1
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
2
|
Fawaz W, Hanano A, Murad H, Yousfan A, Alghoraibi I, Hasian J. Polymeric nanoparticles loaded with vincristine and carbon dots for hepatocellular carcinoma therapy and imaging. Sci Rep 2024; 14:24520. [PMID: 39424827 PMCID: PMC11489775 DOI: 10.1038/s41598-024-75332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Chemotherapy for hepatoblastoma is limited by organ toxicity and poor outcomes, prompting the search for new, more effective treatments with minimal side effects. Vincristine sulfate, a potent chemotherapeutic, faces challenges due to P-glycoprotein-mediated resistance and its systemic toxicity. Nanoparticles offer a promising solution by improving pharmacokinetics, targeting tumor cells, thus reducing side effects. Moreover, the use of fluorescent nanomaterials is emerging in biomedical applications such as bioimaging, detection and therapies. This study describes a promising delivery system utilizing carbon dots encapsulated with vincristine in biodegradable polycaprolactone nanoparticles via a double emulsion technique. The fine characterization of these nanoparticles showed that they are spherical, uniformly sized with around 200 nm and exhibit excellent colloidal stability. Moreover, the release profile showed prolonged release for both vincristine and carbon dots. In vitro cell viability studies revealed enhanced cancer cell inhibition for the encapsulated drug compared to the vincristine solution. The uptake study indicated clear fluorescence for carbon dots solution and vincristine and carbon dots loaded nanoparticles upon excitation. Additionally, studies on primary mouse hepatocytes demonstrated higher fluorescence intensity in treatment groups. These results suggest that vincristine and carbon dots loaded nanoparticles are effective, target-specific carriers for liver cancer treatment. Furthermore, the carbon dots were not cytotoxic, highlighting their potential in bioimaging and cancer cell studies.
Collapse
Affiliation(s)
- Walaa Fawaz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Hossam Murad
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al Andalus University for Medical Sciences, Tartus, Syria
| | - Ibrahim Alghoraibi
- Department of Physics, Faculty of Science, Damascus University, Damascus, Syria
| | - Jameela Hasian
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk Private University, Damascus, Syria
| |
Collapse
|
3
|
Geszke-Moritz M, Moritz M. Biodegradable Polymeric Nanoparticle-Based Drug Delivery Systems: Comprehensive Overview, Perspectives and Challenges. Polymers (Basel) 2024; 16:2536. [PMID: 39274168 PMCID: PMC11397980 DOI: 10.3390/polym16172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In the last few decades, there has been a growing interest in the use of biodegradable polymeric nanoparticles (BPNPs) as the carriers for various therapeutic agents in drug delivery systems. BPNPs have the potential to improve the efficacy of numerous active agents by facilitating targeted delivery to a desired site in the body. Biodegradable polymers are especially promising nanocarriers for therapeutic substances characterized by poor solubility, instability, rapid metabolism, and rapid system elimination. Such molecules can be efficiently encapsulated and subsequently released from nanoparticles, which greatly improves their stability and bioavailability. Biopolymers seem to be the most suitable candidates to be used as the nanocarriers in various delivery platforms, especially due to their biocompatibility and biodegradability. Other unique properties of the polymeric nanocarriers include low cost, flexibility, stability, minimal side effects, low toxicity, good entrapment potential, and long-term and controlled drug release. An overview summarizing the research results from the last years in the field of the successful fabrication of BPNPs loaded with various therapeutic agents is provided. The possible challenges involving nanoparticle stability under physiological conditions and the possibility of scaling up production while maintaining quality, as well as the future possibilities of employing BPNPs, are also reviewed.
Collapse
Affiliation(s)
- Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| |
Collapse
|
4
|
Matějková N, Korecká L, Šálek P, Kočková O, Pavlova E, Kašparová J, Obořilová R, Farka Z, Frolich K, Adam M, Carrillo A, Šinkorová Z, Bílková Z. Hyaluronic Acid Nanoparticles with Parameters Required for In Vivo Applications: From Synthesis to Parametrization. Biomacromolecules 2024; 25:4934-4945. [PMID: 38943654 PMCID: PMC11323013 DOI: 10.1021/acs.biomac.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Hyaluronic acid is an excellent biocompatible material for in vivo applications. Its ability to bind CD44, a cell receptor involved in numerous biological processes, predetermines HA-based nanomaterials as unique carrier for therapeutic and theranostic applications. Although numerous methods for the synthesis of hyaluronic acid nanoparticles (HANPs) are available today, their low reproducibility and wide size distribution hinder the precise assessment of the effect on the organism. A robust and reproducible approach for producing HANPs that meet strict criteria for in vivo applications (e.g., to lung parenchyma) remains challenging. We designed and evaluated four protocols for the preparation of HANPs with those required parameters. The HA molecule was cross-linked by novel combinations of carbodiimide, and four different amine-containing compounds resulted in monodisperse HANPs with a low polydispersity index. By a complex postsynthetic characterization, we confirmed that the prepared HANPs meet the criteria for inhaled therapeutic delivery and other in vivo applications.
