1
|
Alzahrani RR, Alkhulaifi MM, Al Jeraisy M, Albekairy AM, Ali R, Alrfaei BM, Ehaideb SN, Al-Asmari AI, Qahtani SA, Halwani A, Yassin AEB, Halwani MA. Enhancing Gentamicin Antibacterial Activity by Co-Encapsulation with Thymoquinone in Liposomal Formulation. Pharmaceutics 2024; 16:1330. [PMID: 39458659 PMCID: PMC11510464 DOI: 10.3390/pharmaceutics16101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Gentamicin (GEN) is a broad-spectrum antibiotic that cannot be prescribed freely because of its toxicity. Thymoquinone (THQ), a phytochemical, has antibacterial, antioxidant, and toxicity-reducing properties. However, its hydrophobicity and light sensitivity make it challenging to utilize. This incited the idea of co-encapsulating GEN and THQ in liposomes (Lipo-GEN-THQ). METHOD Lipo-GEN-THQ were characterized using the zeta-potential, dynamic light scattering, Fourier transform infrared spectroscopy, and transmission electron microscope (TEM). The liposomes' stability was evaluated under different storage and biological conditions. Lipo-GEN-THQ's efficacy was investigated by the minimum inhibitory/bactericidal concentrations (MICs-MBCs), time-kill curves, and antibiofilm and antiadhesion assays. Bacterial interactions with the empty and GEN-THQ-loaded liposomes were evaluated using TEM. RESULTS The Lipo-GEN-THQ were spherical, monodispersed, and negatively charged. The Lipo-GEN-THQ were relatively stable and released GEN sustainably over 24 h. The liposomes exhibited significantly higher antibacterial activity than free GEN, as evidenced by the four-fold lower MIC and biofilm eradication in resistant E. coli strain (EC-219). TEM images display how the empty liposomes fused closely to the tested bacteria and how the loaded liposomes caused ultrastructure damage and intracellular component release. An antiadhesion assay showed that the Lipo-GEN-THQ and free GEN (0.125 mg/L) similarly inhibited Escherichia coli (EC-157) adhesion to the A549 cells (68% vs. 64%). CONCLUSIONS The Lipo-THQ-GEN enhanced GEN by combining it with THQ within the liposomes, reducing the effective dose. The reduction in the GEN dose after adding THQ may indirectly reduce the toxicity and aid in developing an enhanced and safer form of GEN.
Collapse
Affiliation(s)
- Raghad R. Alzahrani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.R.A.); (M.M.A.)
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.R.A.); (M.M.A.)
| | - Majed Al Jeraisy
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.A.J.); (A.H.)
| | - Abdulkareem M. Albekairy
- Department of Pharmacy Practice, College of Pharmacy, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Bahauddeen M. Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| | - Salleh N. Ehaideb
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard—Health Affairs, Riyadh 11481, Saudi Arabia;
| | - Ahmed I. Al-Asmari
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sultan Al Qahtani
- Department of Basic Medical Sciences, College of Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Abdulaziz Halwani
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.A.J.); (A.H.)
