospun nanofiber mat for scarless wound healing in a murine model. Int J Biol Macromol 2023; 240:124417. [PMID: 37059283 DOI: 10.1016/j.ijbiomac.2023.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Modern-day treatment for burns and wounds demands scarless healing which is becoming a challenging clinical problem. Thus, to alleviate such issues, it becomes essential to develop biocompatible and biodegradable wound dressing material for skin tissue regeneration, which could heal the wound in a very short span leaving no scars. The present study focuses on the development of nanofiber of Cashew gum polysaccharide-Polyvinyl alcohol using electrospinning. The prepared nanofiber was optimized based on uniformity of fiber diameter (FESEM), mechanical property (Tensile Strength), and optical contact angle (OCA) and was subjected to evaluation of: antimicrobial activity against Streptococcus aureus and Escherichia coli, hemocompatibility, and in-vitro biodegradability. The nanofiber was also characterized using different analytical techniques including thermogravimetric analysis, Fourier-transform infrared spectroscopy, and X-ray diffraction. The cytotoxicity was also investigated on L929 fibroblast cells using an SRB assay. The in-vivo wound healing assay showed accelerated healing in comparison to untreated wounds. The in-vivo wound healing assay and histopathological slides of regenerated tissue confirmed that the nanofiber has the potential to accelerate healing properties.
Collapse
Affiliation(s)
- Aditya Dev Rajora
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
39
|
Jang EJ, Patel R, Patel M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics 2023; 15:pharmaceutics15041144. [PMID: 37111630 PMCID: PMC10142830 DOI: 10.3390/pharmaceutics15041144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, diabetic mellitus (DM) is a common metabolic disease that effectively inhibits insulin production, destroys pancreatic β cells, and consequently, promotes hyperglycemia. This disease causes complications, including slowed wound healing, risk of infection in wound areas, and development of chronic wounds all of which are significant sources of mortality. With an increasing number of people diagnosed with DM, the current method of wound healing does not meet the needs of patients with diabetes. The lack of antibacterial ability and the inability to sustainably deliver necessary factors to wound areas limit its use. To overcome this, a new method of creating wound dressings for diabetic patients was developed using an electrospinning methodology. The nanofiber membrane mimics the extracellular matrix with its unique structure and functionality, owing to which it can store and deliver active substances that greatly aid in diabetic wound healing. In this review, we discuss several polymers used to create nanofiber membranes and their effectiveness in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21938, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
40
|
Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2799. [PMID: 37049093 PMCID: PMC10095723 DOI: 10.3390/ma16072799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues. Among different nanomaterials, polymeric nanofibers and carbon nanofibers have attracted significant attention due to their similarity to bone extracellular matrix (ECM) and high surface-to-volume ratio. Moreover, bone ECM is a biocomposite of collagen fibers and hydroxyapatite crystals; accordingly, researchers have tried to mimic this biocomposite using the mineralization of various polymeric and carbon nanofibers and have shown that the mineralized nanofibers are promising structures to augment the bone healing process in the tissue engineering scenario. In this paper, we reviewed the bone structure, bone defects/fracture healing process, and various structures/cells/growth factors applicable to bone tissue engineering applications. Then, we highlighted the mineralized polymeric and carbon nanofibers and their fabrication methods.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz 5165687386, Iran
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
41
|
Wallenwein CM, Ashtikar M, Hofhaus G, Haferland I, Thurn M, König A, Pinter A, Dressman J, Wacker MG. How wound environments trigger the release from Rifampicin-loaded liposomes. Int J Pharm 2023; 633:122606. [PMID: 36632921 DOI: 10.1016/j.ijpharm.2023.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic wounds often contain high levels of proinflammatory cytokines that prolong the wound-healing process. Patients suffering from these conditions are likely to benefit from topical rifampicin therapy. Although recent research indicates considerable anti-inflammatory properties of the antibiotic, currently, there are no commercial topical wound healing products available. To address this medical need, a liposomal drug delivery system was developed. A mechanistic investigation outlined major influences of wound environments that affect the release kinetics and, as a consequence, local bioavailability. METHODS Liposomes were prepared using the thin-film hydration method and subsequently freeze-dried at the pilot scale to improve their stability. We investigated the influence of oxidation, plasma proteins, and lipolysis on the in vitro release of rifampicin and its two main degradation products using the Dispersion Releaser technology. A novel simulated wound fluid provided a standardized environment to study critical influences on the release. It reflects the pathophysiological environment regarding pH, buffer capacity, and protein content. RESULTS During storage, the liposomes efficiently protect rifampicin from degradation. After the dispersion of the vesicles in simulated wound fluid, despite the significant albumin binding (>70%), proteins have no considerable effect on the release. Also, the presence of lipase at pathophysiologically elevated concentrations did not trigger the liberation of rifampicin. Surprisingly, the oxidative environment of the wound bed represents the strongest accelerating influence and triggers the release. CONCLUSION A stable topical delivery system of rifampicin has been developed. Once the formulation comes in contact with simulated wound fluid, drug oxidation accelerates the release. The influence of lipases that are assumed to trigger the liberation from liposomes depends on the drug-to-lipid ratio. Considering that inflamed tissues exhibit elevated levels of oxidative stress, the trigger mechanism identified for rifampicin contributes to targeted drug delivery.