Collapse
Affiliation(s)
- Nikola Matějková
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Lucie Korecká
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Petr Šálek
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Olga Kočková
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Jitka Kašparová
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Radka Obořilová
- Central
European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
| | - Zdeněk Farka
- Central
European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
| | - Karel Frolich
- Department
of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martin Adam
- Department
of Analytical Chemistry, Faculty of Chemical
Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Anna Carrillo
- Department
of Radiobiology, Faculty of Military Health
Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 01, Czech Republic
| | - Zuzana Šinkorová
- Department
of Radiobiology, Faculty of Military Health
Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 01, Czech Republic
| | - Zuzana Bílková
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
5
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Cruz-Maya I, Cirillo V, Serrano-Bello J, Serri C, Alvarez-Perez MA, Guarino V. Optimization of Diclofenac-Loaded Bicomponent Nanofibers: Effect of Gelatin on In Vitro and In Vivo Response. Pharmaceutics 2024; 16:925. [PMID: 39065622 PMCID: PMC11279899 DOI: 10.3390/pharmaceutics16070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The use of electrospun fibers as anti-inflammatory drug carriers is currently one of the most interesting approaches for the design of drug delivery systems. In recent years, biodegradable polymers blended with naturally derived ones have been extensively studied to fabricate bioinspired platforms capable of driving biological responses by releasing selected molecular/pharmaceutical signals. Here, sodium diclofenac (DicNa)-loaded electrospun fibers, consisting of polycaprolactone (PCL) or gelatin-functionalized PCL, were studied to evaluate fibroblasts' in vitro and in vivo response. In vitro studies demonstrated that cell adhesion of L929 cells (≈70%) was not affected by the presence of DicNa after 4 h. Moreover, the initial burst release of the drug from PD and PGD fibers, e.g., 80 and 48%, respectively, after 5 h-combined with its sustained release-did not produce any cytotoxic effect and did not negatively influence the biological activity of the cells. In particular, it was demonstrated that the addition of gelatin concurred to slow down the release mechanism, thus limiting the antiproliferative effect of DicNa, as confirmed by the significant increase in cell viability and collagen deposition after 7 days, with respect to PCL alone. In vivo studies in a rat subcutaneous model also confirmed the ability of DicNa-loaded fibers to moderate the inflammatory/foreign body response independently through the presence of gelatin that played a significant role in supporting the formation of small-caliber vessels after 10 days of implantation. All of these results suggest using bicomponent fibers loaded with DicNa as a valid therapeutic tool capable of supporting the wound healing process and limiting in vivo inflammation and rejection phenomena.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Valentina Cirillo
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy;
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| |
Collapse
|
7
|
de Souza CS, Lopes VRDC, Barcellos G, Alexandrino-Junior F, Neves PCDC, Patricio BFDC, Rocha HVA, Ano Bom APD, Figueiredo ABC. Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies. J Fungi (Basel) 2024; 10:344. [PMID: 38786699 PMCID: PMC11122123 DOI: 10.3390/jof10050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Fungal infections cause 1.7 million deaths annually, which can be attributed not only to fungus-specific factors, such as antifungal resistance and biofilm formation, but also to drug-related challenges. In this study, the potential of Amphotericin (AmB) loaded polymeric nanoparticles (AmB-NPs) combined with murine monoclonal antibodies (mAbs) (i.e., CC5 and DD11) was investigated as a strategy to overcome these challenges. To achieve this goal, AmB-NPs were prepared by nanoprecipitation using different polymers (polycaprolactone (PCL) and poly(D,L-lactide) (PLA)), followed by comprehensive characterization of their physicochemical properties and in vitro biological performance. The results revealed that AmB-loaded NPs exhibited no cytotoxicity toward mammalian cells (baby hamster kidney cells-BHK and human monocyte cells-THP-1). Conversely, both AmB-NPs demonstrated a cytotoxic effect against C. albicans, C. neoformans, and H. capsulatum throughout the entire evaluated range (from 10 µg/mL to 0.1 µg/mL), with a significant MIC of up to 0.031 µg/mL. Moreover, the combination of AmB-NPs with mAbs markedly intensified antifungal activity, resulting in a synergistic effect that was two to four times greater than that of AmB-NPs alone. These findings suggest that the combination of AmB-NPs with mAbs could be a promising new treatment for fungal infections that is potentially more effective and less toxic than current antifungal treatments.
Collapse
Affiliation(s)
- Carla Soares de Souza
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Victor Ropke da Cruz Lopes
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Gabriel Barcellos
- Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil (H.V.A.R.)
| | - Francisco Alexandrino-Junior
- Laboratório de Micro e Nanotecnologia, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-361, Brazil
| | - Patrícia Cristina da Costa Neves
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Beatriz Ferreira de Carvalho Patricio
- Laboratório de Inovação Farmacêutica e Tecnológica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro 22290-250, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil (H.V.A.R.)
- Laboratório de Micro e Nanotecnologia, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-361, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Alexandre Bezerra Conde Figueiredo
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| |
Collapse
|
8
|
Aboelenin AM, El-Mowafy M, Saleh NM, Shaaban MI, Barwa R. Ciprofloxacin- and levofloxacin-loaded nanoparticles efficiently suppressed fluoroquinolone resistance and biofilm formation in Acinetobacter baumannii. Sci Rep 2024; 14:3125. [PMID: 38326515 PMCID: PMC10850473 DOI: 10.1038/s41598-024-53441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.