- College of Dentistry, King Saud bin Abdul Aziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Alaa Eldeen B. Yassin
- College of Pharmacy, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Majed A. Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
2
|
Ahmad AAM, Abdelgalil SY, Khamis T, Abdelwahab AMO, Atwa DN, Elmowalid GA. Thymoquinone' potent impairment of multidrug-resistant Staphylococcus aureus NorA efflux pump activity. Sci Rep 2024; 14:16483. [PMID: 39013998 PMCID: PMC11252345 DOI: 10.1038/s41598-024-65991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The drug efflux pump is a crucial mechanism implicated in resistance to multiple antimicrobials. Thymoquinone (TQ) has evidently demonstrated multiple activities, antibacterial being the most effective. Knowledge about TQ activity against multidrug-resistant Staphylococcus aureus is very scarce. Therefore, the present study was conducted to investigate TQ resistance modulation in ciprofloxacin (CIP) and doxycycline (DO) multidrug-resistant S. aureus. Forty-seven samples were collected from different sources, and S. aureus was isolated and identified. Then, S. aureus resistance profiles to antimicrobials, N. sativa essential oil, and TQ; the correlation between TQ-MIC readings and disc diffusion; cartwheel and ethidium bromide (EtBr) accumulation assays; and norA gene expression were all described within silico molecular docking for TQ interactions with norA efflux pump protein. TQ-MICs ranged from 5-320 µg/ml. TQ down-regulated norA gene expression, resulting in a drop in efflux pump activity of 77.5-90.6% in the examined strains, comparable to that observed with verapamil. Exposure of S. aureus strains to CIP and DO raises the initial basal efflux pumping expression to 34.2 and 22.9 times, respectively. This induced efflux pumping overexpression was substantially reduced by 97.7% when TQ was combined with CIP or DO. There was a significant reduction of MICs of CIP and DO MICs by 2-15 and 2-4 folds, respectively, after treatment with 0.5XMIC-TQ in resistance modulation assays. These results refer to TQ ligand inhibitory interactions with NorA protein in molecular docking. Interpretations of inhibition zone diameters (IZDs) of disc diffusion and TQ-MICs exhibit independence of MICs from IZDs, as indicated by invalid linear regression analysis. TQ significantly reduced efflux pumping S. aureus induced by CIP and DO, but further investigations are needed to improve TQ-pharmacokinetics to restore CIP and DO activity and suppress fluoroquinolone and doxycycline-resistant S. aureus selection in clinical and animal settings.
Collapse
Affiliation(s)
- Adel Attia M Ahmad
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sara Y Abdelgalil
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf M O Abdelwahab
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Dina Nader Atwa
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gamal A Elmowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Tiwari G, Gupta M, Devhare LD, Tiwari R. Therapeutic and Phytochemical Properties of Thymoquinone Derived from Nigella sativa. Curr Drug Res Rev 2024; 16:145-156. [PMID: 37605475 DOI: 10.2174/2589977515666230811092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Nigella sativa (N. sativa), commonly known as black seed or black cumin, belongs to the family Ranunculaceae. It contains several phytoconstituents, Thymoquinone (TQ), thymol, thymohydroquinone, carvacrol, and dithymoquinone. TQ is the main phytoconstituent present in N. sativa that is used as an herbal compound, and it is widely used as an antihypertensive, liver tonic, diuretic, digestive, anti-diarrheal, appetite stimulant, analgesic, and antibacterial agent, and in skin disorders. OBJECTIVE The study focused on collecting data on the therapeutic or pharmacological activities of TQ present in N. sativa seed. METHODS Antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, hepato-protective, renal protective, and antioxidant properties of TQ have been studied by various scientists. CONCLUSION TQ seems to have a variety of consequences on how infected cells behave at the cellular level.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| | - Monisha Gupta
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| | - Lalchand D Devhare
- School of Pharmacy, G H Raisoni University, Saikheda, Chhindwara, Maharashtra, 480337, India
| | - Ruchi Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
4
|
Shabani H, Karami MH, Kolour J, Sayyahi Z, Parvin MA, Soghala S, Baghini SS, Mardasi M, Chopani A, Moulavi P, Farkhondeh T, Darroudi M, Kabiri M, Samarghandian S. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed Pharmacother 2023; 165:114972. [PMID: 37481931 DOI: 10.1016/j.biopha.2023.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.
