1
|
Balaha M, Cataldi A, Ammazzalorso A, Cacciatore I, De Filippis B, Di Stefano A, Maccallini C, Rapino M, Korona-Glowniak I, Przekora A, di Giacomo V. CAPE derivatives: Multifaceted agents for chronic wound healing. Arch Pharm (Weinheim) 2024; 357:e2400165. [PMID: 39054610 DOI: 10.1002/ardp.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chronic wounds significantly impact the patients' quality of life, creating an urgent interdisciplinary clinical challenge. The development of novel agents capable of accelerating the healing process is essential. Caffeic acid phenethyl ester (CAPE) has demonstrated positive effects on skin regeneration. However, its susceptibility to degradation limits its pharmaceutical application. Chemical modification of the structure improves the pharmacokinetics of this bioactive phenol. Hence, two novel series of CAPE hybrids were designed, synthesized, and investigated as potential skin regenerative agents. To enhance the stability and therapeutic efficacy, a caffeic acid frame was combined with quinolines or isoquinolines by an ester (1a-f) or an amide linkage (2a-f). The effects on cell viability of human gingival fibroblasts (HGFs) and HaCaT cells were evaluated at different concentrations; they are not cytotoxic, and some proved to stimulate cell proliferation. The most promising compounds underwent a wound-healing assay in HGFs and HaCaT at the lowest concentrations. Antimicrobial antioxidant properties were also explored. The chemical and thermal stabilities of the best compounds were assessed. In silico predictions were employed to anticipate skin penetration capabilities. Our findings highlight the therapeutic potential of caffeic acid phenethyl ester (CAPE) derivatives 1a and 1d as skin regenerative agents, being able to stimulate cell proliferation, control bacterial growth, regulate ROS levels, and being thermally and chemically stable. An interesting structure-activity relationship was discussed to suggest a promising multitargeted approach for enhanced wound healing.
Collapse
Affiliation(s)
- Marwa Balaha
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Lublin, Poland
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Suwannachot J, Ogawa Y. Changes in polyphenolic compounds and antioxidant activity of Japanese pickled apricot with salted red perilla leaf during pickling and digestion process. Food Res Int 2024; 192:114752. [PMID: 39147533 DOI: 10.1016/j.foodres.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Japanese pickled apricot, called "umeboshi", is a traditional food that has experientially been consumed as a folk medicine. The main variation of umeboshi is called "shiso-zuke umeboshi", meaning pickled with red perilla leaves to add a colorful appearance. This study investigated changes in phenolics and antioxidant potential of shiso-zuke umeboshi during pickling processes and simulated digestion. Results showed that the red perilla pickling (PP; 1338.12) had 13 times higher phenolics than salt pickling (SP; 101.99) in μg/g DW, and the formation of rosmarinic acid was enhanced. The simulated digestion showed a gradual increase in antioxidant content and activity from the stomach to small intestine, with TPC and TFC being rapidly released in the intestinal environment. The study concluded that shiso-zuke umeboshi provides higher health benefits due to the excellent antioxidant compounds produced through the perilla pickling process.
Collapse
Affiliation(s)
- Jutalak Suwannachot
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo, Chiba 271-8510, Japan.
| |
Collapse
|
3
|
Tan CYR, Morenc M, Setiawan M, Lim ZZY, Soon AL, Bierman JC, Vires L, Laughlin T, DeAngelis YM, Rovito H, Jarrold BB, Nguyen TQN, Lim JSY, Kent O, Määttä A, Benham AM, Hawkins TJ, Lee XE, Ehrman MC, Oblong JE, Dreesen O, Bellanger S. Para-Hydroxycinnamic Acid Mitigates Senescence and Inflammaging in Human Skin Models. Int J Mol Sci 2024; 25:8153. [PMID: 39125721 PMCID: PMC11312399 DOI: 10.3390/ijms25158153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Para-hydroxycinnamic acid (pHCA) is one of the most abundant naturally occurring hydroxycinnamic acids, a class of chemistries known for their antioxidant properties. In this study, we evaluated the impact of pHCA on different parameters of skin aging in in vitro skin models after H2O2 and UV exposure. These parameters include keratinocyte senescence and differentiation, inflammation, and energy metabolism, as well as the underlying molecular mechanisms. Here we demonstrate that pHCA prevents oxidative stress-induced premature senescence of human primary keratinocytes in both 2D and 3D skin models, while improving clonogenicity in 2D. As aging is linked to inflammation, referred to as inflammaging, we analyzed the release of IL-6, IL-8, and PGE2, known to be associated with senescence. All of them were downregulated by pHCA in both normal and oxidative stress conditions. Mechanistically, DNA damage induced by oxidative stress is prevented by pHCA, while pHCA also exerts a positive effect on the mitochondrial and glycolytic functions under stress. Altogether, these results highlight the protective effects of pHCA against inflammaging, and importantly, help to elucidate its potential mechanisms of action.