Collapse
Affiliation(s)
- Alaa M Aboelenin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
9
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Manning AN, Rowlands CE, Saindon H, Givens BE. Tuning the Emulsion Properties Influences the Size of Poly(Caprolactone) Particles for Drug Delivery Applications. AAPS J 2023; 25:100. [PMID: 37891411 DOI: 10.1208/s12248-023-00869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Advances in drug delivery have been accelerated with the addition of polymeric drug carriers. Direct delivery to a target site is a promising step in developing effective drug and gene therapies to treat disease. The efficacy of these drug carriers heavily relies on cell uptake without compromising critical cellular processes that promote cell viability. Drug release from biodegradable polymers is mediated largely by polymer degradation, and therefore the rate of polymer degradation dictates the feasibility of drug delivery applications. Traditionally, poly(caprolactone) (PCL) has only been used in long-term biomedical applications because the degradation time is much slower than other polymers. However, the biocompatibility of this polymer and the potential for longer delivery windows renders it a promising polymer candidate for drug delivery. In this work, we outline sixteen emulsion solvent evaporation preparation methods for PCL nanoparticles and microparticles to develop particles between 300 nm and 1.7 μm and with zeta potentials of -1.8 mV. We further investigated particles in a size range suitable for systemic tumor delivery and inhaled aerosol delivery to determine cell biocompatibility with the polymer in lung adenocarcinoma, endometrial adenocarcinoma, and human embryonic kidney cells. We determined these particles aren't detrimental to cell viability below particle monolayer coverage atop cells and therefore these formulations hold promise for the next stage of development as sustained-release drug delivery carriers.
Collapse
Affiliation(s)
- Ashbey N Manning
- Department of Chemical and Materials Engineering, College of Engineering, University of Kentucky, 157 F. Paul Anderson Tower, 512 Administration Dr, Lexington, KY, 40506, USA
| | - Claire E Rowlands
- Department of Chemical and Materials Engineering, College of Engineering, University of Kentucky, 157 F. Paul Anderson Tower, 512 Administration Dr, Lexington, KY, 40506, USA
| | - Hope Saindon
- Department of Chemical and Materials Engineering, College of Engineering, University of Kentucky, 157 F. Paul Anderson Tower, 512 Administration Dr, Lexington, KY, 40506, USA
| | - Brittany E Givens
- Department of Chemical and Materials Engineering, College of Engineering, University of Kentucky, 157 F. Paul Anderson Tower, 512 Administration Dr, Lexington, KY, 40506, USA.
| |
Collapse
|
11
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
12
|
Enazy SA, Kirschen GW, Vincent K, Yang J, Saada J, Shah M, Oberhauser AF, Bujalowski PJ, Motamedi M, Salama SA, Kilic G, Rytting E, Borahay MA. PEGylated Polymeric Nanoparticles Loaded with 2-Methoxyestradiol for the Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. J Pharm Sci 2023; 112:2552-2560. [PMID: 37482124 PMCID: PMC10529399 DOI: 10.1016/j.xphs.2023.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Leiomyomas, the most common benign neoplasms of the female reproductive tract, currently have limited medical treatment options. Drugs targeting estrogen/progesterone signaling are used, but side effects and limited efficacy in many cases are major limitation of their clinical use. Previous studies from our laboratory and others demonstrated that 2-methoxyestradiol (2-ME) is promising treatment for uterine fibroids. However, its poor bioavailability and rapid degradation hinder its development for clinical use. The objective of this study is to evaluate the in vivo effect of biodegradable and biocompatible 2-ME-loaded polymeric nanoparticles in a patient-derived leiomyoma xenograft mouse model. PEGylated poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles loaded with 2-ME were prepared by nanoprecipitation. Female 6-week age immunodeficient NOG (NOD/Shi-scid/IL-2Rγnull) mice were used. Estrogen-progesterone pellets were implanted subcutaneously. Five days later, patient-derived human fibroid tumors were xenografted bilaterally subcutaneously. Engrafted mice were treated with 2-ME-loaded or blank (control) PEGylated nanoparticles. Nanoparticles were injected intraperitoneally and after 28 days of treatment, tumor volume was measured by caliper following hair removal, and tumors were removed and weighed. Up to 99.1% encapsulation efficiency was achieved, and the in vitro release profile showed minimal burst release, thus confirming the high encapsulation efficiency. In vivo administration of the 2-ME-loaded nanoparticles led to 51% growth inhibition of xenografted tumors compared to controls (P < 0.01). Thus, 2-ME-loaded nanoparticles may represent a novel approach for the treatment of uterine fibroids.
Collapse
Affiliation(s)
- Sanaalarab Al Enazy
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory W Kirschen
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jinping Yang
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Jamal Saada
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mansi Shah
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andres F Oberhauser
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Salama A Salama
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gokhan Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Coats JP, Cochereau R, Dinu IA, Messmer D, Sciortino F, Palivan CG. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromol Biosci 2023; 23:e2200474. [PMID: 36949011 DOI: 10.1002/mabi.202200474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.
Collapse
Affiliation(s)
- John Peter Coats
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Rémy Cochereau
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Daniel Messmer
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Flavien Sciortino
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- National Centre for Competence in Research - Molecular Systems Engineering, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| |
Collapse
|
14
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
15
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
16
|
Elmowafy E, O El-Derany M, Casettari L, Soliman ME, El-Gogary RI. Gamma oryzanol loaded into micelle-core/chitosan-shell: from translational nephroprotective potential to emphasis on sirtuin-1 associated machineries. Int J Pharm 2023; 631:122482. [PMID: 36513255 DOI: 10.1016/j.ijpharm.2022.122482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Gamma oryzanol (ORZ) is a nutraceutical that is poorly water soluble with poor intestinal absorption. In the current work, ORZ was nanoformulated into uncoated and chitosan coated micelles based on methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) and poly(ε-caprolactone)-b-methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone) (PCL-PEG-PCL) copolymers for augmenting ORZ oral delivery. The physicochemical properties, morphological study, in-vitro release and safety of the nanoplaforms were determined. Importantly, the nephroprotective competence of the nanoplaforms was analyzed against acute kidney injury (AKI) rat model and the sirtuin-1 associated machineries were assessed. The results revealed that the micelles exerted particle size (PS) from 97.9 to 117.8 nm that was markedly increased after chitosan coating. The reversal of zeta potential from negative to highly positive further confirmed efficient coating. In vitro release profiles demonstrated prolonged release pattern. The nanoforms conferred higher cell viability values than free ORZ on Vero cell line. The designed micelles displayed augmented nephroprotection compared to free ORZ with the supremacy of CS coated micelles over uncoated ones in restoring kidney parameters to normal levels. The attenuated AKI was fulfilled via the modulation of sirtuin-1 signaling pathways translated by restoring the histological features, increasing renal antioxidant states, renal autophagy and decreasing renal inflammation and renal apoptosis. These outcomes confirmed that surface modification with chitosan had a considerable leverage on micelles safety, release behavior and in vivo performance.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, AinShams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza delRinascimento, 6, 61029 Urbino, PU, Italy
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt; Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt.