Collapse
Affiliation(s)
- Hadi Shabani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Islamshahr Branch, Iran
| | | | - Jalili Kolour
- Cellular and Molecular Biology master student, Department of Life Sciences and Systems Biology, University of Turin, Italy
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amir Parvin
- Department of Cell and Molecular Biology, school of Biology, University of Tehran, Tehran, Iran
| | - Shahrad Soghala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Mahsa Mardasi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Ali Chopani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
5
|
Allemailem KS. Enhanced activity of Ellagic acid in lipid nanoparticles (EA-liposomes) against Acinetobacter baumannii in immunosuppressed mice. Saudi J Biol Sci 2023; 30:103707. [PMID: 37415860 PMCID: PMC10319833 DOI: 10.1016/j.sjbs.2023.103707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Acinetobacter baumannii infections have come to the surface in huge numbers in the recent decades. Furthermore, A. baumannii has adopted great ability to nullify the majority of currently available antibiotics. With the purpose of finding a nontoxic and efficient therapeutic agent, we analyzed the activity of Ellagic acid (EA) against the multidrug-resistant A. baumannii. EA not only demonstrated its activity against A. baumannii, but also inhibited the biofilm formation. Since EA shows poor solubility in an aqueous environment, a lipid nanoparticle-based (liposomal) formulation of EA (EA-liposomes) was prepared and its effectiveness was assessed to treat bacterial infection in the immunocompromised murine model. Therapy with EA-liposomes imparted greater protection to infected mice by increasing the survival and decreasing the bacterial load in the lungs. A. baumannii infected mice treated with EA-liposomes (100 mg/kg) showed 60% survival rate as compared to 20% of those treated with free EA at the same dose. The bacterial load was found to be 32778 ± 12232 in the lungs of EA-liposomes (100 mg/kg)-treated mice, which was significantly lower to 165667 ± 53048 in the lung tissues of free EA treated mice. Likewise, EA-liposomes also restored the liver function (AST and ALT) and kidney function parameters (BUN and creatinine). The broncho-alveolar fluid (BALF) from infected mice contained greater quantities of IL-6, IL-1β and TNF-α, which were significantly alleviated in EA-liposomes treated mice. These findings together support the possible implication of EA-liposomes to treat A. baumannii infection, especially in immunocompromised mice.
Collapse
|
6
|
Micheli L, Di Cesare Mannelli L, Mosti E, Ghelardini C, Bilia AR, Bergonzi MC. Antinociceptive Action of Thymoquinone-Loaded Liposomes in an In Vivo Model of Tendinopathy. Pharmaceutics 2023; 15:1516. [PMID: 37242757 PMCID: PMC10222138 DOI: 10.3390/pharmaceutics15051516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Tendinopathies represent about 45% of musculoskeletal lesions and they are a big burden in clinics characterized by activity-related pain, focal tendon tenderness and intra-tendinous imaging changes. Many approaches have been proposed for tendinopathies' management (e.g., nonsteroidal anti-inflammatory drugs, corticosteroids, eccentric exercises, laser therapy), unfortunately with very little support of efficacy or serious side effects, thus making the identification of new treatments fundamental. The aim of the study was to test the protective and pain reliever effect of thymoquinone (TQ)-loaded formulations in a rat model of tendinopathy induced by carrageenan intra-tendon injection (20 µL of carrageenan 0.8% on day 1). Conventional (LP-TQ) and hyaluronic acid (HA)-coated TQ liposomes (HA-LP-TQ) were characterized and subjected to in vitro release and stability studies at 4 °C. Then, TQ and liposomes were peri-tendon injected (20 µL) on days 1, 3, 5, 7 and 10 to evaluate their antinociceptive profile using mechanical noxious and non-noxious stimuli (paw pressure and von Frey tests), spontaneous pain (incapacitance test) and motor alterations (Rota rod test). Liposomes containing 2 mg/mL of TQ and covered with HA (HA-LP-TQ2) reduced the development of spontaneous nociception and hypersensitivity for a long-lasting effect more than the other formulations. The anti-hypersensitivity effect matched with the histopathological evaluation. In conclusion, the use of TQ encapsulated in HA-LP liposomes is suggested as a new treatment for tendinopathies.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Elena Mosti