Collapse
Affiliation(s)
- Christina Yan Ru Tan
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Malgorzata Morenc
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Melina Setiawan
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Zen Zhi Yan Lim
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Ai Ling Soon
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - John C. Bierman
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Laura Vires
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Timothy Laughlin
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Yvonne M. DeAngelis
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Holly Rovito
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Bradley B. Jarrold
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Thi Quynh Ngoc Nguyen
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - John Soon Yew Lim
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Olivia Kent
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (O.K.); (A.M.); (A.M.B.); (T.J.H.)
| | - Arto Määttä
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (O.K.); (A.M.); (A.M.B.); (T.J.H.)
| | - Adam M. Benham
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (O.K.); (A.M.); (A.M.B.); (T.J.H.)
| | - Timothy J. Hawkins
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (O.K.); (A.M.); (A.M.B.); (T.J.H.)
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Matthew C. Ehrman
- Procter & Gamble International Operations SA SG Branch, 70 Biopolis Street, Singapore 138547, Singapore;
| | - John E. Oblong
- The Procter & Gamble Company, Mason, OH 45040, USA; (J.C.B.); (L.V.); (T.L.); (Y.M.D.); (H.R.); (B.B.J.); (J.E.O.)
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; (C.Y.R.T.); (M.S.); (Z.Z.Y.L.); (A.L.S.); (T.Q.N.N.); (J.S.Y.L.); (X.E.L.); (O.D.)
| |
Collapse
|
4
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Cimmino G, De Nisco M, Piccolella S, Gravina C, Pedatella S, Pacifico S. Innovative Cosmeceutical Ingredients: Harnessing Selenosugar-Linked Hydroxycinnamic Acids for Antioxidant and Wound-Healing Properties. Antioxidants (Basel) 2024; 13:744. [PMID: 38929184 PMCID: PMC11200926 DOI: 10.3390/antiox13060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Selenosugars are gaining growing interest due to their antioxidant efficacy, and their ability to inhibit glycosidases, repair skin tissue or reduce endothelial dysfunction. Among selenosugars, those in which selenium replaces heterocyclic oxygen in a 5-membered sugar were our focus, and their coupling with phenolic compounds appears to be a strategy aimed at producing new compounds with enhanced antioxidant efficacy. In this context, the Mitsunobu reaction has been advantageously explored to obtain trans-p-coumaroyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, trans-caffeoyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, and trans-feruloyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose. These compounds underwent removal of the iso-propylidene group, to provide the corresponding hydroxycinnamoyl-1,4-deoxy-4-seleno-d-ribose. All compounds were characterized by Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass Spectrometry (HRMS). This latter technique was pivotal for ensuing cellular metabolomics analyses. In fact, after evaluating the anti-radical efficacy through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, which underline the massive role of the phenolic moiety in establishing efficacy, the compounds, whose cytotoxicity was first screened in two highly oxidative-stress-sensitive cells, were tested for their wound healing properties towards human HaCaT keratinocytes cells. Caffeoyl- and feruloyl selenosugars exerted a dose-dependent repair activity, while, as highlighted by the metabolomic approach, they were poorly taken up within the cells.
Collapse
Affiliation(s)
- Giovanna Cimmino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
- Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, 80126 Napoli, Italy;
| | - Mauro De Nisco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (G.C.); (C.G.); (S.P.)
| |
Collapse
|
6
|
Ziemlewska A, Zagórska-Dziok M, Mokrzyńska A, Nizioł-Łukaszewska Z, Szczepanek D, Sowa I, Wójciak M. Comparison of Anti-Inflammatory and Antibacterial Properties of Raphanus sativus L. Leaf and Root Kombucha-Fermented Extracts. Int J Mol Sci 2024; 25:5622. [PMID: 38891811 PMCID: PMC11171837 DOI: 10.3390/ijms25115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In the cosmetics industry, the extract from Raphanus sativus L. is fermented using specific starter cultures. These cosmetic ingredients act as preservatives and skin conditioners. Kombucha is traditionally made by fermenting sweetened tea using symbiotic cultures of bacteria and yeast and is used in cosmetic products. The aim of this study was to evaluate the cosmetic properties of radish leaf and root extract fermented with the SCOBY. Both unfermented water extracts and extracts after 7, 14, and 21 days of fermentation were evaluated. The analysis of secondary plant metabolites by UPLC-MS showed higher values for ferments than for extracts. A similar relationship was noted when examining the antioxidant properties using DPPH and ABTS radicals and the protective effect against H2O2-induced oxidative stress in fibroblasts and keratinocytes using the fluorogenic dye H2DCFDA. The results also showed no cytotoxicity to skin cells using Alamar Blue and Neutral Red tests. The ability of the samples to inhibit IL-1β and COX-2 activity in LPS-treated fibroblasts was also demonstrated using ELISA assays. The influence of extracts and ferments on bacterial strains involved in inflammatory processes of skin diseases was also assessed. Additionally, application tests were carried out, which showed a positive effect of extracts and ferments on TEWL and skin hydration using a TEWAmeter and corneometer probe. The results obtained depended on the concentration used and the fermentation time.