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| |
Collapse
|
17
|
Rosato R, Napoli E, Granata G, Di Vito M, Garzoli S, Geraci C, Rizzo S, Torelli R, Sanguinetti M, Bugli F. Study of the Chemical Profile and Anti-Fungal Activity against Candida auris of Cinnamomum cassia Essential Oil and of Its Nano-Formulations Based on Polycaprolactone. PLANTS (BASEL, SWITZERLAND) 2023; 12:358. [PMID: 36679069 PMCID: PMC9860731 DOI: 10.3390/plants12020358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Candida auris represents an emerging pathogen that results in nosocomial infections and is considered a serious global health problem. The aim of this work was to evaluate the in vitro antifungal efficacy of Cinnamomum cassia essential oil (CC-EO) pure or formulated in polycaprolactone (PCL) nanoparticles against ten clinical strains of C. auris. METHODS nanoparticles of PCL were produced using CC-EO (nano-CC-EO) and cinnamaldehyde (CIN) through the nanoprecipitation method. The chemical profile of both CC-EO and nano-CC-EO was evaluated using SPME sampling followed by GC-MS analysis. Micro-broth dilution tests were performed to evaluate both fungistatic and fungicidal effectiveness of CC-EO and CIN, pure and nano-formulated. Furthermore, checkerboard tests to evaluate the synergistic action of CC-EO or nano-CC-EO with micafungin or fluconazole were conducted. Finally, the biofilm disrupting activity of both formulations was evaluated. RESULTS GC-MS analysis shows a different composition between CC-EO and nano-CC-EO. Moreover, the microbiological analyses do not show any variation in antifungal effectiveness either towards the planktonic form (MICCC-EO = 0.01 ± 0.01 and MICnano-CC-EO = 0.02 ± 0.01) or the biofilm form. No synergistic activity with the antifungal drugs tested was found. CONCLUSIONS both CC-EO and nano-CC-EO show the same antimicrobial effectiveness and are potential assets in the fight against C. auris.
Collapse
Affiliation(s)
- Roberto Rosato
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy
| | - Giuseppe Granata
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00100 Rome, Italy
| | - Corrada Geraci
- Istituto di Chimica Biomolecolare—Consiglio Nazionale delle Ricerche, 95126 Catania, Italy
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00167 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
18
|
Rodrigues VM, Oliveira WN, Pereira DT, Alencar ÉN, Porto DL, Aragão CFS, Moreira SMG, Rocha HAO, Amaral-Machado L, Egito EST. Copaiba Oil-Loaded Polymeric Nanocapsules: Production and In Vitro Biosafety Evaluation on Lung Cells as a Pre-Formulation Step to Produce Phytotherapeutic Medicine. Pharmaceutics 2023; 15:pharmaceutics15010161. [PMID: 36678788 PMCID: PMC9861736 DOI: 10.3390/pharmaceutics15010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 μg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.
Collapse
Affiliation(s)
- Victor M. Rodrigues
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Dayanne L. Porto
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Cícero F. S. Aragão
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Susana M. G. Moreira
- Department of Cellular and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo A. O. Rocha
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Laboratory of Natural Polymers Biotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Eryvaldo S. T. Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Correspondence: or ; Tel.: +55-(84)-994318816
| |
Collapse
|
19
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
20
|
Uroro EO, Bright R, Hayles A, Vasilev K. Lipase-Responsive Amphotericin B Loaded PCL Nanoparticles for Antifungal Therapies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:155. [PMID: 36616065 PMCID: PMC9823996 DOI: 10.3390/nano13010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Amphotericin B is an antifungal drug used for the treatment of invasive fungal infections. However, its clinical use is limited due to its serious side effects, such as renal and cardiovascular toxicity. Furthermore, amphotericin B is administered in high doses due to its poor water solubility. Hence, it is necessary to develop an on-demand release strategy for the delivery of amphotericin B to reduce cytotoxicity. The present report describes a novel encapsulation of amphotericin B into lipase-sensitive polycaprolactone to form a nanocomposite. Nanocomposites were produced by the oil-in-water method and their physicochemical properties such as size, hydrodynamic diameter, drug loading, and zeta potential were determined. The in vitro release of amphotericin B was characterized in the presence and absence of lipase. The antifungal activity of the nanocomposites was verified against lipase-secreting Candida albicans, and cytotoxicity was tested against primary human dermal fibroblasts. In the absence of lipase, the release of amphotericin B from the nanocomposites was minimal. However, in the presence of lipase, an enzyme that is abundant at infection sites, a fungicidal concentration of amphotericin B was released from the nanocomposites. The antifungal activity of the nanocomposites showed an enhanced effect against the lipase-secreting fungus, Candida albicans, in comparison to the free drug at the same concentration. Furthermore, nanoencapsulation significantly reduced amphotericin B-related cytotoxicity compared to the free drug. The synthesized nanocomposites can serve as a potent carrier for the responsive delivery of amphotericin B in antifungal applications.