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Anna Rita Bilia
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| |
Collapse
|
7
|
Amiruddin Hashmi M, Kausar T, Alam Khan M, Younus H. Assessing the inhibition of glycation of ζ-crystallin by thymoquinone: A mechanistic approach using experimental and computational methods. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
9
|
Bagińska N, Harhala MA, Cieślik M, Orwat F, Weber-Dąbrowska B, Dąbrowska K, Górski A, Jończyk-Matysiak E. Biological Properties of 12 Newly Isolated Acinetobacter baumannii-Specific Bacteriophages. Viruses 2023; 15:231. [PMID: 36680270 PMCID: PMC9866556 DOI: 10.3390/v15010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Infections with the opportunistic Gram-negative bacterium Acinetobacter baumannii pose a serious threat today, which is aggravated by the growing problem of multi-drug resistance among bacteria, caused by the overuse of antibiotics. Treatment of infections caused by antibiotic-resistant A. baumannii strains with the use of phage therapy is not only a promising alternative, but sometimes the only option. Therefore, phages specific for clinical multi-drug resistant A. baumannii were searched for in environmental, municipal, and hospital wastewater samples collected from different locations in Poland. The conducted research allowed us to determine the biological properties and morphology of the tested phages. As a result of our research, 12 phages specific for A. baumannii, 11 of which turned out to be temperate and only one lytic, were isolated. Their lytic spectra ranged from 11 to 75%. The plaques formed by most phages were small and transparent, while one of them formed relatively large plaques with a clearly marked 'halo' effect. Based on Transmission Electron Microscopy (TEM), most of our phages have been classified as siphoviruses (only one phage was classified as a podovirus). All phages have icosahedral capsid symmetry, and 11 of them have a long tail. Optimal multiplicity of infections (MOIs) and the adsorption rate were also determined. MOI values varied depending on the phage-from 0.001 to 10. Based on similarities to known bacteriophages, our A. baumannii-specific phages have been proposed to belong to the Beijerinckvirinae and Junivirinae subfamilies. This study provides an additional tool in the fight against this important pathogen and may boost the interest in phage therapy as an alternative and supplement to the current antibiotics.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
10
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
11
|
Wang M, Zhan X, Ma X, Wang R, Guo D, Zhang Y, Yu J, Chang Y, Lü X, Shi C. Antibacterial Activity of Thymoquinone Against Shigella flexneri and Its Effect on Biofilm Formation. Foodborne Pathog Dis 2022; 19:767-778. [PMID: 36367548 DOI: 10.1089/fpd.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymoquinone (TQ) has been demonstrated to have anti-cancer, anti-inflammatory, antioxidant, and anti-diabetic activities. Shigella flexneri is the main pathogen causing shigellosis in developing countries. In this study, the antibacterial activity of TQ against S. flexneri and its possible antibacterial mechanism were studied. In addition, the inhibitory effect of TQ on the formation of S. flexneri biofilm was also investigated. The results showed that both the minimum inhibitory concentration and the minimum bactericidal concentration of TQ against S. flexneri ATCC 12022 were 0.2 mg/mL. After treatment with TQ at 0.4 mg/mL in Luria-Bertani broth for 3 h, or treatment with 0.2 mg/mL TQ in phosphate-buffered saline for 60 min, the number of S. flexneri (initial number is 6.5 log colony-forming units/mL) dropped below the detection limit. TQ also displayed good antibacterial activity in contaminated lettuce juice. TQ caused an increase in intracellular reactive oxygen species level, a decrease in intracellular adenosine triphosphate (ATP) concentration, a change in the intracellular protein, damage to cell membrane integrity and changes in cell morphology. In addition, TQ showed the ability to inhibit the formation of S. flexneri biofilm; treatment resulted in a decrease in the amount of biofilm and extracellular polysaccharides, and the destruction of biofilm structure. These findings indicated that TQ had strong antimicrobial and antibiofilm activities and a potential to be applied in the fruit and vegetable processing industry or other food industries to control S. flexneri.