Collapse
Affiliation(s)
- Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Dariusz Szczepanek
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
7
|
Kinra M, Ranadive N, Nampoothiri M, Arora D, Mudgal J. Involvement of NLRP3 inflammasome pathway in the protective mechanisms of ferulic acid and p-coumaric acid in LPS-induced sickness behavior and neuroinflammation in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1829-1839. [PMID: 37755515 PMCID: PMC10858824 DOI: 10.1007/s00210-023-02743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Ferulic acid (FA) and p-coumaric acid (PCA) are abundantly present in commonly consumed food and beverages. Being polyphenolic compounds, they have been explored for their antioxidant and anti-inflammatory properties. Based on our previous study, we selected these two compounds to further investigate their potential in lipopolysaccharide (LPS)-induced sickness behavior and the ensuing neuroinflammation by specifically focusing on the NLRP3 inflammasome pathway. Male Swiss albino mice were divided into nine groups (n = 6) consisting of Normal Control, LPS, fluoxetine (FLX), FA40, FA160, FA640, PCA40, PCA160, and PCA640 respectively. Each group received respective FA or PCA treatment except Normal Control and LPS, which received the vehicle, carboxymethylcellulose 0.25% w/v. All groups were challenged with LPS 1.5 mg/kg, intraperitoneally except the Normal Control group, which received saline. Behavioral assessments were performed between 1-2 h, and the whole brains were collected at 3 h post-LPS administration. LPS-induced sickness behavior was characterized by significantly reduced spontaneous activity and high immobility time. The expression of NLRP3, ASC, caspase-1 and IL-1β was significantly increased, along with the levels of brain IL-1β suggesting the assembly and activation of NLRP3 inflammasome pathway. Furthermore, the major cytokines involved in sickness behavior, IL-6 and TNF-α were also significantly elevated with the accompanied lipid peroxidation. The results of this study emphasize that within the employed dose ranges of both FA and PCA, both the compounds were effective at blocking the activation of the NLRP3 inflammasome pathway and thereby reducing the release of IL-1β and the sickness behavior symptoms. There was a prominent effect on cytokine levels and lipid peroxidation as well.
Collapse
Affiliation(s)
- Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
8
|
Lenzuni M, Converti A, Casazza AA. From laboratory- to industrial-scale plants: Future of anaerobic digestion of olive mill solid wastes. BIORESOURCE TECHNOLOGY 2024; 394:130317. [PMID: 38218408 DOI: 10.1016/j.biortech.2024.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
In this review, the main properties of olive mill solid waste, the primary by-product of olive oil production, and its feasibility as a feedstock for anaerobic digesters operating at laboratory-, pilot- and industrial-scales are discussed in detail. Nutrient addition and thermal pretreatments were found to have the potential to address the challenges arising from the high carbon-to-nitrogen ratio, the low pH, and the high concentration of phenolic compounds. Furthermore, anaerobic co-digestion with different organic feedstocks has been identified as one of the most promising options to solve the aforementioned problems and the seasonality nature of olive waste, while improving the efficiency of anaerobic treatment plants that operate throughout the whole year. The insights generated from this study show co-digestion with wastes from animal farming to be the most environmentally and economically sustainable method for improving anaerobic digestion processes with olive mill solid waste.
Collapse
Affiliation(s)
- Martina Lenzuni
- Department of Civil, Chemical, and Environmental Engineering, University of Genoa, Italy; National Research Centre for Agricultural Technologies (CN AgriTech), Naples, Italy
| | - Attilio Converti
- Department of Civil, Chemical, and Environmental Engineering, University of Genoa, Italy; National Research Centre for Agricultural Technologies (CN AgriTech), Naples, Italy.
| | | |
Collapse
|
9
|
Contardi M, Summa M, Lenzuni M, Miracoli L, Bertora F, Mendez MD, Athanassiou A, Bertorelli R. Combining Alginate/PVPI-Based Film with Frequency Rhythmic Electrical Modulation System (FREMS) Technology as an Advanced Strategy for Diabetic Wounds. Macromol Biosci 2024; 24:e2300349. [PMID: 37800281 DOI: 10.1002/mabi.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Diabetes is rising as one of the most diffused diseases of the century with the related urgent necessity to face its systemic and local effects on the patients, such as cardiovascular problems, degeneration of limbs, and dysfunction of the wound healing process. The diffusion of leg ulcers has been estimated to be 1.51 for 1000 population, and these non-resolved wounds can produce several social, economic, and mental health issues in diabetic patients. At the same time, these people experience neuropathic pain that causes morbidity and a further decrease in their quality of life. Here, a new study is presented where asodium alginate/Polyvinylpyrrolidone-Iodine complex (PVPI)-based wound dressing is combined with the Frequency Rhythmic Electrical Modulation System (FREMS) technology, an established medical device for the treatment of neuropathic pain and diabetic ulcers. The produced Alginate/PVPI-based films are characterized in terms of morphology, chemistry, wettability, bio-/hemo-compatibility, and clotting capacity. Next, the Alginate/PVPI-based films are used together with FREMS technology in diabetic mice models, and synergism of their action in the wound closure rate and anti-inflammatory properties is found. Hence, how the combination of electrical neurostimulation devices and advanced wound dressings can be a new approach to improve chronic wound treatment is demonstrated.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Luigi Miracoli
- Fremslife Srl, R&D Dept., Via Buccari, 9, Genova, 16153, Italy
| | - Franco Bertora
- Fremslife Srl, R&D Dept., Via Buccari, 9, Genova, 16153, Italy
| | | | | | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
10
|