Collapse
Affiliation(s)
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
21
|
McIvor MJ, Ó Maolmhuaidh F, Meenagh A, Hussain S, Bhattacharya G, Fishlock S, Ward J, McFerran A, Acheson JG, Cahill PA, Forster R, McEneaney DJ, Boyd AR, Meenan BJ. 3D Fabrication and Characterisation of Electrically Receptive PCL-Graphene Scaffolds for Bioengineered In Vitro Tissue Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9030. [PMID: 36556835 PMCID: PMC9783119 DOI: 10.3390/ma15249030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Polycaprolactone (PCL) is a well-established biomaterial, offering extensive mechanical attributes along with low cost, biocompatibility, and biodegradability; however, it lacks hydrophilicity, bioactivity, and electrical conductivity. Advances in 3D fabrication technologies allow for these sought-after attributes to be incorporated into the scaffolds during fabrication. In this study, solvent-free Fused Deposition Modelling was employed to fabricate 3D scaffolds from PCL with increasing amounts of graphene (G), in the concentrations of 0.75, 1.5, 3, and 6% (w/w). The PCL+G scaffolds created were characterised physico-chemically, electrically, and biologically. Raman spectroscopy demonstrated that the scaffold outer surface contained both PCL and G, with the G component relatively uniformly distributed. Water contact angle measurement demonstrated that as the amount of G in the scaffold increases (0.75-6% w/w), hydrophobicity decreases; mean contact angle for pure PCL was recorded as 107.22 ± 9.39°, and that with 6% G (PCL+6G) as 77.56 ± 6.75°. Electrochemical Impedance Spectroscopy demonstrated a marked increase in electroactivity potential with increasing G concentration. Cell viability results indicated that even the smallest addition of G (0.75%) resulted in a significant improvement in electroactivity potential and bioactivity compared with that for pure PCL, with 1.5 and 3% exhibiting the highest statistically significant increases in cell proliferation.
Collapse
Affiliation(s)
- Mary Josephine McIvor
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Fionn Ó Maolmhuaidh
- The National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Aidan Meenagh
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Shahzad Hussain
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Gourav Bhattacharya
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Sam Fishlock
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Joanna Ward
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Aoife McFerran
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Jonathan G. Acheson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Paul A. Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert Forster
- The National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - David J. McEneaney
- Cardiovascular Research Unit, Craigavon Area Hospital, 68 Lurgan Road, Portadown, Co., Armagh BT63 5QQ, UK
| | - Adrian R. Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| | - Brian J. Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK
| |
Collapse
|
22
|
Yoosefi S, Esfandyari-Manesh M, Ghorbani-Bidkorpeh F, Ahmadi M, Moraffah F, Dinarvand R. Novel biodegradable molecularly imprinted polymer nanoparticles for drug delivery of methotrexate anti-cancer; synthesis, characterization and cellular studies. Daru 2022; 30:289-302. [PMID: 36087235 PMCID: PMC9715907 DOI: 10.1007/s40199-022-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recently biodegradable nanoparticles are the center of attention for the development of drug delivery systems. Molecularly imprinted polymer (MIP) is an interesting candidate for designing drug nano-carriers. MIP-based nanoparticles could be used for cancer treatment and exhibited the potential to fill gaps regarding to ligand-based nanomaterials. Also, the presence of a cross-linker can play an essential role in nanoparticle stability and physicochemical properties of nanoparticles after synthesis. OBJECTIVES In this research, a biodegradable drug delivery system based on MIP nanoparticles was prepared using a biodegradable cross-linker (dimethacryloyl hydroxylamine, DMHA) for methotrexate (MTX). A hydrolysable functional group CO-O-NH-CO was added to the crosslinking agent to increase the final biodegradability of the polymer. METHODS Firstly, a biodegradable cross-linker was synthesized. Then, the non-imprinted polymers were prepared through mini-emulsion polymerization in the absence of a template; and efficient particle size distribution was determined. Finally, methotrexate was placed in imprinted polymers to achieve the desired MIP. Different types of MIPs were synthesized using different molar ratios of template, cross-linker, and functional monomer, and the optimal molar ratio was obtained at 1:4:20, respectively. RESULTS HNMR successfully confirmed the chemical structure of the cross-linker. According to SEM images, nanoparticles had a spherical shape with a smooth surface. The imprinted nanoparticles showed a narrow size distribution with an average of 120 nm at a high ratio of cross-linker. The drug loading and entrapment efficiency were 6.4% and 92%, respectively. The biodegradability studies indicated that the nanoparticles prepared by DMHA had a more degradability rate than ethylene glycol dimethacrylate as a conventional cross-linker. Also, the polymer degradation rate was higher in alkaline environments. Release studies in physiological and alkaline buffer showed an initial burst release of a quarter of loaded MTX during the day and a 70% release during a week. The Korsmeyer-Peppas model described the release pattern. The cytotoxicity of MTX loaded in nanoparticles was studied on the MCF-7 cell line, and the IC50 was 3.54 μg/ml. CONCLUSION It was demonstrated that nanoparticles prepared by DMHA have the potential to be used as biodegradable drug carriers for anticancer delivery. Synthesis schema of molecular imprinting of methotrexate in biodegradable polymer based on dimethacryloyl hydroxylamine cross-linker, for use as nanocarrier anticancer delivery to breast tumor.