Collapse
Affiliation(s)
- Chantal M Wallenwein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Mukul Ashtikar
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Götz Hofhaus
- Department of Dermatology, Venerology, and Allergology, University Hospital, 60596 Frankfurt am Main, Germany
| | - Isabel Haferland
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Manuela Thurn
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Anke König
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Pinter
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, 4 Science Drive 2, Singapore 117544, Singapore.
| |
Collapse
|
42
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
43
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
44
|
Wallenwein CM, Weigel V, Hofhaus G, Dhakal N, Schatton W, Gelperina S, Groeber-Becker FK, Dressman J, Wacker MG. Pharmaceutical Development of Nanostructured Vesicular Hydrogel Formulations of Rifampicin for Wound Healing. Int J Mol Sci 2022; 23:16207. [PMID: 36555855 PMCID: PMC9788359 DOI: 10.3390/ijms232416207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds exhibit elevated levels of inflammatory cytokines, resulting in the release of proteolytic enzymes which delay wound-healing processes. In recent years, rifampicin has gained significant attention in the treatment of chronic wounds due to an interesting combination of antibacterial and anti-inflammatory effects. Unfortunately, rifampicin is sensitive to hydrolysis and oxidation. As a result, no topical drug product for wound-healing applications has been approved. To address this medical need two nanostructured hydrogel formulations of rifampicin were developed. The liposomal vesicles were embedded into hydroxypropyl methylcellulose (HPMC) gel or a combination of hyaluronic acid and marine collagen. To protect rifampicin from degradation in aqueous environments, a freeze-drying method was developed. Before freeze-drying, two well-defined hydrogel preparations were obtained. After freeze-drying, the visual appearance, chemical stability, residual moisture content, and redispersion time of both preparations were within acceptable limits. However, the morphological characterization revealed an increase in the vesicle size for collagen-hyaluronic acid hydrogel. This was confirmed by subsequent release studies. Interactions of marine collagen with phosphatidylcholine were held responsible for this effect. The HPMC hydrogel formulation remained stable over 6 months of storage. Moving forward, this product fulfills all criteria to be evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Chantal M. Wallenwein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Verena Weigel
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Götz Hofhaus
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Namrata Dhakal
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | | | - Svetlana Gelperina
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Drugs, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Florian K. Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Matthias G. Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
45
|
Zhong D, Zhang H, Ma Z, Xin Q, Lu Y, Shi P, Qin M, Li J, Ding C. Recent advancements in wound management: Tailoring superwettable bio-interfaces. Front Bioeng Biotechnol 2022; 10:1106267. [PMID: 36568289 PMCID: PMC9767982 DOI: 10.3389/fbioe.2022.1106267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Skin tissue suffering from severe damages fail in self-regeneration. Proper wound dressings are highly demanded to protect the wound region and accelerate the healing process. Although large efforts have been devoted, there still exist disturbing dilemmas for traditional dressings. The exquisite design of bio-interface upon superwettable materials opens new avenues and addresses the problems perfectly. However, the advancements in this area have rarely been combed. In light of this, this minireview attempts to summarize recent strategies of superwettable bio-interfaces for wound care. Concentrating on the management of biofluids (blood and exudate), we described superwettable hemostatic bio-interfaces first, and then introduced the management of exudates. Finally, the perspective of this area was given. This minireview gives a comprehensive outline for readers and is believed to provide references for the design of superwettable materials in biomedical area.
Collapse
Affiliation(s)
| | - Hongbo Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengxin Ma
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Qiangwei Xin
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, China,State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, China,*Correspondence: Ping Shi, ; Chunmei Ding,
| | - Meng Qin
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Jianshu Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Chunmei Ding
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China,*Correspondence: Ping Shi, ; Chunmei Ding,
| |
Collapse
|
46
|
Ruggeri M, Vigani B, Boselli C, Icaro Cornaglia A, Colombo D, Sànchez-Espejo R, Del Favero E, Mandras N, Roana J, Cavallo L, Cantù L, Viseras C, Rossi S, Sandri G. Smart nano-in-microparticles to tackle bacterial infections in skin tissue engineering. Mater Today Bio 2022; 16:100418. [PMID: 36157051 PMCID: PMC9489812 DOI: 10.1016/j.mtbio.2022.100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic wounds (resulting from underlying disease, metabolic disorders, infections, trauma, and even tumours) pose significant health problems. In this work, microparticles, based on polysaccharides (maltodextrin or dextran) and amino acids, and doped with antibacterial nanoparticles (CuO or ZnO NPs) are designed. Smart nano-in-microparticles with a hierarchical 3D structure are developed. The ultimate goal aims at an innovative platform to achieve skin repair and to manage skin colonization by avoiding infection that could delay and even impair the healing process. The microparticles are prepared by spray-drying and cross-linked by heating, to obtain insoluble scaffolds able to facilitate cell proliferation in the wound bed. The nano-in-microparticles are characterized using a multidisciplinary approach: chemico-physical properties (SEM, SEM-EDX, size distribution, swelling and degradation properties, structural characterization - FTIR, XRPD, SAXS - mechanical properties, surface zeta potential) and preclinical properties (in vitro biocompatibility and whole-blood clotting properties, release studies and antimicrobial properties, and in vivo safety and efficacy on murine burn/excisional wound model) were assessed. The hierarchical 3D nano-in microparticles demonstrate to promote skin tissue repair in a preclinical study, indicating that this platform deserves particular attention and further investigation will promote the prototypes translation to clinics.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Daniele Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Rita Sànchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja S/n, Granada, 18071, Spain
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milano, LITA, Via Fratelli Cervi 93, 20090, Segrate, Milano, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Turin, 10126, Turin, Italy
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Turin, 10126, Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126, Turin, Italy
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milano, LITA, Via Fratelli Cervi 93, 20090, Segrate, Milano, Italy
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja S/n, Granada, 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
47
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
48
|
Yao M, Sun F, Nie J, Yang QL, Wu W, Zhao F. Electrospinning in Food Safety Detection: Diverse Nanofibers Promote Sensing Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2146135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Mingru Yao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Feifei Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Jiyun Nie
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Agricultural University, Qingdao, China
| | - Qing-Li Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
49
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
50
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|