Lin S, Chen W, Alqahtani MS, Elkamchouchi DH, Ge Y, Lu Y, Zhang G, Wang M. Exploring the therapeutic potential of layered double hydroxides and transition metal dichalcogenides through the convergence of rheumatology and nanotechnology using generative adversarial network. ENVIRONMENTAL RESEARCH 2024; 241:117262. [PMID: 37839531 DOI: 10.1016/j.envres.2023.117262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Two-dimensional Layered double hydroxides (LDHs) are highly used in the biomedical domain due to their biocompatibility, biodegradability, controlled drug loading and release capabilities, and improved cellular permeability. The interaction of LDHs with biological systems could facilitate targeted drug delivery and make them an attractive option for various biomedical applications. Rheumatoid Arthritis (RA) requires targeted drug delivery for optimum therapeutic outcomes. In this study, stacked double hydroxide nanocomposites with dextran sulphate modification (LDH-DS) were developed while exhibiting both targeting and pH-sensitivity for rheumatological conditions. This research examines the loading, release kinetics, and efficiency of the therapeutics of interest in the LDH-based drug delivery system. The mean size of LDH-DS particles (300.1 ± 8.12 nm) is -12.11 ± 0.4 mV. The encapsulation efficiency was 48.52%, and the loading efficacy was 16.81%. In vitro release tests indicate that the drug's discharge is modified more rapidly in PBS at pH 5.4 compared to pH 5.6, which later reached 7.3, showing the case sensitivity to pH. A generative adversarial network (GAN) is used to analyze the drug delivery system in rheumatology. The GAN model achieved high accuracy and classification rates of 99.3% and 99.0%, respectively, and a validity of 99.5%. The second and third administrations resulted in a significant change with p-values of 0.001 and 0.05, respectively. This investigation unequivocally demonstrated that LDH functions as a biocompatible drug delivery matrix, significantly improving delivery effectiveness.
Collapse
Affiliation(s)
- Suxian Lin
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China
| | - Weiwei Chen
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, U.K
| | - Dalia H Elkamchouchi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yisu Ge
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325100, China
| | - Yanjie Lu
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Guodao Zhang
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Mudan Wang
- Department of Nephrology, Wenzhou People's Hospital, Wenzhou, 325000, China.
| |
Collapse
|
11
|
Khawula S, Gokul A, Niekerk LA, Basson G, Keyster M, Badiwe M, Klein A, Nkomo M. Insights into the Effects of Hydroxycinnamic Acid and Its Secondary Metabolites as Antioxidants for Oxidative Stress and Plant Growth under Environmental Stresses. Curr Issues Mol Biol 2023; 46:81-95. [PMID: 38275667 PMCID: PMC10814621 DOI: 10.3390/cimb46010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Plant immobility renders plants constantly susceptible to various abiotic and biotic stresses. Abiotic and biotic stresses are known to produce reactive oxygen species (ROS), which cause comparable cellular secondary reactions (osmotic or oxidative stress), leading to agricultural productivity constraints worldwide. To mitigate the challenges caused by these stresses, plants have evolved a variety of adaptive strategies. Phenolic acids form a key component of these strategies, as they are predominantly known to be secreted by plants in response to abiotic or biotic stresses. Phenolic acids can be divided into different subclasses based on their chemical structures, such as hydroxybenzoic acids and hydroxycinnamic acids. This review analyzes hydroxycinnamic acids and their derivatives as they increase under stressful conditions, so to withstand environmental stresses they regulate physiological processes through acting as signaling molecules that regulate gene expression and biochemical pathways. The mechanism of action used by hydroxycinnamic acid involves minimization of oxidative damage to maintain cellular homeostasis and protect vital cellular components from harm. The purpose of this review is to highlight the potential of hydroxycinnamic acid metabolites/derivatives as potential antioxidants. We review the uses of different secondary metabolites associated with hydroxycinnamic acid and their contributions to plant growth and development.
Collapse
Affiliation(s)
- Sindiswa Khawula
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, Kwa-Dlangezwa 3886, South Africa;
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of Free State, Phuthadithaba 9866, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Mihlali Badiwe
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7435, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, Kwa-Dlangezwa 3886, South Africa;
| |
Collapse
|
12
|
Mallik SB, Mudgal J, Kinra M, Hall S, Grant GD, Anoopkumar-Dukie S, Nampoothiri M, Zhang Y, Arora D. Involvement of indoleamine 2, 3-dioxygenase (IDO) and brain-derived neurotrophic factor (BDNF) in the neuroprotective mechanisms of ferulic acid against depressive-like behaviour. Metab Brain Dis 2023; 38:2243-2254. [PMID: 37490224 PMCID: PMC10504153 DOI: 10.1007/s11011-023-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE Ferulic acid (FA) is a common food ingredient that is abundantly present in various routinely consumed food and beverages. Like many cinnamic acid derivatives, FA produces wide-ranging effects in a dose-dependent manner and various studies link FA consumption with reduced risk of depressive disorders. The aim of this study was to exploit the neuroprotective mechanisms of FA including indoleamine 2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF), and other pro-inflammatory cytokines by employing lipopolysaccharide (LPS)-induced depressive-like behaviour model. METHODS C57BL/6J male mice were divided into 4 groups consisting of saline (SAL), LPS, FA and Imipramine (IMI). Animals were pretreated orally with FA (10 mg/kg) and IMI (10 mg/kg) for 21 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 21. RESULTS LPS administration produced a biphasic change in the behaviour of the animals where the animals lost a significant weight and express high immobility time at 24 h. Proinflammatory cytokines including, TNF-α, IL-6, IL-1β, and IFN-γ were significantly increased along with increased lipid peroxidation and reduced BDNF. Furthermore, the increased kynurenine to tryptophan ratio was indicative of elevated IDO activity. CONCLUSION The results of this study emphasise that low dose of FA is effective in attenuating depressive-like behaviour by modulating IDO, BDNF and reducing neuroinflammation.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yuqing Zhang
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia.