Collapse
Affiliation(s)
- Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine: A mini review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Bharatiya D, Parhi B, Swain SK. Morphology biased pharmacological and mechanical properties of nanosized block copolymers of
PNIPAM
with polyethylene oxide and polyaminoacids in presence of polycaprolactone. J Appl Polym Sci 2022. [DOI: 10.1002/app.53389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Debasrita Bharatiya
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Biswajit Parhi
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| |
Collapse
|
25
|
Nanomedicines Bearing an Alkylating Cytostatic Drug from the Group of 1,3,5-Triazine Derivatives: Development and Characterization. Pharmaceutics 2022; 14:pharmaceutics14112506. [PMID: 36432699 PMCID: PMC9694467 DOI: 10.3390/pharmaceutics14112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer is still one of the major diseases worldwide. The discovery of new drugs and the improvement of existing ones is one of the areas of priority in the fight against cancer. Dioxadet ([5-[[4,6-bis(aziridin-1-yl)-1,3,5-triazin-2-yl]amino]-2,2-dimethyl-1,3-dioxan-5-yl]methanol) represents one of the promising 1,3,5-triazine derivatives and has cytostatic activity towards ovarian cancer. In this study, we first report the development of dioxadet-bearing nanomedicines based on block-copolymers of poly(ethylene glycol) monomethyl ether (mPEG) and poly(D,L-lactic acid) (PLA)/poly(ε-caprolactone) (PCL) and then conduct an investigation into their characteristics and properties. The preparation of narrow-sized nanoparticles with a hydrodynamic diameter of 100−120 nm was optimized using a nanoprecipitation approach. Thoughtful optimization of the preparation of nanomedicines was carried out through adjustments to the polymer’s molecular weight, the pH of the aqueous medium used for nanoprecipitation, the initial drug amount in respect to the polymer, and polymer concentration in the organic phase. Under optimized conditions, spherical-shaped nanomedicines with a hydrodynamic diameter of up to 230 nm (PDI < 0.2) containing up to 592 ± 22 μg of dioxadet per mg of polymer nanoparticles were prepared. Study of the drug’s release in a model medium revealed the release up to 64% and 46% of the drug after 8 days for mPEG-b-PLA and mPEG-b-PCL, respectively. Deep analysis of the release mechanisms was carried out with the use of a number of mathematical models. The developed nanoparticles were non-toxic towards both normal (CHO-K1) and cancer (A2780 and SK-OV-3) ovarian cells. A cell cycle study revealed lesser toxicity of nanomedicines towards normal cells and increased toxicity towards cancer cells. The IC50 values determined for dioxadet nanoformulations were in the range of 0.47−4.98 μg/mL for cancer cells, which is close to the free drug’s efficacy (2.60−4.14 μg/mL). The highest cytotoxic effect was found for dioxadet loaded to mPEG-b-PCL nanoparticles.
Collapse
|
26
|
Protection against Paraquat-Induced Oxidative Stress by Curcuma longa Extract-Loaded Polymeric Nanoparticles in Zebrafish Embryos. Polymers (Basel) 2022; 14:polym14183773. [PMID: 36145919 PMCID: PMC9503139 DOI: 10.3390/polym14183773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The link between oxidative stress and environmental factors plays an important role in chronic degenerative diseases; therefore, exogenous antioxidants could be an effective alternative to combat disease progression and/or most significant symptoms. Curcuma longa L. (CL), commonly known as turmeric, is mostly composed of curcumin, a multivalent molecule described as having antioxidant, anti-inflammatory and neuroprotective properties. Poor chemical stability and low oral bioavailability and, consequently, poor absorption, rapid metabolism, and limited tissue distribution are major restrictions to its applicability. The advent of nanotechnology, by combining nanosacale with multi-functionality and bioavailability improvement, offers an opportunity to overcome these limitations. Therefore, in this work, poly-Ɛ-caprolactone (PCL) nanoparticles were developed to incorporate the methanolic extract of CL, and their bioactivity was assessed in comparison to free or encapsulated curcumin. Their toxicity was evaluated using zebrafish embryos by applying the Fish Embryo Acute Toxicity test, following recommended OECD guidelines. The protective effect against paraquat-induced oxidative damage of CL extract, free or encapsulated in PCL nanoparticles, was evaluated. This herbicide is known to cause oxidative damage and greatly affect neuromotor functions. The overall results indicate that CL-loaded PCL nanoparticles have an interesting protective capacity against paraquat-induced damage, particularly in neuromuscular development that goes well beyond that of CL extract itself and other known antioxidants.