Collapse
Affiliation(s)
- Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiao Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Khan MA, Allemailem KS, Maswadeh H, Younus H. Safety and Prophylactic Efficacy of Liposome-Based Vaccine against the Drug-Resistant Acinetobacter baumannii in Mice. Pharmaceutics 2022; 14:pharmaceutics14071357. [PMID: 35890253 PMCID: PMC9318010 DOI: 10.3390/pharmaceutics14071357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the emergence of multidrug-resistant Acientobacter baumannii has greatly threatened public health and depleted our currently available antibacterial armory. Due to limited therapeutic options, the development of an effective vaccine formulation becomes critical in order to fight this drug-resistant pathogen. The objective of the present study was to develop a safe vaccine formulation that can be effective against A. baumannii infection and its associated complications. Here, we prepared liposomes-encapsulated whole cell antigens (Lip-WCAgs) as a vaccine formulation and investigated its prophylactic efficacy against the systemic infection of A. baumannii. The immunization with Lip-WCAgs induced the higher production of antigen-specific antibody titers, greater lymphocyte proliferation, and increased secretion of Th1 cytokines, particularly IFN-γ and IL-12. Antisera from Lip-WCAgs-immunized mice showed the utmost bactericidal activity and potently inhibited the biofilm formation by A. baumannii. Interestingly, Lip-WCAgs-induced immune response was translated in in vivo protection studies as the immunized mice exhibited the highest resistance to A. baumannii infection. Mice in the group immunized with Lip-WCAgs had an 80% survival rate and a bacterial burden of 5464 ± 1193 CFUs per gram of the lung tissue, whereas the mice immunized with IFA-WCAgs had a 50% survival rate and 51,521 ± 8066 CFUs. In addition, Lip-WCAgs vaccinated mice had lower levels of the inflammatory markers, including CRP, IL-6, IL-1β, and TNF-α. The findings of this study suggest that Lip-WCAgs may be considered a potential vaccine formulation to protect individuals against A. baumannii infection.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: ; Tel.: +966-(50)-7059437; Fax: +966-(63)-801628
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
13
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
14
|
Khan MA, Malik A, Alruwetei A, Alzohairy MA, Alhatlani BY, Al Rugaie O, Alhumaydhi FA, Khan A. Delivery of MERS antigen encapsulated in α-GalCer-bearing liposomes elicits stronger antigen-specific immune responses. J Drug Target 2022; 30:884-893. [PMID: 35418263 DOI: 10.1080/1061186x.2022.2066681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Corona virus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip- MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunization with α-GalCer-Lip-MERS-CoV PLpro or Lip- MERS-CoV PLpro did not induce any notable toxicity in immunized mice. The results demonstrated that mice immunized with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titer, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunized mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunized with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Bader Y Alhatlani
- Department of Applied Medical Sciences, Applied College in Unayzah, Qassim University, Unayzah, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unayzah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
15
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA, Almatroudi AA, AlSuhaymi N, Khan MA. Experimental and Theoretical Insights on Chemopreventive Effect of the Liposomal Thymoquinone Against Benzo[a]pyrene-Induced Lung Cancer in Swiss Albino Mice. J Inflamm Res 2022; 15:2263-2280. [PMID: 35422652 PMCID: PMC9005154 DOI: 10.2147/jir.s358632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Thymoquinone (TQ), a phytoconstituent of Nigella sativa seeds, has been studied extensively in various cancer models. However, TQ’s limited water solubility restricts its therapeutic applicability. Our work aims to prepare the novel formulation of TQ and assess its chemopreventive potential in chemically induced lung cancer animal model. Methods The polyethylene glycol coated DOPE/CHEMS incorporating TQ-loaded pH-sensitive liposomes (TQPSL) were prepared and characterized. Mice were exposed to benzo[a]pyrene (BaP) thrice a week for 4 weeks to induce lung cancer. TQPSL was administered three times a week for 21 weeks, starting 2 weeks before the first dose of BaP. Results The prepared TQPSL revealed 85% entrapment efficiency with 128 nm size and −19.5 mv ζ-potential showing high stability of the formulation. The pretreatment of TQPSL showed the recovery in BaP-modulated relative organ weight of lungs, cancer marker enzymes, and antioxidant enzymes in the serum. The histopathological analysis of the tissues showed that TQPSL protected the malignancy in the lungs. The flow cytometry data revealed the induction of apoptosis and decreased intracellular ROS by TQPSL. Molecular docking was performed to predict the TQ’s affinity for eight possible anticancer drug targets linked to lung cancer etiology. The data assisted to identify the serine/threonine-protein kinase BRAF as the most suitable target of TQ with binding energy −6.8 kcal/mol. Conclusion The current findings demonstrated the potential of TQPSL and its possible therapeutic targets of lung cancer. To our knowledge, this is the first research to outline the development of TQ formulation against lung cancer considering its low solubility as well as pulmonary delivery challenges.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