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
13
|
Fiorentini F, Suarato G, Summa M, Miele D, Sandri G, Bertorelli R, Athanassiou A. Plant-Based, Hydrogel-like Microfibers as an Antioxidant Platform for Skin Burn Healing. ACS APPLIED BIO MATERIALS 2023; 6:3103-3116. [PMID: 37493659 PMCID: PMC10445266 DOI: 10.1021/acsabm.3c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Natural polymers from organic wastes have gained increasing attention in the biomedical field as resourceful second raw materials for the design of biomedical devices which can perform a specific bioactive function and eventually degrade without liberating toxic residues in the surroundings. In this context, patches and bandages, that need to support the skin wound healing process for a short amount of time to be then discarded, certainly constitute good candidates in our quest for a more environmentally friendly management. Here, we propose a plant-based microfibrous scaffold, loaded with vitamin C (VitC), a bioactive molecule which acts as a protecting agent against UV damages and as a wound healing promoter. Fibers were fabricated via electrospinning from various zein/pectin formulations, and subsequently cross-linked in the presence of Ca2+ to confer them a hydrogel-like behavior, which we exploited to tune both the drug release profile and the scaffold degradation. A comprehensive characterization of the physico-chemical properties of the zein/pectin/VitC scaffolds, either pristine or cross-linked, has been carried out, together with the bioactivity assessment with two representative skin cell populations (human dermal fibroblast cells and skin keratinocytes, HaCaT cells). Interestingly, col-1a gene expression of dermal fibroblasts increased after 3 days of growth in the presence of the microfiber extraction media, indicating that the released VitC was able to stimulate collagen mRNA production overtime. Antioxidant activity was analyzed on HaCaT cells via DCFH-DA assay, highlighting a fluorescence intensity decrease proportional to the amount of loaded VitC (down to 50 and 30%), confirming the protective effect of the matrices against oxidative stress. Finally, the most performing samples were selected for the in vivo test on a skin UVB-burn mouse model, where our constructs demonstrated to significantly reduce the inflammatory cytokines expression in the injured area (50% lower than the control), thus constituting a promising, environmentally sustainable alternative to skin patches.
Collapse
Affiliation(s)
- Fabrizio Fiorentini
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- DIBRIS, Università di
Genova, Via Opera Pia
13, Genova 16145, Italy
| | - Giulia Suarato
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maria Summa
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Dalila Miele
- Department
of Drug Science, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Giuseppina Sandri
- Department
of Drug Science, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Athanassia Athanassiou
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
14
|
Ruggeri M, Miele D, Contardi M, Vigani B, Boselli C, Icaro Cornaglia A, Rossi S, Suarato G, Athanassiou A, Sandri G. Mycelium-based biomaterials as smart devices for skin wound healing. Front Bioeng Biotechnol 2023; 11:1225722. [PMID: 37650039 PMCID: PMC10465301 DOI: 10.3389/fbioe.2023.1225722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
15
|
Isopencu GO, Covaliu-Mierlă CI, Deleanu IM. From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2661. [PMID: 37514275 PMCID: PMC10386126 DOI: 10.3390/plants12142661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Transdermal delivery devices and wound dressing materials are constantly improved and upgraded with the aim of enhancing their beneficial effects, biocompatibility, biodegradability, and cost effectiveness. Therefore, researchers in the field have shown an increasing interest in using natural compounds as constituents for such systems. Plants, as an important source of so-called "natural products" with an enormous variety and structural diversity that still exceeds the capacity of present-day sciences to define or even discover them, have been part of medicine since ancient times. However, their benefits are just at the beginning of being fully exploited in modern dermal and transdermal delivery systems. Thus, plant-based primary compounds, with or without biological activity, contained in gums and mucilages, traditionally used as gelling and texturing agents in the food industry, are now being explored as valuable and cost-effective natural components in the biomedical field. Their biodegradability, biocompatibility, and non-toxicity compensate for local availability and compositional variations. Also, secondary metabolites, classified based on their chemical structure, are being intensively investigated for their wide pharmacological and toxicological effects. Their impact on medicine is highlighted in detail through the most recent reported studies. Innovative isolation and purification techniques, new drug delivery devices and systems, and advanced evaluation procedures are presented.