Collapse
|
27
|
Synthesis, characterization, and evaluation of chloroaluminium phthalocyanine incorporated in poly(ε-caprolactone) nanoparticles for photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 38:102850. [PMID: 35395414 DOI: 10.1016/j.pdpdt.2022.102850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The use of nanotechnology has been widely used in biomedical science, which consists of orthopedic implants, tissue engineering, cancer therapy and drug elution from nanoparticle systems, such as poly-caprolactone (PCL) nanoparticles, which stand out mainly for their biocompatibility, being considered as effective carriers for photosensitizing drugs (PS) in photodynamic therapy (PDT) protocols. METHODS This manuscript describes the synthesis and characterization of PCL nanoparticles for controlled release of the drug chloro-aluminum phthalocyanine (ClAlPc) as a photosensitizer for application in PDT. The PCL-ClAlPc nanoparticles were developed by the nanoprecipitation process. The structure and morphology of the nanoparticles were studied with scanning electron microscopy (SEM) and with Fourier transform infrared (FTIR). The size of nanomaterials was studied using the Dynamic Light Scattering (DLS) method. Photophysical and photochemical characterizations were performed. Subsequently, photobiological studies were also used to characterize the system. RESULTS The nanoparticles had an average diameter of 384.7 ± 138.6 nm and a polydispersity index of 0.153. SEM analysis revealed that the system formed a spherical shape typical of these delivery systems. Charging efficiency was 82.1% ± 1.2%. The phthalocyanine-loaded PCL nanoparticles maintained their photophysical behavior after encapsulation. Cell viability was determined after the dark toxicity test, and it was possible to observe that there was no evidence of toxicity in the dark, for all concentrations tested. The assay also revealed that adenocarcinoma cells treated with free ClAlPc and in the nanoformulation showed 100% cell death when subjected to PDT protocols. The intracellular location of the photosensitizer indicated a high potential for accumulation in the cytoplasm and nucleus. CONCLUSIONS From the photophysical, photochemical and photobiological analyzes obtained, it was possible to observe that the development of PCL nanoparticles encapsulated with ClAlPc, by the nanoprecipitation method was adequate and that the in vivo release study is efficient to reduce the release rate and attenuate the burst of PS loaded on PCL nanoparticles. The results reinforce that the use of this system as drug delivery systems is useful in PDT protocols.
Collapse
|
28
|
Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res 2022; 39:441-461. [DOI: 10.1007/s11095-022-03214-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
|
29
|
Paul PS, Cho JY, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. J Nanobiotechnology 2022; 20:67. [PMID: 35120558 PMCID: PMC8817552 DOI: 10.1186/s12951-022-01269-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Conversion of β-amyloid (Aβ) peptides from soluble random-coil to aggregated protein enriched with β-sheet-rich intermediates has been suggested to play a role in the degeneration of neurons and development of Alzheimer's disease (AD) pathology. Aggregation of Aβ peptide can be prompted by a variety of environmental factors including temperature which can influence disease pathogenesis. Recently, we reported that FDA-approved unconjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles can have beneficial effects in cellular and animal models of AD by targeting different facets of the Aβ axis. In this study, using biochemical, structural and spectroscopic analyses, we evaluated the effects of native PLGA on temperature-dependent Aβ aggregation and its ability to protect cultured neurons from degeneration. Our results show that the rate of spontaneous Aβ1-42 aggregation increases with a rise in temperature from 27 to 40 °C and PLGA with 50:50 resomer potently inhibits Aβ aggregation at all temperatures, but the effect is more profound at 27 °C than at 40 °C. It appears that native PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards β-sheet structure, thus precluding the formation of Aβ aggregates. Additionally, PLGA triggers disassembly of matured Aβ1-42 fibers at a faster rate at 40 °C than at 27 °C. PLGA-treated Aβ samples can significantly enhance viability of cortical cultured neurons compared to neurons treated with Aβ alone by attenuating phosphorylation of tau protein. Injection of native PLGA is found to influence the breakdown/clearance of Aβ peptide in the brain. Collectively, these results suggest that PLGA nanoparticles can inhibit Aβ aggregation and trigger disassembly of Aβ aggregates at temperatures outside the physiological range and can protect neurons against Aβ-mediated toxicity thus validating its unique therapeutic potential in the treatment of AD pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Qi Wu
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Govindarajan Karthivashan
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Emily Grabovac
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Mariana Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
- Departments of Medicine (Neurology) and Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| |
Collapse
|
30
|
A P, Agrawal M, Dethe MR, Ahmed H, Yadav A, Gupta U, Alexander A. Nose-to-brain drug delivery for the treatment of Alzheimer's Disease: Current advancements and challenges. Expert Opin Drug Deliv 2022; 19:87-102. [PMID: 35040728 DOI: 10.1080/17425247.2022.2029845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The irreversible destruction of neurons, progressive loss of memory and cognitive behavior, high cost of therapy, and impact on society desire a better, effective, and affordable treatment of AD. The nose-to-brain drug delivery approach holds a great potential to access the brain without any hindrance of BBB and result in higher bioavailability thus better therapeutic efficacy of anti-AD drugs. AREAS COVERED The present review article highlighted the current facts and worldwide statistics of AD and its detailed etiology. Followed by barriers to brain delivery, nose-to-brain delivery, their limitations, and amalgamation with various novel carrier systems. We have emphasized recent advancements in nose-to-brain delivery using mucoadhesive, stimuli-responsive carriers, polymeric nanoparticles, lipid nanoparticles, protein/peptide delivery for treatment of AD. EXPERT OPINION The available therapies are symptomatic, mitigate the symptoms of AD at the initial stages. In this lieu, nose-to-brain delivery has the ability to overcome these limitations and increase drug bioavailability in the brain. Various novel strategies including stimuli-responsive systems, nanoparticles, etc. enhance the nasal drug permeation, protects the drug, and enhance its therapeutic potency. Although, successful preclinical data does not assure the clinical success of the therapy and hence exhaustive clinical investigations are needed to make the therapy available for patients.