- Correspondence: Arif Khan, Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia, Tel +966 590038460, Fax +966 63801628, Email
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammad A Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mugahid A Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid, Sudan
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad A Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah, 21912, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
16
|
The Effect of Liposomal Diallyl Disulfide and Oxaliplatin on Proliferation of Colorectal Cancer Cells: In Vitro and In Silico Analysis. Pharmaceutics 2022; 14:pharmaceutics14020236. [PMID: 35213970 PMCID: PMC8877238 DOI: 10.3390/pharmaceutics14020236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Diallyl disulfide (DADS) is one of the main bioactive organosulfur compounds of garlic, and its potential against various cancer models has been demonstrated. The poor solubility of DADS in aqueous solutions limits its uses in clinical application. The present study aimed to develop a novel formulation of DADS to increase its bioavailability and therapeutic potential and evaluate its role in combination with oxaliplatin (OXA) in the colorectal cancer system. We prepared and characterized PEGylated, DADS (DCPDD), and OXA (DCPDO) liposomes. The anticancer potential of these formulations was then evaluated in HCT116 and RKO colon cancer cells by different cellular assays. Further, a molecular docking-based computational analysis was conducted to determine the probable binding interactions of DADS and OXA. The results revealed the size of the DCPDD and DCPDO to be 114.46 nm (95% EE) and 149.45 nm (54% EE), respectively. They increased the sensitivity of the cells and reduced the IC50 several folds, while the combinations of them showed a synergistic effect and induced apoptosis by 55% in the cells. The molecular docking data projected several possible targets of DADS and OXA that could be evaluated more precisely by these novel formulations in detail. This study will direct the usage of DCPDD to augment the therapeutic potential of DCPDO against colon cancer in clinical settings.
Collapse
|
17
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA, Alwashmi ASS, Almatroudi AA, Alsugoor MH, Khan MA. Safety, Stability, and Therapeutic Efficacy of Long-Circulating TQ-Incorporated Liposomes: Implication in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14010153. [PMID: 35057049 PMCID: PMC8778344 DOI: 10.3390/pharmaceutics14010153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone (TQ), which is one of the main bioactive constituents of Nigella sativa seeds, has demonstrated its potential against various cancer models. The poor solubility of TQ in aqueous solution limits its uses in clinical application. The present study aimed to develop a novel formulation of TQ to increase its bioavailability and therapeutic potential with minimal toxicity. Polyethylene glycol (PEG)-coated DSPC/cholesterol comprising TQ liposomes (PEG-Lip-TQ) were prepared and characterized on various aspects. A computational investigation using molecular docking was used to assess the possible binding interactions of TQ with 12 prospective anticancer drug targets. The in vitro anticancer activity was assessed in A549 and H460 lung cancer cells in a time- and dose-dependent manner, while the oral acute toxicity assay was evaluated in silico as well as in vivo in mice. TQ docked to the Hsp90 target had the lowest binding energy of −6.05 kcal/mol, whereas caspase 3 was recognized as the least likely target for TQ with a binding energy of −1.19 kcal/mol. The results showed 96% EE with 120 nm size, and −10.85 mv, ζ-potential of PEG-Lip-TQ, respectively. The cell cytotoxicity data demonstrated high sensitivity of PEG-Lip-TQ and a several fold decrease in the IC50 while comparing free TQ. The cell cycle analysis showed changes in the distribution of cells with doses. The in vivo data revealed an ~9-fold increase in the LD50 of PEG-Lip-TQ on free TQ as an estimated 775 and 89.5 mg/kg b.w, respectively. This study indicates that the pharmacological and efficacy profile of PEG-lip-TQ is superior to free TQ, which will pave the way for an exploration of the effect of TQ formulation in the treatment of lung cancer in clinical settings.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-59-003-8460; Fax: +966-63-801628
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Mohammad A. Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mugahid A. Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid 157, Sudan
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Ahmed A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, Al Qunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Masood A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
18
|
Liposome-Mediated Delivery of MERS Antigen Induces Potent Humoral and Cell-Mediated Immune Response in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020403. [PMID: 35056718 PMCID: PMC8778403 DOI: 10.3390/molecules27020403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
Abstract
The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund’s Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.