Collapse
Affiliation(s)
- Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| | - Cristina-Ileana Covaliu-Mierlă
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Iuliana-Mihaela Deleanu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| |
Collapse
|
16
|
Yang L, Nao J, Dong X. The Therapeutic Potential of Hydroxycinnamic Acid Derivatives in Parkinson's Disease: Focus on In Vivo Research Advancements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37432913 DOI: 10.1021/acs.jafc.3c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Hydroxycinnamic acid derivatives (HCDs) are polyphenols that are abundant in cereals, coffee, tea, wine, fruits, vegetables, and other plant-based foods. To aid in the clinical prevention and treatment of Parkinson's disease (PD), we evaluated in vivo investigations of the pharmacological properties of HCDs relevant to PD, and their pharmacokinetic and safety aspects. An extensive search of published journals was conducted using several literature databases, including PubMed, Google Scholar, and the Web of Science. The search terms included "hydroxycinnamic acid derivatives," "ferulic acid," "caffeic acid," "sinapic acid," "p-coumaric acid," "Parkinson's disease," and combinations of these keywords. As of April 2023, 455 preclinical studies were retrieved, of which 364 were in vivo studies; we included 17 of these articles on the pharmaceutics of HCDs in PD. Available evidence supports the protective effects of HCDs in PD due to their anti-inflammatory, antioxidant, as well as antiapoptotic physiological activities. Studies have identified possible molecular targets and pathways for the protective actions of HCDs in PD. However, the paucity of studies on these compounds in PD, and the risk of toxicity induced with high-dose applications, limits their use. Thus, multifaceted studies of HCDs in vitro and in vivo are needed.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
17
|
Contardi M, Fadda M, Isa V, Louis YD, Madaschi A, Vencato S, Montalbetti E, Bertolacci L, Ceseracciu L, Seveso D, Lavorano S, Galli P, Athanassiou A, Montano S. Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37376819 PMCID: PMC10360034 DOI: 10.1021/acsami.3c01166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.
Collapse
Affiliation(s)
- Marco Contardi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Valerio Isa
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Yohan D Louis
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Andrea Madaschi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Sara Vencato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Genova 16128, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
- Dubai Business School, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| |
Collapse
|
18
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
19
|
Contardi M, Ayyoub AMM, Summa M, Kossyvaki D, Fadda M, Liessi N, Armirotti A, Fragouli D, Bertorelli R, Athanassiou A. Self-Adhesive and Antioxidant Poly(vinylpyrrolidone)/Alginate-Based Bilayer Films Loaded with Malva sylvestris Extracts as Potential Skin Dressings. ACS APPLIED BIO MATERIALS 2022; 5:2880-2893. [PMID: 35583459 PMCID: PMC9214765 DOI: 10.1021/acsabm.2c00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malva sylvestris (MS) is a medicinal herb known worldwide for its beneficial effects due to the several active molecules present in its leaves and flowers. These compounds have shown antioxidant and anti-inflammatory properties and thus can be helpful in treatments of burns and chronic wounds, characterized mainly by high levels of free radicals and impairments of the inflammatory response. In this work, we propose bilayer films as wound dressings, based on poly(vinylpyrrolidone) (PVP) and sodium alginate loaded with M. sylvestris extracts from leaves and flowers and fabricated by combining solvent-casting and rod-coating methods. The top layer is produced in two different PVP/alginate ratios and loaded with the MS flowers' extract, while the bottom layer is composed of PVP and MS leaves' extract. The bilayers were characterized morphologically, chemically, and mechanically, while they showed superior self-adhesive properties on human skin compared to a commercial skin patch. The materials showed antioxidant activity, release of the bioactive compounds, and water uptake property. Moreover, the anthocyanin content of the flower extract provided the films with the ability to change color when immersed in buffers of different pH levels. In vitro tests using primary keratinocytes demonstrated the biocompatibility of the MS bilayer materials and their capacity to enhance the proliferation of the cells in a wound scratch model. Finally, the best performing MS bilayer sample with a PVP/alginate ratio of 70:30 was evaluated in mice models, showing suitable resorption properties and the capacity to reduce the level of inflammatory mediators in UVB-induced burns when applied to an open wound. These outcomes suggest that the fabricated bilayer films loaded with M. sylvestris extracts are promising formulations as active and multifunctional dressings for treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Amin Mah'd Moh'd Ayyoub
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
20
|
Guilherme VA, Cunha VRR, de Paula E, de Araujo DR, Constantino VRL. Anti-Inflammatory and Analgesic Evaluation of a Phytochemical Intercalated into Layered Double Hydroxide. Pharmaceutics 2022; 14:pharmaceutics14050934. [PMID: 35631520 PMCID: PMC9144641 DOI: 10.3390/pharmaceutics14050934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coumaric acid (CouH), an antioxidant molecule assimilated by food consumption, was intercalated into layered double hydroxide (LDH) nanocarrier, having zinc and aluminium ions in the layers (LDH-Cou), to evaluate its pharmacological activity through in vitro and in vivo assays in mice. Therefore, the following tests were performed: coumarate delivery in saline solution, fibroblasts’ cell viability using neutral red, peritonitis induced by carrageenan, formalin test, acetic-acid-induced writhing, and tail-flick assay, for the non-intercalated CouH and the intercalated LDH-Cou system. Furthermore, different pharmacological pathways were also investigated to evaluate their possible anti-inflammatory and antinociceptive mechanisms of action, in comparison to traditionally used agents (morphine, naloxone, caffeine, and indomethacin). The LDH-Cou drug delivery system showed more pronounced anti-inflammatory effect than CouH but not more than that evoked by the classic non-steroidal anti-inflammatory drug (NSAID) indomethacin. For the analgesic effect, according to the tail-flick test, the treatment with LDH-Cou expressively increased the analgesia duration (p < 0.001) by approximately 1.7−1.8 times compared to CouH or indomethacin. Thus, the results pointed out that the LDH-Cou system induced in vivo analgesic and anti-inflammatory activities and possibly uses similar mechanisms to that observed for classic NSAIDs, such as indomethacin.