Collapse
Affiliation(s)
- Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Awesh Yadav
- National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India, 226002
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India, 305817
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| |
Collapse
|
31
|
Sukkar F, Shafaa M, El-Nagdy M, Darwish W. Polymeric Nanocarriers for Effective Synergistic Action of Sorafenib Tosylate and Gold-sensitized Gamma Radiation Against HepG2 Cells. Int J Nanomedicine 2022; 16:8309-8321. [PMID: 34992367 PMCID: PMC8711844 DOI: 10.2147/ijn.s331909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose One of the key parameters towards effective and synergistic combinatorial anticancer therapeutic models is the nanocarrier. Nearly all previous studies have been limited to one nanocarrier for one drug. However, a comparative study on two polymeric nanocarriers for the same drug against the same cancer cell and under the same conditions helps to rationalize the properties of each polymeric nanocarrier to the effectiveness of the drug-loaded nanocapsules. Methods In this study, two of biocompatible polymers, namely poly lactic-co-glycolic acid (PLGA) and polyε-caprolactone (PCL), were used for co-delivery of sorafenib tosylate and gold nanoparticles (G). Results The anticancer effects of sorafenib tosylate (ST) combined with gold-sensitized radiation therapy were studied and rationalized to the physicochemical properties of each nanocarrier. Both models inhibited the proliferation of HepG2 cells via cell cycle arrest. The use of PCL and PLGA as nanocarriers for the proposed combined (chemo-radio) therapeutic model reduced the viability of HepG2 cells to 26% and 8%, respectively. PCL and PLGA models showed high necrosis levels (15.1 and 16.2, respectively). Conclusion Both PCL and PLGA are good nanocarriers for the proposed combined model. Compared to PCL NPs, PLGA NPs showed enhanced release, higher cytotoxicity and higher necrosis levels.
Collapse
Affiliation(s)
- Firas Sukkar
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Medhat Shafaa
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed El-Nagdy
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Wael Darwish
- Department of Polymers and Pigments, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
32
|
Vollrath A, Kretzer C, Beringer-Siemers B, Shkodra B, Czaplewska JA, Bandelli D, Stumpf S, Hoeppener S, Weber C, Werz O, Schubert US. Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers (Basel) 2021; 13:2557. [PMID: 34372160 PMCID: PMC8347491 DOI: 10.3390/polym13152557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Seven polycaprolactones (PCL) with constant hydrophobicity but a varying degree of crystallinity prepared from the constitutional isomers ε-caprolactone (εCL) and δ-caprolactone (δCL) were utilized to formulate nanoparticles (NPs). The aim was to investigate the effect of the crystallinity of the bulk polymers on the enzymatic degradation of the particles. Furthermore, their efficiency to encapsulate the hydrophobic anti-inflammatory drug BRP-187 and the final in vitro performance of the resulting NPs were evaluated. Initially, high-throughput nanoprecipitation was employed for the εCL and δCL homopolymers to screen and establish important formulation parameters (organic solvent, polymer and surfactant concentration). Next, BRP-187-loaded PCL nanoparticles were prepared by batch nanoprecipitation and characterized using dynamic light scattering, scanning electron microscopy and UV-Vis spectroscopy to determine and to compare particle size, polydispersity, zeta potential, drug loading as well as the apparent enzymatic degradation as a function of the copolymer composition. Ultimately, NPs were examined for their potency in vitro in human polymorphonuclear leukocytes to inhibit the BRP-187 target 5-lipoxygenase-activating protein (FLAP). It was evident by Tukey's multi-comparison test that the degree of crystallinity of copolymers directly influenced their apparent enzymatic degradation and consequently their efficiency to inhibit the drug target.
Collapse
Affiliation(s)
- Antje Vollrath
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany;
| | - Baerbel Beringer-Siemers
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
| | - Blerina Shkodra
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Justyna A. Czaplewska
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Damiano Bandelli
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Steffi Stumpf
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Stephanie Hoeppener
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Christine Weber
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Oliver Werz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany;
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| |
Collapse
|
33
|
Moin A, Wani SUD, Osmani RA, Abu Lila AS, Khafagy ES, Arab HH, Gangadharappa HV, Allam AN. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Deliv 2021; 28:1626-1636. [PMID: 34328806 PMCID: PMC8330732 DOI: 10.1080/10717544.2021.1958106] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Silk fibroin (SF) is a natural polymeric biomaterial that is widely adopted for the preparation of drug delivery systems. Herein, we aimed to fabricate and characterize SF nanoparticles loaded with the selective estrogen receptor modulator; tamoxifen citrate (TC-SF-NPs) and to assess their in vitro efficacy against breast cancer cell lines (MCF-7 and MDA-MB-231). TC-loaded SF-NPs were characterized for particle size, morphology, entrapment efficiency, and release profile. In addition, we examined the in vitro cytotoxicity of TC-SF-NPs against human breast cancer cell lines and evaluated the anticancer potential of TC-SF-NPs through apoptosis assay and cell cycle analysis. Drug-loaded SF-NPs showed an average particle size of 186.1 ± 5.9 nm and entrapment efficiency of 79.08%. Scanning electron microscopy (SEM) showed the nanoparticles had a spherical morphology with smooth surface. Tamoxifen release from SF-NPs exhibited a biphasic release profile with an initial burst release within the first 6 h and sustained release for 48 h. TC-SF-NPs exerted a dose-dependent cytotoxic effect against breast cancer cell lines. In addition, flow cytometry analysis revealed that cells accumulate in G0/G1 phase, with a concomitant reduction of S- and G2-M-phase cells upon treatment with TC-SF-NPs. Consequently, the potent anticancer activities of TC-SF-NPs against breast cancer cells were mainly attributed to the induction of apoptosis and cell cycle arrest. Our results indicate that SF nanoparticles may represent an attractive nontoxic nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutics, CT Institute of Pharmaceutical Sciences, Jalandhar, India
| | - Riyaz Ali Osmani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amr S Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hosahalli V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ahmed N Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|