Collapse
|
19
|
Antimicrobial, Immunomodulatory and Anti-Inflammatory Potential of Liposomal Thymoquinone: Implications in the Treatment of Bacterial Pneumonia in Immunocompromised Mice. Biomedicines 2021; 9:biomedicines9111673. [PMID: 34829902 PMCID: PMC8615793 DOI: 10.3390/biomedicines9111673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii has recently been increasing as an aggressive pathogen in immunocompromised persons. In the present study, we determined the in vitro antibacterial and anti-biofilm activity of thymoquinone (TQ) against A. baumannii. A liposomal formulation of TQ (Lip-TQ) was prepared and its therapeutic potential was investigated in the treatment of A. baumannii infection in immunocompromised mice. Leukopenia was induced in mice by injecting cyclophosphamide (CYP) at a dose of 200 mg/kg and the leukopenic mice were infected with 1 × 106 CFUs of A. baumannii. The effectiveness of free TQ or Lip-TQ against A. baumannii infection was assessed by analyzing the survival rate and bacterial burden. Moreover, the efficacy of Lip-TQ was also studied by examining the systemic inflammatory markers and the histological changes in the lung tissues. The results showed that the mice in the group treated with Lip-TQ at a dose of 10 mg/kg exhibited a 60% survival rate on day 40 post-infection, whereas all the mice treated with free TQ at the same dose died within this duration. Likewise, the lowest bacterial burden was found in the lung tissue of mice treated with Lip-TQ (10 mg/kg). Besides, Lip-TQ treatment remarkably alleviated the infection-associated inflammation, oxidative stress, and histological changes in the lung tissues. Based on the findings of the present study, we recommend considering Lip-TQ as a valuable therapeutic formulation in the treatment of A. baumannii-associated pneumonia in immunocompromised subjects.
Collapse
|
20
|
Houdkova M, Chaure A, Doskocil I, Havlik J, Kokoska L. New Broth Macrodilution Volatilization Method for Antibacterial Susceptibility Testing of Volatile Agents and Evaluation of Their Toxicity Using Modified MTT Assay In Vitro. Molecules 2021; 26:molecules26144179. [PMID: 34299454 PMCID: PMC8305236 DOI: 10.3390/molecules26144179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a new broth macrodilution volatilization method for the simple and rapid determination of the antibacterial effect of volatile agents simultaneously in the liquid and vapor phase was designed with the aim to assess their therapeutic potential for the development of new inhalation preparations. The antibacterial activity of plant volatiles (β-thujaplicin, thymohydroquinone, thymoquinone) was evaluated against bacteria associated with respiratory infections (Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes) and their cytotoxicity was determined using a modified thiazolyl blue tetrazolium bromide assay against normal lung fibroblasts. Thymohydroquinone and thymoquinone possessed the highest antibacterial activity against H. influenzae, with minimum inhibitory concentrations of 4 and 8 µg/mL in the liquid and vapor phases, respectively. Although all compounds exhibited cytotoxic effects on lung cells, therapeutic indices (TIs) suggested their potential use in the treatment of respiratory infections, which was especially evident for thymohydroquinone (TI > 34.13). The results demonstrate the applicability of the broth macrodilution volatilization assay, which combines the principles of broth microdilution volatilization and standard broth macrodilution methods. This assay enables rapid, simple, cost- and labor-effective screening of volatile compounds and overcomes the limitations of assays currently used for screening of antimicrobial activity in the vapor phase.
Collapse
Affiliation(s)
- Marketa Houdkova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.H.); (A.C.)
| | - Aishwarya Chaure
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.H.); (A.C.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic;
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.H.); (A.C.)
- Correspondence: ; Tel.: +420-224382180
| |
Collapse
|