Collapse
Affiliation(s)
- Viviane A. Guilherme
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas 13083-862, SP, Brazil; (V.A.G.); (E.d.P.)
- Faculdade de Farmácia, Universidade Adventista de São Paulo—UNASP, Engenheiro Coelho 13448-900, SP, Brazil
| | - Vanessa R. R. Cunha
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso—Campus Juína—IFT-MT, Juína 78320-000, MT, Brazil
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas 13083-862, SP, Brazil; (V.A.G.); (E.d.P.)
| | - Daniele R. de Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC—UFABC, Santo André 09210-170, SP, Brazil
- Correspondence: (D.R.d.A.); (V.R.L.C.)
| | - Vera R. L. Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
- Correspondence: (D.R.d.A.); (V.R.L.C.)
| |
Collapse
|
21
|
Tenorová K, Masteiková R, Pavloková S, Kostelanská K, Bernatonienė J, Vetchý D. Formulation and Evaluation of Novel Film Wound Dressing Based on Collagen/Microfibrillated Carboxymethylcellulose Blend. Pharmaceutics 2022; 14:pharmaceutics14040782. [PMID: 35456616 PMCID: PMC9027540 DOI: 10.3390/pharmaceutics14040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is essential as a physiological material in wound healing, so it is often used in wound management, mainly as a lyophilisate. Collagen also has excellent film-forming properties; unfortunately, however, its utilisation as a film wound dressing is limited because of its weak mechanical properties, especially in its wet state. For this reason, modifications or combinations with different materials are investigated. The combination of collagen with partially modified microfibrillar carboxymethylcellulose (CMC), which has not previously been described, provided a new possibility for strengthening collagen films and was the aim of this work. The collagen–CMC films based on three types of collagens, two plasticizers and two collagen. Plasticiser ratios were prepared using the solvent casting method; partially modified CMC served here as both a film-forming agent and a filler, without compromising the transparency of the films. The presence of microfibrils was confirmed microscopically by SEM. Organoleptic and physicochemical evaluation, especially in terms of practical application on wounds, demonstrated that all the samples had satisfactory properties for this purpose even after wetting. All the films retained acidic pH values even after 24 h, with a maximum of 6.27 ± 0.17, and showed a mild degree of swelling, with a maximum of about 6 after 24 h.
Collapse
Affiliation(s)
- Kateřina Tenorová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
- Correspondence:
| | - Ruta Masteiková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| | - Klára Kostelanská
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| | - Jurga Bernatonienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - David Vetchý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| |
Collapse
|
22
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
23
|
Contardi M, Summa M, Picone P, Brancato OR, Di Carlo M, Bertorelli R, Athanassiou A. Evaluation of a Multifunctional Polyvinylpyrrolidone/Hyaluronic Acid-Based Bilayer Film Patch with Anti-Inflammatory Properties as an Enhancer of the Wound Healing Process. Pharmaceutics 2022; 14:483. [PMID: 35335861 PMCID: PMC8955039 DOI: 10.3390/pharmaceutics14030483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
The management of acute and chronic wounds is still a socioeconomic burden for society due to the lack of suitable tools capable of supporting all the healing phases. The exponential spread of diabetes worldwide and the consequent increase of complicated diabetic ulcers require further efforts to develop scalable, low-cost, and easy-to-use treatments for tackling this emergency. Recently, we explored the fabrication of a polyvinylpyrrolidone/hyaluronic acid-based bilayer wound dressing, characterizing its physicochemical features and detailing its excellent antimicrobial activity. Here, we further demonstrate its biocompatibility on fibroblasts, keratinocytes, and red blood cells. The bilayer shows anti-inflammatory properties, statistically reducing the level of IL-6, IL-1β, and TNF-α, and a capacity to accelerate wound healing in vitro and in healthy and diabetic mice models compared to untreated mice. The outcomes suggest that this bilayer material can be an effective tool for managing different skin injuries.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.S.); (R.B.)
| | - Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), CNR, Via Ugo la Malfa 153, 90146 Palermo, Italy; (P.P.); (O.R.B.); (M.D.C.)
| | - Ornella Roberta Brancato
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), CNR, Via Ugo la Malfa 153, 90146 Palermo, Italy; (P.P.); (O.R.B.); (M.D.C.)
| | - Marta Di Carlo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), CNR, Via Ugo la Malfa 153, 90146 Palermo, Italy; (P.P.); (O.R.B.); (M.D.C.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.S.); (R.B.)
| | | |
Collapse
|
24
|
Abstract
Plant parts of some spontaneous fruit species were analyzed by HPLC-UV method to determine their content in phenolic compounds. Buds, leaves, flowers, and fruits were harvested from 11 wild fruit species of medicinal, food, and therapeutic interest: European crab apple, European wild pear, blackthorn, dog rose, elder, dewberry, wild blackberry, cornelian cherry, red hawthorn, black hawthorn, and green strawberry. The studied species were analyzed for the presence and amount of phenolic compounds: flavonoids from the subclasses flavanols (catechin hydrate and epicatechin) and flavonols (rutin, myricetin, quercetin, and kaempferol) together with phenolic acids belonging to the hydroxybenzoic acid subclass (ellagic, gallic, syringic, vanillic, and salicylic) and hydroxycinnamic acids (caffeic, ferulic, sinapic, p-coumaric, neochlorogenic, and chlorogenic). The obtained results confirm the presence of bioactive compounds in different plant parts in wild fruit species. The variability identified from one species to another, the different compositions of phenols within the species, provides useful data on the role of these plant parts in the human body.
Collapse
|
25
|
Liao T, Cao J, Yang Z, Cheng J, Lu J. Leaf and Flower Extracts of Six Michelia L.: Polyphenolic Composition, Antioxidant, Antibacterial Activities and in Vitro Inhibition of α-Amylase and α-Glucosidase. Chem Biodivers 2022; 19:e202100894. [PMID: 34994077 DOI: 10.1002/cbdv.202100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Methanolic extracts of the leaf and flower of Michelia L., an evergreen aromatic genus widely used in landscaping, industry and medicine of various countries, were analyzed. The UPLC-ESI-MS/MS analysis led to the identification of 28 polyphenols from six Michelia species that widely distributed and cultivated in southern China, among which quinic acid and chlorogenic acid were the main components. The flower extract of Michelia maudiae had the most abundant polyphenols content, as well as high contents of total phenolic (117.31 ± 7.26 mg GAE/g DW) and total flavonoid (251.60 ± 15.56 mg CE/g DW). Meanwhile, it also showed outstanding performance in three antioxidant indexes of DPPH, ABTS and FRAP. The leaf extracts of Michelia chapensis and Michelia floribunda exhibited excellent inhibition against four pathogenic bacteria. Moreover, certain inhibitory activities were displayed by Michelia macclurei extracts against α-amylase and α-glucosidase This study explored the biological activities of six Michelia species, and provided reference for variety selection with the aim of designing novel phyto-pharmaceuticals.
Collapse
Affiliation(s)
- Tianzhu Liao
- Central South University of Forestry and Technology, College of Forestry, Shaoshan South Road, No.498, 410004, Changsha, CHINA
| | - Jiwu Cao
- Central South University of Forestry and Technology, College of Forestry, Shaoshan South Road, No.498, 410004, Changsha, CHINA
| | - Zhenyu Yang
- Central South University of Forestry and Technology, College of Food Science and Engineering, Shaoshan South Road, No.498, 410004, Changsha, CHINA
| | - Jing Cheng
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Xiangfu Central Road, No.188, Changha, CHINA
| | - Jun Lu
- Central South University of Forestry and Technology, College of Food Science and Engineering, Shaoshan South Road, No.498, 410004, Changsha, CHINA
| |
Collapse
|
26
|
An Evaluation of the Antioxidant Activity of a Methanolic Extract of Cucumis melo L. Fruit (F1 Hybrid). SEPARATIONS 2021. [DOI: 10.3390/separations8080123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cucumis melo L. (C. melo) is a fruit with many medicinal properties and is consumed in various countries. It is utilised for chronic eczema and to treat minor burns and scrapes. The present study was conducted to evaluate the antioxidant activity of a methanolic extract of Cucumis melo Linn (MECM). A coarse powder prepared from the fruit and seeds was extracted with methanol (absolute) by a hot continuous percolation process in accordance with the standard protocols. All the extracts were estimated for potential antioxidant activities with tests such as an estimation of total antioxidant activity, hydroxyl radical and nitric oxide scavenging activity and reducing power ability. The qualitative analysis of the methanolic extract of C. melo fruit showed the presence of various phytochemical constituents such as carbohydrates, alkaloids, sterols, phenolic compounds, terpenes and flavonoids. The total antioxidant activity of concentrations of 50, 100 and 200 µg were tested and observed to be 3.3 ± 0.1732, 6.867 ± 0.5457 and 13.63 ± 0.8295 µg of ascorbic acid, respectively. The results also showed significant nitric oxide and DPPH scavenging activities as well as a reducing power activity of MECM. Thus, our results suggest that MECM may serve as a putative source of natural antioxidants for therapeutic and nutraceutical applications.
Collapse
|
27
|
Nawata K. Estimation of Diabetes Prevalence, and Evaluation of Factors Affecting Blood Glucose Levels and Use of Medications in Japan. Health (London) 2021. [DOI: 10.4236/health.2021.1312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|